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Abstract 
Purpose – The purpose of this study is to account for a recent non-mainstream econometric approach using 
microdata and how it can inform research in business administration. More specifically, the paper draws from 
the applied microeconometric literature stances in favor of fitting Poisson regression with robust standard 
errors rather than the OLS linear regression of a log-transformed dependent variable. In addition, the authors 
point to the appropriate Stata coding and take into account the possibility of failing to check for the existence 
of the estimates – convergency issues – as well as being sensitive to numerical problems. 
Design/methodology/approach – The author details the main issues with the log-linear model, 
drawing from the applied econometric literature in favor of estimating multiplicative models for non-count 
data. Then, he provides the Stata commands and illustrates the differences in the coefficient and standard 
errors between both OLS and Poisson models using the health expenditure dataset from the RAND Health 
Insurance Experiment (RHIE). 
Findings – The results indicate that the use of Poisson pseudo maximum likelihood estimators yield better 
results that the log-linear model, as well as other alternative models, such as Tobit and two-part models. 
Originality/value – The originality of this study lies in demonstrating an alternative microeconometric 
technique to deal with positive skewness of dependent variables. 
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1. Introduction 
Researchers in the different fields within business administration often estimate models 
with a log-transformed dependent variable. The main reasons for log transforming the 
outcome variable include dealing with a positively skewed variable as well as interpreting a 
covariate as either elasticity or having a multiplicative response (Manning, 1998). An 
unfortunate consequence of this approach, however, is that the estimated coefficients are 
relevant to the distribution of the log-transformed dependent variable rather than to the 
distribution of the dependent variable in their natural units. As a result, coefficients from the 
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log-transformed ordinary least squares (OLS) model are often retransformed back to 
unlogged terms to make inferences in their natural units. 

The retransformed estimate of either the conditional mean or the impact of an independent 
variable on the dependent variable – the slope – needs to adjust for both heteroskedasticity and the 
distribution of the residual (Mullahy, 1998). Failure to account for both may lead to biased estimates 
of the conditional mean and the slope on its original scale. The presence of heteroskedasticity can 
generate different estimates in log-linear models rather than estimated in levels. This suggests that 
inferences drawn on log-linear regressions may produce misleading conclusions. 

Although suggestions have been offered in favor of estimating log-linear models to 
inform about the conditional mean of the distribution of the dependent variable, they rely on 
strong underlying assumptions that may not hold. Among the several models used to 
correct the issues of coefficient biasedness and heteroskedasticity in log-linear models, the 
Poisson pseudo-maximum-likelihood estimator is a robust substitute for the standard log- 
linear model (Silva & Tenreyro, 2006). 

The purpose of this paper is to account for a recent non-mainstream econometric 
approach using microdata and how it can inform research in business administration. More 
specifically, the paper draws from the applied microeconometric literature stances in favor 
of fitting Poisson regression with robust standard errors rather than the OLS linear 
regression of a log-transformed dependent variable. In addition, we point to the appropriate 
Stata coding and take into account the possibility of failing to check for the existence of the 
estimates – convergency issues – as well as being sensitive to numerical problems. 

The remainder of the paper proceeds as follow. Section 2 details the main issues with the 
log-linear model, while Section 3 draws from the applied econometric literature in favor of 
estimating multiplicative models for non-count data. Section 4 provides the Stata 
commands, while Section 5 illustrates the differences in the coefficient and standard errors 
between both OLS and Poisson models using the health expenditure dataset from the RAND 
Health Insurance Experiment (RHIE). Section 6 concludes the paper. 

2. Main issues with log-linearized model 
Jensen’s inequality implies that E(In y) =�In E(y), that is, the expected value of the logarithm 
of a random variable is different from the logarithm of its expected value. An important 
implication of Jensen’s inequality is that interpreting the parameters of log-linear models 
estimated by OLS as elasticities may be misleading in the presence of heteroskedastic. The 
use of the log-transformed dependent variable creates a potential bias when computing 
estimates of E[y|x] on the original scale provided the residual term does not have a normal 
distribution or is heteroskedastic. As Silva and Tenreyro (2006) posit, estimating the log- 
linear model lnyi ¼ x

0

i b i þ ei, where xi is a K� 1 vector of regressors, b i is a K� 1 vector of 
coefficients and ei is a vector of residuals of each observation i, by OLS is inappropriate for 
several reasons. 

First, log-linearization is not feasible if yi = 0 since In 0 = –1. In addition, even if all 
observations of yi > 0, the expected value of the log-linear residual will depend on the vector 
of covariates. Therefore, estimating by OLS will yield in inconsistent estimators. For 
instance, consider a model: 

yi ¼ ex
0

i b i h i  

where h i ¼ 1þ « i

e
x
0

i
b i 

and E [h i|x] = 1. Assuming yi > 0, the model can be made linear in the 

parameters by taking logarithms of both sides of the equations. As a result, this yields to: 
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ln yi ¼ x
0

i b i þ lnh i  

To obtain a consistent estimator of the slope parameters of yi estimating the log-linear 
equation above by OLS, it is necessary that E [ln h i|x] does not depend on xi. In addition, 
consistent estimation of the intercept also requires that E[ln h i|x] = 0 Since h i ¼ 1þ « i

e
x
0

i
b i

, 

the aforementioned condition is only met if « i ¼ ex
0

i b i y i , where y i is a random variable 
statistically independent of xi. In such case, h i = 1 þ y i implies that Ea [ln h i|x] is constant 
and statistically independent of xi. As a result, the log-linear model representation is useful 
to estimate the parameters of interest only under specific conditions on the error term. 

Since yi > 0, the probability of yi approaches zero when E(yi|xi) approaches zero. This 
implies that the conditional variance of yi, Var(yi|xi) tends to disappear as E(yi|xi) 
approaches zero. However, it may be possible to observe large deviations from the 
conditional mean – thus leading to greater dispersion – when the expected value of yi is far 
away from its lower bound. The residual term « i is likely heteroskedastic and its variance 
will depend on ex

0

i b i . As a result, regressing ln yi on xi by OLS will lead to inconsistent 
estimates of b . The main reason for heteroskedasticity affecting the consistency of an 
estimator is that the nonlinear transformation of the dependent variable changes the 
properties of the residual term. Unless strong assumptions are imposed on the distribution 
form, recovering information about the expectation of yi from the conditional mean of ln yi 
may not be possible since the logarithm of the residual term is correlated with the 
regressors. In general, even if all observations on yi are positive, estimating b from the log- 
linear model by OLS will yield inconsistent estimators and heteroskedasticity across the 
regressors 

3. Using the Poisson pseudo-maximum-likelihood estimator 
A possible way of obtaining a more efficient estimator without resorting to non-parametric 
regression is to estimate the parameters of interest using a pseudo-maximum-likelihood 
estimator based on some assumption of the functional form of Var(yi | xi) (Manning & 
Mullahy, 2001; Papke & Wooldridge, 1996). Among possible specifications, under the 
assumption that the conditional variance is proportional to the conditional mean, 
E yijxi½ � ¼ ex

0

i b i / Var yijxið Þ and b can be estimated by solving the following set of first- 
order conditions: 

Xn

i¼1

yi � ex
0

i
~b

h i

xi ¼ 0  

The estimator defined below is numerically equal to the Poisson pseudo-maximum- 
likelihood (PPML), often used for count data. The form of the equation implies that the 
correct specification of the conditional mean, E yijxi½ � ¼ ex

0

i b i . Therefore, the data do not 
have to have a Poisson distribution (count data) and yi does not have to be an integer in order 
for the estimator based on the Poisson likelihood function to be consistent (Gourieroux, 
Monfort, & Trognon, 1984). 

The implementation of the pseudo-maximum-likelihood is estimated via Poisson 
regression even when the dependent variable is not an integer. However, because the 
assumption Var(yi|xi) !�E{yi|xi} is unlikely to hold, this estimator does not take full 
account of the heteroskedasticity in the model. As a result, the inference has to be based on 
an Eicker–White robust covariance estimator (Eicker, 1963; White, 1980). 
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The Poisson regression model is defined by: 

Pr yi ¼ jjxið Þ ¼
e� l l j

j!
; j ¼ 0; 1; 2; . . .

where l is generally specified as l ¼ ex
0

i b ¼ eb 0þb 1x1iþ.... The vector of parameters of 
interest, b , can be estimated by maximizing the log-likelihood function given by: 

ln L bð Þ ¼
Xn

i¼1

� ex
0

i b þ x
0

i b

� �

yi � ln yi!ð Þ

h i

:

Poisson regression is not only the most widely used model for count data (Cameron & 
Trivedi, 1986), but it is also becoming increasingly popular to estimate multiplicative 
models for other kinds of data (Blackburn, 2007; Manning & Mullahy, 2001). 

The reasons that make this estimator popular can be clearly understood by inspecting 
the corresponding score vector and Hessian matrix, given respectively below: 

s bð Þ ¼
Xn

i¼1

yi � ex
0

i b

h i

xi and H bð Þ ¼ �
Xn

i¼1

ex
0

i b xix
0

i  

The form of the score vector makes it possible that b will be consistently estimated as long 
as E yijxi½ � ¼ ex

0

i b . For instance, the only condition required for consistency is the correct 
specification of the conditional mean. Since the estimator of the covariance matrix neither 
assumes equality between the mean value and the variance of the dependent variable, nor 
does it require constant variance, Poisson regression with the Huber-White-Sandwich 
linearized estimator of variance is a permissible alternative to log linear regression 
(Gourieroux et al., 1984). 

Running a Poisson regression with robust standard errors may be preferred to 
estimating a log-linear model by OLS. First, Poisson handles zero outcomes that arise in 
correspondence to the model. However, Poisson regression does not handle cases where 
some individuals participate, and others do not, and among the non-participating ones, 
they would likely product an outcome greater than 0 had they participated. For 
instance, Poisson does not handle zeros in a Mincerian income model (Mincer, 1958) 
since those that earned 0 did not participate in the labor force. Had they participated, 
their earnings might have been low, but they would be positive. More recent studies 
using the Poisson model with robust standard errors rather than log-linear regression 
have examined the impact of medical marijuana laws on addiction-related to pain 
killers (Powell, Pacula, & Jacobson, 2018), medical care spending and labor market 
outcomes (Powell & Seabury, 2018), innovation and production expenditure (Arkolakis 
et al., 2018) and tourism and economic development (Faber & Gaubert, 2019), among 
many other studies. 

4. Commands using Stata 
This section briefly describes the Poisson commands in Stata, including some of its 
shortcomings. 

OLS regressions of the algebraic form ln yi = b 0 þ b 1x1i þ b 2x2i þ � � � þ b kxki is 
usually coded using the following Stata command: 
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� generate lny = ln(y); and  
� regress lny x1 x2 [. . .] xk. 

Rather than estimating this log-linear model, we would instead fit a Poisson regression 
using the Huber-White-Sandwich linearized estimator of variance. In Stata this is done with 
the following command:  
� poisson y x1 x2 . . . xk, vce(robust). 

Note that there is no need to take the natural log of the dependent variable. The Poisson 
regression with robust standard errors specify that the variance-covariance matrix neither 
assumes E(yi) = Var(yi), nor requires Var(yi) to be constant across all i. Therefore, the 
Poisson regression with robust standard errors (Huber-White-Sandwich linearized estimator 
of variance) is an alternative to log-linear regressions. 

The estimator is also well-behaved since the Hessian is negative definite for all x and b . 
This facilitates the estimation and ensures the uniqueness of a maximum, conditional on its 
existence. As a result, estimation of b converges in a few iterations. However, the 
parameters in b are not identified by PPML for certain data configurations because they do 
not exist. The non-existence of PPML estimates are more likely when the data have a large 
number of zeros, such as the number of crimes committed, volume of trade between pairs of 
countries, among others (Silva & Tenreyro, 2011a). Since this type of identification problem 
has not been widely recognized as a major issue in count data models, Stata’s Poisson 
command does not check for its presence. 

In such cases, checking whether or not the results obtained actually correspond to a 
maximum of the log-likelihood function is recommended. We can check for this through the 
overfitting of the observation with yi = 0 by computing descriptive statistics for the fitted 
values of y for the relevant sub sample. Silva and Tenreyro (2011b) identify and illustrate 
some shortcomings of the Poisson command in Stata. More specifically, they point out that 
the command fails to check for the existence of estimates and show that it is sensitive to 
numerical problems. The Poisson command does not check for the existence of the estimates 
and therefore, it is unable to identify whether convergence is not achieved or spurious. 

In addition, even if maximum likelihood estimates of the Poisson regression exist, Stata may 
not correctly identify them due to its sensitivity to numerical problems of the algorithms 
available in the Poisson command in three situations: when the dependent variable has some 
very large values, when regressors are highly collinear and have different magnitudes, and 
when the covariates are highly (although no perfectly) collinear. A potential solution to explore 
when the maximum likelihood estimates exist but convergence is not achieved is to use 
different optimization methods offered in the Poisson command, such as the NR, BHHH, DFP 
and BFGS. One can also relax the convergence criteria and ensure convergence, by the 
algorithm may not deliver the desired maximum likelihood estimates. 

A simple way to deal with the shortcomings of Stata’s Poisson command is to use the glm 
command for the generalized linear model with the options family (Poisson) link(log) IRLS. 
The iterated reweighted least squares (IRLS) algorithm provided by the GLM command 
seems to be more stable than the algorithms in Poisson command and give the correct 
results, overcoming the command’s limitations. To facilitate the estimation of Poisson 
regressions, the existence of the pseudo maximum likelihood estimates can be checked 
through the PPML command, offering methods to drop regressors that may cause the non- 
existence of the estimates. The command also warns if the variables have large values likely 
to create numerical problems. Estimation can be then implemented using the generalized 
linear model (GLM) method. 
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5. RAND health insurance experiment (RHIE health expenditure dataset 
To illustrate the use of Poisson pseudo maximum likelihood rather than log-linear models, use 
data from the RAND Health Insurance Experiment (RHIE). The experiment, conducted by the 
RAND corporation from 1974 to 1982, has been the longest running and largest controlled 
social experiment in medical care research. The main goal of the experiment to assess how the 
patient’s use of health services is affected by types of randomly assigned health insurance, 
including both fee-for-service and health maintenance organizations (HMOs). In the 
experiment, the data were collected from about 8,000 enrollees in 2,823 families, from six sites 
across the USA. Each family was enrolled in one of 14 different health insurance plans for 
either three or five years. The plans ranged from free care to 95 per cent coinsurance below a 
maximum dollar expenditure (MDE), and also included an assignment in a prepaid group 
practice. RHIE dataset consists of utilization, expenditures, demographic characteristics, health 
status and insurance status variables. The final sample consists of 20190 observations; each 
observation represents data for an experimental subject in a given year. 

Several of the RHIE studies on health expenditures relies on regression models with 
logged dependent variables. With standard deviations two to four times the mean, the log 
transformation was essential to finding estimates of the response of health care 
expenditures that were robust to the skewness in the data (Duan, 1983). In several analyses, 
the residual errors indicated the presence of heteroskedasticity by insurance plan, the main 
covariate of interest. 

The central point here is that we do not face the problem of endogenous treatment 
effect – the central causal parameter of interest in the study – since insurance plans are 
randomly assigned, not freely chosen by the participant. Data were collected from the 
enrollee’s use of medical care services and health status throughout the randomly assigned 
term of enrollment for either three or five years. For additional details of the data, see 
Manning et al. (1987) and Deb and Trivedi (2002). The sample used in this study consists of 
second-year data for individuals in the fee-for-service plans only. 

To illustrate the main issues, Table I reports the first four moment generating functions, 
mean, variance, skewness and kurtosis, as well as the percentiles. Medical expenditure is 
heavily skewed to the right and kurtotic. The standard deviation is four times the mean. In 
addition, the mean of $169.70 is much larger than the median of $32.38. As a result, using a 
natural logarithmic transformation of the dependent variable, medical expenditure, to 
perform a log-linear model has become the standard in both business and applied 
microeconomic work. Once the estimates from such a model are obtained, the usual practice 
is to interpret the response to a particular covariate as being the exponential of the 

Table I.  
Descriptive statistics 

of medical 
expenditure  

Medical exp excl outpatient men 
(%) Percentiles Smallest    

1 0 0   
5 0 0   
10 0 0 Obs 5,575 
25 3.849658 0 Sum of wgt. 5,575 
50 32.37693  Mean 169.7003   

Largest SD 802.7604 
75 101.2285 12044.11   
90 330.9775 17465.98 Variance 644424.2 
95 732.6303 18641.98 Skewness 27.03142 
99 2232.54 39182.02 Kurtosis 1113.741   
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coefficient of that variable in the model. As regressors, we include health insurance 
variables, socioeconomic characteristics and heath-status variables. Table II contains the list 
of all regressors in our model. 

Table III displays the descriptive statistics of the log-transformed medical expenses. The 
logarithmic transformation eliminates this skewness, with a mean of 4.07 close to the 
median of 3.96, and the skewness statistics falls from 27.03 to 0.35. The kurtosis is 3.29, close 
to the normal value of 3. Table IV displays the estimation outcomes resulting from various 
techniques. The first column reports OLS estimates using the logarithm of medical expenses 
as the dependent variable. As noted before, this regression leaves out individuals with no 
medical expenditure (about 23 per cent of the observations). The second column reports the 
OLS estimates using the logarithm transformation of 1 plus medical expenses, ln 
(1þmeddol), as the dependent variable to deal with the zeros. The fourth column uses 
reports Poisson estimates using only the subsample of positive medical expenditure while 

Table II.  
List of explanatory 
variables  

Explanatory variable Definition  

logc ln(coinsurance þ 1), 0 # coinsurance # 100 
idp 1 if individual deductible plan, 0 otherwise 
lpi ln(max(1, annual participation incentive payment)) 
fmde 

0 if idp = 1, ln max 1;
MDE

0:01 coinsurance

� �� �

otherwise 

linc ln(family income) 
lfam ln (family size) 
female 1 if person is a woman 
child 1 if age is less than 18 
fchild Female*child 
black 1 if race of household head is black 
educdec Education of the household head in years 
physlim 1 if the person has a physical limitation 
disea Number of chronic diseases 
hlthg 1 if self-rated health is good 
hlthf 1 if self-rated health is fair 
hlthp 1 if self-rated health is poor  

Omitted category is excellent self-rated health   

Table III.  
Descriptive statistics 
of the log- 
transformed medical 
expenditure  

Lnmeddol 
(%) Percentiles Smallest    

1 0.746548 � 0.5343859   
5 1.749707 � 0.4108706   
10 2.238203 � 0.3899609 Obs 4,282 
25 3.059381 � 0.3899609 Sum of Wgt. 4,282 
50 3.963396  Mean 4.069336   

Largest SD 1.499219 
75 4.915971 9.396331   
90 6.11767 9.76801 Variance 2.247659 
95 6.807192 9.833171 Skewness 0.347961 
99 7.888451 10.57597 Kurtosis 3.28978   
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the last column shows the Poisson results for the whole sample (including observations with 
zero medical expenditure). 

The main point to notice is that the Poisson estimated coefficients are similar using the 
entire sample and using the positive expenditure sample only. However, most coefficients 
differ from those obtained using a log-linear model. This suggests that in this case, 
heteroskedasticity may be responsible for the differences in the results between Poisson 
with robust standard errors and those of OLS (Wooldridge, 2010). Further evidence using 
the Breusch–Pagan/Cook–Weisberg test for heteroscedasticity, rejects the hull hypothesis of 
homoskedasticity (x 2 = 17.81 p-value = 0.0000). 

In addition, we have included the distribution of residuals for all four models. Figures 1 
and 2 display the quantiles of residuals against the quantiles of the normal distribution. For 
both Poisson models, we used deviance residuals since they have the best properties for 
examining the goodness of fit of Generalized Linear Models, such as a Poisson family. The 
results indicate that Poisson provides a better fit. 

5.1 Alternative models: Tobit and two-part models 
Alternatively, other models could be considered, such as the Tobit, and two-part or hurdle 
models. The Tobit model could be considered since medical expenditures are left-censored at 
zero. For instance, 23 per cent of the observations had no medical expenditure for year 2. A 
potential approach would be to put a small number a for every zero (smaller than the 
smallest observed positive y), take the log and then specify ln a as the left-censoring point 
(Cameron & Trivedi, 2005). However, the choice of a is arbitrary and affects the estimation. 
For instance, choosing a = 0.01 results in ~lny ¼ � 4:6 and choosing a = 0.000001 results in ln 
y = –13.8, and there is not any clear reason to prefer one over the other when the smallest 
positive y is 1. In addition, the Tobit model has strong assumptions of normality and 
homoscedasticity. If these assumptions fail, then the Tobit maximum likelihood estimator is 
not robust. Tobit also assumes that a single mechanism drives the two dimensions of the 
expenditure data. 

Table IV.  
Estimation outcomes 

from various 
techniques  

Variable list OLS OLS2 Poisson y> 0 Poisson  

logc   � 0.0190 (0.0313)   � 0.144*** (0.0371)   0.00791 (0.0563)   � 0.0205 (0.0562) 
idp   � 0.0777 (0.0618)   � 0.200*** (0.0721)   � 0.0200 (0.141)   � 0.0704 (0.132) 
lpi   0.00433 (0.00970)   0.0344*** (0.0118)   0.0289 (0.0176)   0.0382** (0.0177) 
fmde   � 0.0297 (0.0181)   � 0.0118 (0.0219)   � 0.0290 (0.0339)   � 0.0276 (0.0348) 
linc   0.101*** (0.0216)   0.125*** (0.0238)   0.133 (0.0847)   0.168* (0.0928) 
lfam   � 0.159*** (0.0456)   � 0.146*** (0.0554)   � 0.213 (0.169)   � 0.223 (0.170) 
female   0.334*** (0.0570)   0.732*** (0.0708)   � 0.0660 (0.178)   0.0652 (0.179) 
child   � 0.416*** (0.0676)   � 0.186** (0.0813)   � 0.767*** (0.182)   � 0.731*** (0.183) 
fchild   � 0.340*** (0.0896)   � 0.738*** (0.108)   0.153 (0.236)   0.0202 (0.240) 
black   � 0.194*** (0.0677)   � 0.853*** (0.0758)   � 0.100 (0.141)   � 0.284** (0.144) 
educdec   � 0.00265 (0.00820)   0.0353*** (0.0101)   0.0284 (0.0275)   0.0376 (0.0281) 
disea   0.0215*** (0.00339)   0.0395*** (0.00430)   0.0122** (0.00592)   0.0172*** (0.00612) 
physlm   0.276*** (0.0685)   0.461*** (0.0886)   0.477*** (0.141)   0.513*** (0.140) 
hlthg   0.151*** (0.0483)   0.160*** (0.0588)   0.198* (0.119)   0.224* (0.120) 
hlthf   0.383*** (0.0878)   0.497*** (0.108)   0.522** (0.224)   0.588*** (0.227) 
hlthp   0.817*** (0.170)   1.221*** (0.223)   1.579*** (0.529)   1.711*** (0.541) 
_cons   3.242*** (0.211)   1.496*** (0.243)   3.863*** (0.858)   3.123*** (0.926) 
N   4281   5574   4281   5574  

Notes: ***Significance at 0.01; **significance at 0.05 and *significance at 0.1   
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Figure 1. 
Quantiles of the 
residuals plotted 
against the quantiles 
of the normal 
distribution for OLS 
regression 

Figure 2. 
Quantiles of the 
residuals plotted 
against the quantiles 
of the normal 
distribution for 
Poisson 
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To relax the latter assumption and to investigate if there is indeed a single mechanism we 
can use hurdle or two-part models, described by Mullahy (1986). The model involves 
estimating two separate regressions: the first models the probability that y is positive, while 
the second models the amount of y if y is positive. Using our RHIE dataset, for example, the 
idea is that a person decides whether to go to the doctor and then the doctor decides the 
expenditure conditional on y> 0. As a result, the first model can be fitted using a probit 
(or logit, complementary log log, etc.) using 1 (y> 0) as a dummy outcome, then run OLS 
regression ln y on the vector of regressors, or a truncated regression of y on the vector of 
regressors (Cragg, 1971; McDowell, 2003). 

Unlike the Tobit model, the two-part model features two residuals: v, which impacts the 
decision to set y> 0 instead of y = 0, and u, which impacts y conditional on positive y. An 
important assumption underlying the two-part model is that v and u are independent. In other 
words, the unobservables which affect the decision to go to the doctor are independent of the 
unobservables that affect the decision of how much to spend. A potential drawback in using two- 
part models is that it may be difficult to include endogenous explanatory variables without 
strong maximum likelihood assumptions. In addition, a two-step assumption, in this case, may 
not be all too realistic since one may find herself getting medical care without any decision on her 
part, or one can also end her medical care provided she chose too. As a result, we would need 
more than two steps of the model to be correctly specified, or all the estimates would be 
inconsistent. 

6. Conclusion 
Coefficients from the log-transformed ordinary least squares (OLS) model are often 
retransformed to unlogged terms to make inferences in their natural units. Failure to account 
for adjustments for heteroskedasticity and normality of residuals may lead to biased estimates 
of the conditional mean and the slope on its original scale. This suggests that inferences drawn 
on log-linear regressions may produce misleading conclusions. Among the several models used 
to correct the issues of coefficient biasedness and heteroskedasticity in log-linear models, the 
Poisson pseudo-maximum-likelihood. This study drew from the applied microeconometric 
literature in favor of fitting Poisson regression with robust standard errors rather than the OLS 
linear regression of a log-transformed dependent variable. We applied both models in a health 
expenditure dataset to show the main differences. 
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