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Effective behavior of nonlinear microperiodic composites
with imperfect contact via the asymptotic homogenization method
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ABSTRACT. The asymptotic homogenization method is applied here to one-dimensional boundary-value
problems for nonlinear differential equations with rapidly oscillating piecewise-constant coefficients which
model the behavior of nonlinear microperiodic composites, in order to assess the influence of interfacial
imperfect contact on the effective behavior. In particular, a nonlinear power-law flux on the gradient of the
unknown was considered. Several calculations were performed and are discussed at the end of this work,
including a comparison of some results with variational bounds, which is also an important approach of this
work.

Keywords: nonlinear composites, asymptotic homogenization method, imperfect contact.

1 INTRODUCTION

Composite materials can be described like heterogeneous materials formed by the union of two
or more homogeneous ones, that will be their phases. These materials can be manufactured arti-
ficially or finded in nature (for example, wood and bone tissue). The capability to obtain better
physical or chemical properties by the combination of different substances, made the composite
materials one of the hotspot research topics in the modern technology [17].

In this work, will be considered periodic composites wich the phases distribution scale (micro-
scopic scale) are simultaneously much larger than the atomic scale and much smaller than the
macroscopic scale, characterizing a microperiodicity. Thus, the mathematical problems that mod-
elling the physical behavior of these materials will present rapidly oscillating coefficients, wich
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80 ASYMPTOTIC HOMOGENIZATION OF NONLINEAR MICROPERIODIC COMPOSITES

makes very difficult the application of standard numerical methods [13]. However, this character-
istic satisfying the equivalent homogeneity hypothesis, However, this characteristic satisfying the
Equivalent Homogeneity hypothesis, so the heterogeneous material can be considered physically
equivalent to a homogeneous one, wich mathematical problems contain constants coefficients
and its solution is satisfactorily close to the original problem’s solution. The process to obtain
this homogeneous material is called homogenization.

Among the mathematical homogenization methods is the asymptotic homogenization method
(AHM) [2], wich consider a asymptotic expansion like an approximation of the solution from
the problem of interest, in the form of a potential series of a small positive parameter that will
be denoted by ε , which characterize the microscale. From applying this asymptotic expansion
in the original problem, is obtained a recurrent sequence of problems for the coeficients of the
ε potences, from what one has locals problems, wich will give the terms of the asymptotic ap-
proach. The AHM have so many advantages, but the main is: the low computational need for
the numerical methods to solve the problems involved in the recurrent sequence, and the good
approximations of the exact solution of the original problem obtained. This application of the
AHM has been very successfully, for example in [6]. Besides approximate the original solu-
tion, the AHM is applied to obtain the effective behavior of the heterogeneous material by the
homogeneous equivalent one, that will be the application in focus on this paper.

In the field of mathematical models for physical phenomena, are finded linear constitutive laws,
like the Hooke’s law for the elasticity theory, the Fourie’s law for the heat flow case, Nerst’s law
for the particle flux in gas, among other. However, there are so many physical phenomena of non-
linear nature, which ones can’t be modeled by linear models, for example: plasticity, viscoelas-
ticity, hyperelasticity, electrostriction, magnetostriction, thermoplasticity, etc [16]. Therefore, is
very important the study of these models, expecting to obtain so prominent results how much the
obtained in the linear case.

Lastly, in research about composites, another very important fact is the adhesion between its
phases. Several works considered that the materials which constitute the composite had perfect
binding, implying in the continuity of the solution of the problem that modeling a phenomenon
in this materials [3]. But in the real situation the adhesion is not perfect, occurring mechanical
imperfections, thermic isolations, chemical reactions or electric potential [9,12]. Because of this,
is important consider imperfect contact conditions in the mathematical problems referent to this
materials. In fact, it has been confirmed in the literature, where results showing the influence of
the imperfect adhesion in composites [1, 9, 10, 15, 18].

In that way, this paper shows how the AHM can evalueting the effective behavior of biphasics and
microperiodc composites, applying the method in boundary values problems with the static heat
diffusion equation, onedimensional, considering a relevant case of nonlineaity and comparing the
situations of perfect and imperfect adhesions between its phases. Besides that, a brief approach
of variational principles [14, 16] to obtain bounds to compare with the results obtained by AHM
is given. This hybrid approach (AHM plus variational bounds, for imperfect contact composites)
is rare to be founded in the current literature, similar results can be verified in [11].

Trends Comput. Appl. Math., 22, N. 1 (2021)
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2 PROBLEM’S FORMULATION

In practice, a ondedimensional composite can be considered like a bar. Without generality lost,
will be considered a ε-periodic and biphasic bar, with unitary length, represented by [0,1]. The
composite can be also represented by the finite union of its N ∈N periodic cells, wich ones will be
formed by the union of domains Ω1 and Ω2, wich represent the phases of the composite. Besides
that, the boundaries ∂Ω1 and ∂Ω2 will be the interface points in the periodic cells, denoted by
the x j, and Γε = {x j} j=1,...,N is the set of these interface points. More exactly,

[0,1] =
N⋃

i=1

(Ω2i−1∪Ω2i)∪ (∂Ω2i−1∪∂Ω2i) . (2.1)

The problem which modelling the diffusion phenomenon in this bar, which solution is uε ,
denoted by PO, are formed as follows:

d
dx

[
σ

ε

(
duε

dx

)]
= f (x) , x ∈ (0,1)/Γ

ε (2.2)
s

σ
ε

(
duε

dx

){

x=x j

= 0 (2.3)

Juε(x)Kx=x j
=

ε

β
σ

ε
1

(
duε

dx

)∣∣∣∣
x=x j

(2.4)

uε |x=0 = g1, uε |x=1 = g2, (2.5)

where the index ε indicates the variable’s dependence on the small parameter. More exactly, it
indicates the dependence on the microscale, defined by the position variable y = x/ε , being x the
macroscale position variable (for example, Fε ≡ F(x/ε). Moreover, the flux σ is expressed as:

σ
ε

(
duε

dx

)
=


σ

ε
1

(
duε

dx

)
, x ∈Ω1

σ
ε
2

(
duε

dx

)
, x ∈Ω2

, (2.6)

i.e., have one constitutive relation for each phase. The symbol J.Kx=x j indicates the continuity (or
contact) condition in the interface points, defined as follows:

JFε (x)K = lim
x→x+j

Fε (x)− lim
x→x−j

Fε (x)≡ Fε

(
x+j
)
−Fε

(
x−j
)
. (2.7)

The positive parameter β is refered to imperfect contact condition, and can be interpreted as a
condutance in the interface, in the order that 1/β can be understood as a resistence. Notice that
β → ∞, the jump for uε in (2.4) equation is null, that represent a perfect adhesion of the phases
(perfect contact).

3 THE AHM METHODOLOGY

To beginning, are considered a two-scale asymptotic expansion as:

u(2) (x,y) = v0 (x)+ εu1 (x,y)+ ε
2u2 (x,y) , (3.1)

Trends Comput. Appl. Math., 22, N. 1 (2021)
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as an approach of the original solution uε of the PO problem. Are considered that v0(x),uk (x,y)∈
C2 ([0,1]) for k = 1,2, 1−periodics in y scale.

Replacing u(2)(x,y) in (2.2) equation, and considering the flux σ linearized by a Taylor
polynomial in the point ζ = dv0/dx+∂u1/∂y, are obtained that:

d
dx

[
σ

(
x
ε
,

du(2)

dx

)]
− f (x) = ε

−1
[

∂σ

∂y
(y,ζ )

]
+ ε

0
[

∂σ

∂x
(y,ζ )+ (3.2)

+
∂

∂y

[(
∂u1

∂x
+

∂u2

∂y

)
∂σ

∂ε
(y,ζ )

]
− f (x)

]
+O(ε) .

Notice that from here, are considered the scales separation (x and y). Following, in order to
satisfy: ∣∣∣∣∣ d

dx

[
σ

(
x
ε
,

du(2)

dx

)]
− f (x)

∣∣∣∣∣= O(ε), (3.3)

has taking u2 ≡ 0, to obtain the follow equation for ε−1 from 3.2:

∂σ

∂y

(
y,

dv0

dx
+

∂u1

∂y

)
= 0. (3.4)

Applying u(2)(x,y) also in the (2.3), (2.4) and (2.5), amongst (3.4), are obtained one-parametric

family of problems, denoted by P
dv0
dx

L , which has as solution u1(x,y), with the equations:

∂σ

∂y

(
y,

dv0

dx
+

∂u1

∂y

)
= 0, y ∈ (0,1)/{c1} (3.5)

s
σ

(
y,

dv0

dx
+

∂u1

∂y

){

y=c1

= 0 (3.6)

Ju1Ky=c1
=

1
β

σ1

(
y,

dv0

dx
+

∂u1

∂y

)∣∣∣∣
y=c1

(3.7)

u1(0,0) = u1 (l,0) = 0, (3.8)

where c1 represents the interface point of the periodic cell on the microscale. The existence and

unity of the 1-periodic solution of P
dv0
dx

L , are guaranteed by the Lemma 3.1, that is a generalization
for the imperfect contact condition, from an analogous one (see [2]).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Lemma 3.1 (Lemma). Let ε a parameter and σ(y,ε) a piecewise and continuously differentiable
function in [0,1]. Then, for all x fixed, there are N1 (y,ε) 1-periodic in y functions, which solve
the one-parametric family of problems Pε

L with the parameter ε , defined as follows:

∂σ

∂y

(
y,ε +

∂N1

∂y

)
= 0, y ∈ (0,1)/{c1} (3.9)

s
σ

(
y,ε +

∂N1

∂y

){

y=c1

= 0 (3.10)

JN1Ky=c1
=

1
β

σ1

(
y,ε +

∂N1

∂y

)∣∣∣∣
y=c1

(3.11)

N1 (0,ε) = 0. (3.12)

The condition N1 (0,ε) = 0 guarantees the solution’s unity.

Since the Lemma 3.1 is a original generalization of this work, the main idea of its demonstration
will be given.

Proof. From the integration of (3.9) equation and the condition in (3.10) give:

σ

(
y,ε +

∂N1

∂y

)
= σ , (3.13)

where σ is constant in relation to y.

By defining an auxiliary function T (y,ε) = σ (y,ε)−σ , it follows that

∂T
∂ε

=
∂σ

∂ε
, (3.14)

and by assuming ∂T/∂ε > 0 (fact that agree with the most physical interpretations), from the
implicit function theorem [8], is possible to assert the existence of an inverse function ε (y,σ) =

ε + ∂N1/∂y, continuous and differentiable in a neighbourhood of the point (y,σ), which is
1-periodic in relation to y.

Thus, the integration ∂N1/∂y from ε (y,σ) gives:

N1(y,ε) =
∫ y

0
(ε (s,ε)− ε) ds, y ∈ [0,c1) (3.15)

N1(y,ε)− JN1Ky=c1 =
∫ y

0
(ε (s,σ)− ε) ds. y ∈ (c1,1], (3.16)

The term JN1Ky=c1 in (3.16) equation appears because the improper integration that is needed in
the [0,1] interval, after the point y = c1. Lastly, the solution N1 can be defined as:

N1(y,ε) =


∫ y

0 (ε (s,σ)− ε) ds, y ∈ [0,c1)

N1(c−1 )+
σ

β
, y = c1∫ y

0 (ε (s,σ)− ε) ds+ σ

β
, y ∈ (c1,1)

0, y = 1

. (3.17)

Trends Comput. Appl. Math., 22, N. 1 (2021)
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It is interesting explain that the choice for N1|y=c1 have as inspiration the Dirichlet theorem for
Fourier’s series [7].

The demonstration is finished with the prove of the 1-periodicity of N1, which is made showing
that N1 (y+1,ε)−N1 (y,ε) = 0 for every y ∈ [0,1]/{c1}. �

The unicity and existence of the solution of the family of problems P
dv0
dx

L in (3.5)-(3.8) equations,
made possible the obtaining of the effective law (which means the effect physical behavior) for
the composite of interest. It is defined by the functional relation between the the flux average (σ )
and the gradient of v0 (ε).

As in the demonstration of the Lemma 3.1, from the integration of (3.5) equation and the
condition in (3.6), follows that

σ

(
y,

dv0

dx
+

∂u1

∂y

)
= σ , (3.18)

and the integration of ∂u1/∂y from (3.18) equation, gives:

∂u1

dy
= ϕ(y,σ)− dv0

dx
, (3.19)

where ϕ(y,σ) is the inverse function of the flux σ in (3.18), which is guaranteed by the implicit
function theorem.

Thus, applying the average operator 〈.〉 to (3.19), which is defined by:

〈.〉=
∫ 1

0
(.)dy, (3.20)

yields:

u1|y=1− Ju1Ky=c1 −u1|y=0 = 〈ϕ(y,σ)〉− dv0

dx
. (3.21)

From the contact condition in (3.7) and the 1-periodicity in relation to y of u1 (that is guaranteed
by the Lemma 3.1), (3.21) equation turns to:

σ

β
= 〈ϕ〉(σ)− dv0

dx
. (3.22)

The effective law, which will denoted by σ̂

(
dv0
dx

)
, is obtained by the relation between σ and

dv0/dx , which is implicit in (3.22). In practice, is necessary to solve de equation like (3.22) for
σ , which resolution methods will depend of the form of the constitutive relations in each phase
of composite.

4 RESULTS OF AN APPLICATION

4.1 The composite considered

Will be considered a biphasic composite, ε-periodic: one linear phase (phase 1) and another
nonlinear (phase 2). The nonlinearity is of the potential type, with exponent n > 0, which mod-

Trends Comput. Appl. Math., 22, N. 1 (2021)
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elling several physical phenomena, like plastic deformation and thermoplasticity, generally with
n < 1( [16], [5]):

σ
ε

(
duε

dx

)
=


K1

duε

dx
, x ∈Ω1

K2

(
duε

dx

)n

, x ∈Ω2

. (4.1)

where K1 and K2 are the coefficients, that in the physical meaning, are the individuals properties
of each phase, like the elasticity modulus, electric and thermal conductivity, etc.

The application of the the AHM as is showing in the section 3.22 to the problem like PO

formulated in the section 2, with the constitutive relation in (4.1), gives the equation:

c1

K1
σ +

c2

K1/n
2

σ
1/n +

σ

β
− ε = 0, (4.2)

where c1 can be interpreted also like the phase 1 concentration and e c2 = 1− c1, the phase 2
concentration. The terms of (4.2) equation, will be dimensionless by K1, then the equation (4.2)
becomes:

λ
1/nc2 (σ0)

1/n +

(
c1 +

1
β0

)
(σ0)− ε = 0, (4.3)

where λ = K1/K2, (σ0) = σ/K1 and β0 = β/K1. The effective law for this composite will be
determined by solving the equation (4.3) for σ0. For example, if n = 1/2, (4.3) is a quadratic
equation, and if n = 1/3, (4.3) is a cubic equation of the form m3 + pm + q = 0 which can
be solved by the Cardano-Tartáglia formula. For another values of n, is recommend numerical
methods, as the classical Newton’s iteration, which is used in this work.

4.2 Some numerical simulations

To obtain the effective law from (4.3), the Newton’s iteration [4] was applied for different values
for n, c1, λ and β0. The implementation of the method was based on a tolerance of 10−5, and a
initial point:

σ∗ =
ε

2
max

{
1
c1
,

1
λ 1/nc2

}
(4.4)

because is possible to see that will exist a solution in the interval [0,σ∗], for (4.3), by the bisection
method logic.

In Figure 1, the perfect contact is considered, and the effective law is determined for c1 = 0.1
and some values for n (n≤ 1) and λ . The Figure 1 shows a pure linear behavior for n = 1, which
confirms that the effective behavior of a composite with two linear phases will be also linear
(that can be proved analytically). Besides that, as n is growing, the effective behavior lost its
linear aspect, in both values of λ considered. Notice that the case with λ = 2 represents a family
of composites which linear property twice mayor than the nonlinear one (that shows the linear
phase like a a stronger phase), and the opposite for λ = 1/2.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Figure 1: Effective law for the perfect contact condition, for some values of n, c1 = 0.1 and
fixed λ .

The effective behaviour obtained by de AHM for the perfect contact condition was compared to
a upper bound (UB) wich is result of a combination of variational principals (see [11, 14, 16]).
The result in Figure 2 is showing in a logaritmic scale for better visualization.

Figure 2: Comparison of the effective law for the perfect contact condition obtained by AHM
and a upper bound (UB) following [11, 14, 16]).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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The Figure 2 shows what can be a shy validation of the results wich are obtained by AHM for
the evaluated case. A better analisys and numerical implementation are necessary for a effective
validation, including the imperfect contact case.

Figure 3: Effective law for the perfect contact condition, for n = 1/3, fixed values of λ , and for
different values of c1.

The Figure 3 shows the effect behavior for the perfect contact again, with n = 1/3, for some
values of c1(which means that the composition of composite is varying). Notice that for both
cases of λ , as the concentration c1 increases, the effective behavior near of the linear behavior,
and the opposite occurs as c1 decreases. How the cases where c1 = 1 e c1 = 0 represent a pure
material composed by linear and nonlinear material, respectively, this results show de influence
of each material constituent on the effective behavior of the composite.

In the Figure 4 the effective behavior is evaluated for different cases of imperfect contact, with
c1 = 0.3 and n = 1/3, varying the parameter β0. It’s possible to see the asymptotic behavior
of the effective laws as β0 → ∞, when the effective behavior for imperfect contact case nears
the perfect contact one. In fact, the difference between the curves is imperceptible for β0 > 50.
Moreover, the effective laws seems to be approaching to a null behavior (σ̂ (ε)≡ 0) as β0→ 0+.
This last behaviour can be verified in a better way in the Figure 5.

These results show the coherence of the effective behavior in the imperfect contact case. Thinking
about physical meaning, like the conductivity phenomena for example, as smaller are the β0

value, bigger is the resistance to the heat (or electric energy) in the interface of the composite,
i.e., smaller the effective flux on the material. Besides that, as mayor is the β0 value, the effective
flux can’t be greater than the flux in the contact perfect flux.

Trends Comput. Appl. Math., 22, N. 1 (2021)
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Figure 4: Effective law for the imperfect contact condition, for fixed values of λ , n = 1/3, c1 =

0.3, and for different values of the parameter β0 (β0→ ∞).

Figure 5: Effective law for the imperfect contact condition, for fixed values of λ , n = 1/3, c1 =

0.3, and for different values of the parameter β0 (β0→ 0+).

Trends Comput. Appl. Math., 22, N. 1 (2021)
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In the elasticity context, the increase of the interface’s resistance can be interpreted like the de-
crease of the rigidity on the interface. So, as smaller are the β , smaller are this rigidity, which
results in the smaller effective rigidity of the composite. That is, the material will be more de-
formable, when it is submitted to the same tensions forces. It results in tension-deformation
curves with smaller inclination, which is possible also to see in the Figure 4.

5 CONCLUSIONS

The AHM was successful in providing the effective law of nonlinear microperiodic composites
with interfacial imperfect contact. Its application showed that variations of phase concentra-
tion, nonlinearity index and interfacial imperfection parameter affect importantly the effective
behavior of the composite.

In this work was also possible to compare the result by AHM with other method wich is based
in variational principles. But, better formulation and implementation of this other method are
necessary to present effective validation of these results. Furthermore, this methodology has to
be applied to the imperfect contact case too.

This and other types of nonlinearities, as well as other homogenization approaches, will be
considered in future works in order to validate and extend the present one.

RESUMO. O método de homogenização assintótica é aplicado a problemas de valor de
contorno unidimensionais para equações diferenciais não lineares com coeficientes con-
stantes por partrs e rapidamente oscilantes que modelam o comportamento de compósitors
microperiódicos não lineares, com o objetivo de avaliar a influência do contato imperfeito
entre as fases no comportamento efetivo. Em particular, considerou-se um fluxo não linear
de lei de potência no gradiente da incógnita. Vários resultados computacionais são apresen-
tados e discutidos no final deste trabalho, incluindo uma comparação de alguns resultados
com cotas variacionais, uma abordagem importante deste trabalho.

Palavras-chave: compósitos não lineares, método de homogeneização assintótica, contato
imperfeito.
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[11] J. López-Ruiz, J. Bravo-Castillero, R. Brenner, M. Cruz, R. Guinovart-Dı́az, L.D. Pérez-Fernández
& R. Rodrı́guez-Ramon. Variational bounds in composites with nonuniform interfacial thermal
resistance. Applied Mathematical Modelling, 39(23,24) (2015), 7266–7276.
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