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ABSTRACT. In this paper, a new method for supervised classification of hyperspectral images is proposed
for the case in which the size of the training sample is small. It consists of replacing in the Mahalanobis
distance the maximum likelihood estimator of the precision matrix by a sparse estimator. The method is
compared with two other existing versions of LDA sparse, both in real and simulated images.
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1 INTRODUCTION

Hyperspectral sensors collect information from the earth’s surface in hundreds of bands of the
electromagnetic spectrum whit relatively narrow bandwidths. Each pixel of a hyperspectral im-
age can be regarded as a high-dimensional vector, x = (x,... ,xp)’ , called feature vector, whose
entries x;, 1 < j < p corresponds to the spectral reflectance collected in the band j of the
electromagnetic spectrum.

Image classification is an essential step wich consists in classification rules that assign every data
point x into one of K classes based on a features vector. In supervised image classification, a clas-
sifier is trained on a training data set of size n. Since the collection of such training data is either
expensive or time-consuming, there is usually only a small amount of labeled data available.

The huge number of features (p) of hyperspectral data and the limited availability of the training
sample data (n) greatly worsen the traditional classification methods performance such as linear
discriminant analysis (LDA) as [21] emphasize. This problem is typical in high-dimensional data
analysis.

For example, if p > n the sample covariance matrix S is singular and LDA cannot be applied.
If n is not much greater than p, S can be calculated but due to the large number of estimated
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parameters (p(p+1)/2), it will have a significant amount of sample error, and its inverse will
be a highly biased estimator of £~! ([1]). On the other hand, because the bandwidth decreases
as p grows, many bands are highly correlated and hyperspectral data can be contain a significant
amount of redundant spectral information. Recently, two algorithms have been proposed called
sparse discriminant analysis (SDA) ( [S]) and penalized LDA ( [20]) which simultaneously solve
the problem of singularity of the covariance matrix (when p > n) and allow variable selection by
imposing a penalty of type ¢; to the optimal scoring approach from which one can derive the LDA
rule and the discriminant vectors in Fisher’s discriminant problem respectively. In the context of
high dimensionality, the estimation of the covariance matrix and its inverse, the precision matrix,
is already a research area ofimportant results. Most of the proposals rely on sparsity assumptions
and requires some kind of regularization strategy. In this framework, it is assumed that many
of the matrix entries to be estimate are zeros. ( [10]; [8]; [15]; [9]). Using estimation of sparse
precision matrices and plug-in principle in the Mahalanobis distance allows to extend LDA to
high dimensional problems [7]. This strategy, will be called plug-in LDA.

On the other hand, we are interested in non-paametric tree-based classification methods intro-
duced by Breiman, Friedman, Olshen and Stone in mid 1980’s. Therefore, we can expect this
approach outperforms LDA when the decision boundary is highly non-linear. However these
methods can lead to a phenomenon known as overfitting the data, which essentially means that
on the training data set they follow the errors too closely having a very poor perfomance on new
observations. For this reason trees can be very sensitive to small changes in the training sample
dramatically affecting the final estimated tree [11].

The aim of this paper is to compare the performance of SDA and penalized- LDA versus plug-
in-LDA using Kashlak proposal based on precision matrix estimation [13]. Since random forest
(RF) is a very popular tree-based classification methods it will be also included in this paper for
comparative purposes [2]; [6]; [14].

This paper is organized as follows. We review LDA, SDA and penalized LDA in Section 2 and in
Section 3 we present our proposal, the plug-in-LDA. A simulation study and applications to real
hyperspectral images are presented in Section 5. Section 6 contains a discussion.

2 REVIEW OF LDA AND PENALIZED LDA

There are three distinct arguments that result in the LDA classifier: the multivariate Gaussian
model, Fisher’s discriminant problem, and the optimal scoring problem.

Consider K populations (classes) where a p-dimensional random vector x is defined and assume
that x ~ N(u;,X,) where U, is the mean vector for class k and X,, is a pooled within-class
covariance matrix common to all K classes. The Bayesian approach classifies a new observation
x* to the class k that maximizes Mahalanobis’s distance

8 (x) = (x" — ) I,' (" —Hy) —2logm @1
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where 11, and %, denote maximum likelihood estimates for U, and X,,, obtained from a training
sample (x},...x),)

LDA, considered as arising from Fisher’s discriminant problem, consists in finding K vectors,
called discriminant vectors, B, ... B such that sequentially solve

maximizeg, g {ﬁ 5B k} 2.2)
subject to

B.ZuB=1and LB, =0,Yj <k

where f;, is the standard estimate for the between-class covariance matrix. Since fl;, has rank
at most K — 1 then there exits at most K — 1 non trivial solutions to (2.2), ﬁ] - 751(71 called
discriminant vectors. the classification rule is reduced to projecting a new observation on the
space defined by the discriminant vectors and assigning it to the class whose projected mean is
closest.

A third formulation that yields the LDA classification rule is optimal scoring, introduced by [5],
that transform the classification problem into a regression problem by solving

L. 2
minimizeg, g {[|Y 0x —XB,[|"} (2.3)
subject to GLY/YBk =1.
where ¥ = (y;) denotes a n x K matrix with y; = 1 if the i-th observation belongs to the k—th
class and y;; = 0 otherwise. Moreover, O is a scores vector of dimension K and Y @ represents

the scores vector of the training data. The solution ﬁ « to (2.3) are proportional to solution to (2.2)
(see [19]).

Among the proposals to extend LDA to the problems of high dimensionality, those that produce
more interpretable models are of particular interest. We need that these extensions allow variable
selection and classification simultaneously. In linear regression model, lasso is a regularization
method that, imposing a penality at the size of the estimated parameters vector, shrunks some co-
efficients estimates exactly to zero, producing variable selection. Using this approach [5] propose
SDA by imposing to (2.3) an additional penalization:

L 2 !
minimize, g {[[Y 0 — XB,[|” + BB + A ||yl } 2.4)
subject to 0,Y' Y0, =1,0,Y Y0, =0,Vi < k
where Q is a positive definite matrix and Y and A are nonnegative tuning parameters.SDA produce
sparse discriminant vectors since if 4 is large, some entries of f; will be zero.

Penalized Fisher’s linear discriminant, proposed by [20], is based on imposing an ¢ penalty on
equation (2.2):

maximizeg, {B, 5B — A1|Byl,} 25)

subject to

BiZ.B;=1and B,T,B,=0Y)<k,
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where ¥, is some full rank estimate for X, such as £,, = diag(az, e ,6;2), where 6'}2 is the
Jj-th diagonal element of iw. This method also produce sparse discriminant vectors. Although
there is a correspondence between the critical points of problems (2.4) and (2.5), the solutions
are not necessarily the same [20].

3 PLUG-IN LDA

In high dimensionality, to estimate the precision matrix associated to a multivariate Gaussian
distribution it usual to assume that it is sparse. The most commonly estimation methods employ
an ¢;-penalized maximum likelihood ( [10]; [8]; [4]). As an alternative, [13] propose a novel
distribution free estimator that controls the false positive rate in the selection of the non zero
entries of the estimated precision matrix. This proposal begins with an initial estimator QAZO— such
as debiased graphical lasso ( [12]) or debiased ridge estimator ( [3]) and iteratively using a binary
search procedure locates the densest estimator near /,, or alternatively the sparsest estimator close
to SA)(). Considering these sparse estimates and plug-in principle in the Mahalanobis distance we
propose a new version of LDA sparse which we will call plug-in LDA.

4 ACCURACY ASSESSMENT MEASURES

In selecting the best classification algorithm a very important task is the choice of an appropri-
ate performance evaluation measures. Accuracy assessment is traditionally conducted using the
sample confusion matrix, in which classification results of the validation dataset are compared to
“ground truth.” Based on the confusion matrix, a variety of measures can be calculated, including
Cohen’s Kappa coefficient [8] and the Fiscore [18]

Cohen kappa statistic is a chance-corrected method for assessing agreement. The values of
range lie in [—1;1] with 1 presenting complete agreement and 0 meaning no agreement or
independence. A negative statistic implies that the agreement is worse than random.

Table 1: The confusion matrix for a multi-class classification involving k classes.

True class
. 1 2 ‘e k | Total
Predicted class
1 niy | n | cee | ng | Ny
2 noy | npp | ccc | Rk | N2,
k my | Mo | ot | ke | Mk
Total ni | np | - | ng N

Using notation similar to Cohen (1960), the kappa coefficient of agreement,(k), is estimated

from confusion matrix:
PO — Pe

1_pe

k= A.1)
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where pg is the proportion of cases correctly classified (i.e. overall accuracy) and p, is the
expected proportion of cases correctly classified by chance (under independency hipotesis):

k
Nii
i=1
=5 4.2
Po="x (4.2)
k
Y nin;
Pe="15 4.3)

Precision and recall (sensitivity) are two important model evaluation measures. For a multiclass
problem we can compute the per-class precision and recall as follows:

recall; = 2, 1<i<k (4.4)

ni
.. njj .
precision; = —; 1<i<k “4.5)
i.
The F; value is used to combine the precision and recall measurements into a single value. This
is practical because it makes it easier to compare the combined performance of precision and
completeness between various algorithms. F'1 score is a harmonic mean of precision and recall:

(F)i=— 2 — 1<i<k (4.6)
recall; + precision;
The weighted F) is defined as
y niF1;
wk = =1 I (4.7)

To get a more accurate estimate of the measurements, the training data set was randomly divided
into three groups, or folds, of equal size (n = p). The first fold is treated as a training set, and
remaining folds as validation set. This process results in three estimates of each measure, which
are averaged in order to obtain a unique value [11].

5 APPLICATIONS

Experiments were conducted to test the performance of the SDA; penalized- LDA; plug-in-LDA
and RF algorithms with one simulated image and one real image.

For SDA, Penalized-LDA and RF we will use the R-packages sda, sparseMatEst and
randomForest, respectively.

Trends Comput. Appl. Math., 23, N. 3 (2022)
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(@ (b)

Figure 1: (a) Ideal class image with four regions. (b) RGB-composition of simulated random
image assuming a normal multivariate distribution.

5.1 Simulated Data

The first experimental dataset (simulated image) consist of 100 x 100 pixels, 200 bands and four
classes. Each pixel x;;; 1 <i,j < 100 is a p-dimensional random vector, where p represent the
number of bands. We assume that x;; ~ N (,;X) if pixel (i, j) belongs to class k, 1 <k < 4.
Figure 1a and 1b represent an ideal class image with four regions, acting as the reference image,
and the RGB-composition of simulated random image assuming a normal distribution. The size
of the training set is 160 (40 pixels of each class). Table 2 shows the Frobenius norm and kappa
estimated coefficient for the five classifiers. The validation is made with the entire image. The
Figure 2 and the Table 2 show that, penalized-LDA has the best performance followed by SDA
and plug-in-LDA, while RF has the worst performance.

Table 2: Frobenius norm. (kappa estimated coefficient).

training sample RF SDA | Pen-LDA | Plug-in LDA
36.3 11.3 6.3 17.4
(0.953) | (0.995) | (0.998) (0.989)

Trends Comput. Appl. Math., 23, N. 3 (2022)
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(b) RF

(c) SDA (d) penalized LDA

(e) LDA plug-in

Figure 2: Classification results simulated image.
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5.2 Real Data

Figure 3 shows an 209 x 167 extract of an EO-1 Hyperion image obtained in http://eol.usgs.gov.
The study area is EO1H2290822012007110P1,T . 44 non-informative bands were removed, as
well as water absorption bands 120-132, 165-182, 185-187, 221-224. So, 160 bands were estab-
lished to be useful for further analysis. By prior knowledge of the area, it was decided to classify
the image into four classes: water, urban area, high vegetation index area, and low vegetation
index area (blue, white, green and brown, respectively). The size of the training sample is 160.

Table 3: Kappa estimated coeficient and weighted F} score averaged over k = 3 folds.

LDA | RF | SDA | Pen-LDA | Plug-in LDA
wFj score | 0.43 | 0.90 | 0.94 0.94 0.92
K 0.34 | 0.87 | 0.92 0.92 0.90

Figure 3: Real image: false color composite image (R-G-B = band 120-60-2).

(a) (b)

Figure 4: Google maps extract (a) city area (b) mountain area.
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(e) plug-in-LDA

Figure 5: Classification results real image.
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Figure 5 show the thematic maps produced by the five classifiers. When executing the LDA func-
tion of the R-package MASS, the following error message appears: ~variables are collinear”. This
problem, caused by the insufficient size of the training sample to estimate the covariance matrix,
produces an unacceptable thematic map (see Figure 5a).

If the algorithms are ranking based on adequacy measures presented in the table 3, the first one
are SDA and penalized-LDA, followed by plug-in-LDA and finally RF. A visual comparison of
the thematic maps (see Figure Sc, 5d, and 5e) with the truth of the terrain (Figure 4a and 4b),
seems to show that SDA had a better performance, being very similar to penalized-LDA and
plug-in-LDA, while RF had the worst performance.

6 CONCLUSION

This paper proposes a new version of sparse LDA, called plug-in LDA, for the supervised clas-
sification of hyperspectral images. It consists of replacing the maximum likelihood estimator of
the precision matrix used in Mahalanobis distance with a sparse estimate recently proposed. The
results obtained show that plug-in LDA outperforms to RF and has a similar behavior to SDA and
Penalized LDA, both in the real image and in the simulated one.

In the context of hiperspectral image classification, extracting totally pure training samples is
difficult, since there are often incorrectly labeled pixels, wich can have a strong negative impact
on the classification result [16]; [17]. The main advantage of the plug-in strategy is the possibility
of replacing in the Mahalanobis’s distance the estimators of both the position and the covariance
matrix with robust alternatives which could turn plug-in into a robust classification algorithm.
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