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ABSTRACT. The present work has as main objective to investigate the use of fractional calculus in the
modeling of epidemic outbreaks of interacting populations. In particular, we propose a generalization of the
SIR model with fractional derivatives to describe the dynamics of the COVID-19 epidemic outbreak in two
cities with interacting populations. In special, we consider the dynamics of COVID-19 in the municipalities
of Pelotas and Rio Grande, which are neighboring cities and are relatively geographically isolated from the
rest of the state of Rio Grande do Sul.

Keywords: population dynamics, fractional differential equations; SIRD model, coronavirus (COVID-19).

1 INTRODUCTION

The main motivation for the study of differential equations is that even simple equations describe
important real-world problems, such as, for example, the growth of a population, the prolifera-
tion of diseases, the mass-spring systems, among others. [11]. In this context, fractional calculus,
also known as non-integer calculus, plays an increasingly important role. Since the beginning of
the theory of differential and integral calculus, mathematicians like Leibniz, Riemann, and Liou-
ville developed their ideas for derivatives and integrals of non-integer orders. Although as old as
usual calculus, it was only in the last decades that fractional calculus’s importance in modeling
real-world phenomena, displaying non-local characteristics, was verified. In this context, several
phenomena that can not be well explained by models based on traditional calculus, have been
successfully described by models containing fractional derivatives and integrals [10].

Among the recent areas of application of fractional calculus, we can highlight the modeling of
epidemics, in which models are proposed to describes the epidemic dynamic, to help to outline
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policies to control these diseases and to eradicate them as soon as possible [5]. Based on this
premise, due to the current scenario, where the world faces the pandemic caused by the coron-
avirus (COVID-19), an infectious disease caused by the severe acute respiratory syndrome virus 2
(SARS CoV-2) belonging to the SARS class. Although the SARS coronavirus (SARS-CoV) out-
break in 2003 was fatal for 9% of infected individuals, it spread to only 26 countries and resulted
in about 8,000 cases. However, the new coronavirus outbreak has become an unprecedented
threat to worldwide health [9]. Due to these indices, it was decided in this work to study a struc-
tured model of a compartmental epidemic of the SIRD type for interacting populations. The SIRD
model is a generalization of the well-known SIR (susceptible-infected-recovered) compartmental
model that includes a compartment for dead individuals, denoted by D.

In this context, one of the objectives of the present study is to analyze real data referent to the
number of confirmed cases and deaths, related to COVID-19, in the municipalities of Pelotas and
Rio Grande. Because they are neighboring cities, there are interactions between populations (flow
of people moving between the two cities), we propose an interagent fractional SIRD model. The
solution of the model will be obtained through Python, by employing a semi-analytical method
described in Section 4. The data relating to the populations were extracted from the website
https://www.riogrande.rs.gov.br/(Rio Grande City Hall) and http://pelotas.com.

br/(Pelotas City Hall).

Due to the importance of understanding the proliferation of infectious diseases in population dy-
namics, there is a significant amount of work in the literature that addresses this subject. In par-
ticular, we point out some studies related to the dynamics of COVID-19 in Brazil and a proposed
approach for different interacting populations.

The articles [3, 7] focus on the role of fractional calculus to model the dynamic of COVID-19.
Both works consider a fractional SIR model. In [3] the role of the memory effect, introduced by
fractional derivatives due to its non-local characteristics, is investigated in COVID-19 dynamics
for several countries. A detailed study of the application of a fractional SIR model to the spread
of COVID-19 in Brazil was carried out in [7]. It is important to stress that one important differ-
ence between our present work and the references [3, 7] is that, while we consider two distinct
populations in interaction, in [3, 7] all people in the country belongs to a single population.

In [2], real data was analyzed regarding the number of confirmed cases and deaths caused by
COVID-19 in the Brazilian states of Paraná (PR), Rio Grande do Sul (RS), and Santa Catarina
(SC). The objective of the study was to understand some aspects of the spread of the disease in
the southern region of Brazil by obtaining an effective Reproduction Number Re for each state,
a SIRD model was used for this. It was shown that this model, despite its simplicity, accurately
describes data from the past and makes it possible to make reliable projections for the trends
of the epidemic in each location. For the results, it was shown that, until June 6, 2020, SC was
the only state in the South region with Re < 1, which indicates that the number of new cases
tends to decrease in the hypothesis that this scenario is maintained. On the other hand, PR and
RS presented Re > 1, so that the growth in the number of infected people should continue in the
following weeks if new measures are not taken.

Trends Comput. Appl. Math., 23, N. 2 (2022)
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Finally, in the context of interacting populations, the work [6] proposes a structured SEIR
(susceptible-exposed-infected-recovered) model for the interaction of n different populations to
describe the spread of pandemic diseases such as COVID-19. For the authors, the proposed model
has the flexibility to include geographically separate communities, as well as taking into account
other groups (for example, age groups) and their interactions. Different assumptions about the
dynamics of the proposed model were shown, which lead to a curve similar to a plateau of the
infected total population, reflecting data collected in large countries such as Brazil. Such obser-
vations point to the following conjecture: ”The spread of COVID-19 disease from the capitals to
the interior of Brazil may be responsible for the appearance of a plateau on the infected curve”.

2 FRACTIONAL CALCULUS

The non-integer order calculus, known as fractional calculus, began on September 30 of 1695,
in a letter from Leibniz to L’Hôpital. In addition to Leibniz and L’Hôpital, other brilliant mathe-
maticians, such as Euler, Lagrange, Laplace, Fourier, Abel, Heaviside, Liouville, among others,
studied the subject leading to the first definitions of fractional derivatives and integrals [4, 8].
Despite being as old as conventional calculus, it was only in the last three decades that Fractional
Calculation attracted more attention due to its applications in diverse areas. This is because the re-
alistic modeling of several complex physical phenomena depends not only on instantaneous time
but also on the history of the previous time. Lately, a large number of studies have been devel-
oped on the application of fractional differential equations, in various areas of applied sciences,
such as fluid mechanics, viscoelasticity, biology, physics, engineering, etc. [1].

In this work we will use the fractional derivative of Caputo, because among the several ex-
isting definitions of fractional derivatives, the Caputo definition is the more popular fractional
derivative definition among physics and engineers because of its algebraic properties and, most
important, because fractional differential equations with Caputo derivatives require usual initial
(or boundary) conditions [4].

The Caputo derivative definition is directly related to the analytical continuation of the Cauchy
formula for repeated integration, known as Riemann–Liouville fractional integral [4]:

Definition 2.1 (Riemann–Liouville integral). For α > 0 (α ∈ R), the operator aJα
x defined on

L1([a,b]) by

aJα
x f (x) =

1
Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt, (2.1)

is called the left Riemann–Liouville fractional integral of order α .

Remark 2.1. It is important to notice that when α is a positive integer n, the fractional Riemann–
Liouville integral (2.1) reduces to a usual integer order n-fold integration [4].

The Caputo fractional derivative of a function f (x) is defined by taking a fractional Riemann–
Liouville integral of order α of the n = [α]+1-th integer-order derivative of f (x) [4]:

Trends Comput. Appl. Math., 23, N. 2 (2022)
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Definition 2.2 (Caputo derivative). The left fractional derivative of Caputo of order α > 0 (α ∈
R) is defined by

C
a Dα

x f (x) =
1

Γ(n−α)

∫ x

a

f (n)(t)
(x− t)1+α−n dt (n = [α]+1) (2.2)

where f (n)(t) = dn f (t)
dnn is a usual derivative of integer order n.

Remark 2.2. In particular, for α = 1 the Caputo derivative is reduced to a usual first-order
derivative.

Finally, the Caputo fractional derivative (2.2) and the Riemann–Liouville fractional integral (2.1)
satisfies the generalized Fundamental Theorem of Calculus given by:

Theorem 2.1 (Fundamental theorem of Caputo Calculus). For 0 < α ≤ 1, and f ∈ AC1[a,b]
or f ∈C1[a,b], the following equality holds:

aJα
x

C
a D

α

x f (x) = f (x)− f (a). (2.3)

The proof of Theorem 2.1 can be found, for example, in [4].

3 THE FRACTIONAL SIRD MODEL FOR TWO DISTINCT POPULATIONS

In 1927, Kermack and McKendrik published the article entitled ”A Contribution to the Mathe-
matical Theory of Epidemics”, in which they introduced the epidemiological model known as
SIR. This model describes the spread of infectious diseases in a population divided into sub-
groups of susceptible, infected, and recovered individuals, with each of these groups having
their dynamics described by a Differential Equation [2]. Although the Kermack and McKendrick
model describe the essence of the dynamics of an epidemic, it includes only the main elements of
the process. More complex models include other categories of individuals in the population, such
as the SIRD model (Susceptible-Infected-Recovered-Dead), which divides the removed people
into Recovered and Dead. With that, other parameters are included, in this case, the recovery and
mortality rates.

Let us consider the case of two distinct interacting populations (populations in neighboring
cities). Let Ni be the number of individuals in the population i(i = 1,2) and NT = N1 + N2

the total integrated population. Let Si, Ii,Ri and Di be the fractions, in relation to the Ni, of the
i population that are, susceptible, infected, recovered and deaths, respectively, in time t. In the
model, the time evolution given by the following dynamic system to i = 1,2 is considered.

C
0 Dα

t Si =−
2
∑
j=1

βi jSiI j +µi(1−Si)

C
0 Dα

t Ii =
2
∑
j=1

βi jSiI j− (γi +κi +µi)Ii

C
0 Dα

t Ri = γiIi−µiRi
C
0 Dα

t Di = κiIi +µiDi,

(3.1)

Trends Comput. Appl. Math., 23, N. 2 (2022)
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where 0 < α ≤ 1 is the order of the derivative, βi j is the disease fractional transmission rate (pro-
portional to the average contact rate within the population and within the population), κi is the
fractional death rate of the population infected by the disease, γi is the fractional inverse of the
average infectious period, to i = 1,2. In addition, the µi fractional mortality rates are assumed to
be equal to birth rates, so that the total Ni of the population is constant during illness. Therefore,
one has to Si(t)+ Ii(t)+Ri(t)+Di(t) = 1. Furthermore, concerning the dimension of the param-
eters in the model it is important to notice that, since Si, Ii, Ri and Di are dimensionless, and the
fractional derivative operator C

0 Dα
t has dimension of time−α (as the integer order derivative d

dt
has dimension of time−1), the fractional rates βi j, κi, γi, and µi should have dimension of time−α .

Regarding the existence of the equilibrium points (time independent solution), we have that when
t → ∞ the model solution (3.1) tends to the equilibrium point. In the situation where this equi-
librium point is not zero, the disease becomes endemic. To find the equilibrium point, we just
need to analyze under what conditions the variables Si and Ii become constant over time. We will
call Si

∗ and Ii
∗ these constant values. To find (Si

∗, Ii
∗), we make C

0 Si = 0 and C
0 Ii = 0 in the first

two equations of (3.1). Let us also consider, for simplicity, the symmetrical case. In this case we
will have N1 = N2 = N, β11 = β22 = β , β12 = β21 = β̂ , γ1 = γ2 = γ , κ1 = κ2 = κ , µ1 = µ2 = µ ,
S1 = S2 = S∗ and I1 = I2 = I∗. So, from the equation (3.1) we have:

−βS∗I∗− β̂S∗I∗+µ(1−S∗) = 0
βS∗I∗+ β̂S∗I∗− (γ +κ +µ)I∗ = 0.

(3.2)

Isolating I∗ in the second equation of (3.2), we get:

I∗((β + β̂ )S∗− (γ +κ +µ)) = 0.

Considering I 6= 0, we get the value of S∗:

S∗ =
γ +κ +µ

β + β̂
. (3.3)

Substituting S∗ in the first equation of (3.2), we obtain that I∗ is given by:

I∗ =
µ

γ +κ +µ
− µ

β + β̂
. (3.4)

Therefore, considering the particular case with no deaths (κ = 0 e Di = 0), the fixed point of the
symmetric model is:

P1(S∗, I∗,R∗,D∗) =
(

γ +µ

β + β̂
,

µ

γ +µ
− µ

β + β̂
,1− γ

β + β̂
− µ

γ +µ
,0
)
, (3.5)

that corresponds to an endemic equilibrium point, and where we use that R∗ = 1−S∗− I∗ when
D∗ = 0.

4 RESULTS AND DISCUSSION

In this section, analyzes and comparisons are being carried out around our proposed model (3.1)
for integer-order (α = 1) and fractional (0 < α < 1) derivatives. First, we consider some prop-
erties of the fractional model for the particular case without the interaction between cities. Next,

Trends Comput. Appl. Math., 23, N. 2 (2022)
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the fractional model with interaction between two populations is analyzed. For comparison with
real data, we used data obtained through the website https://www.riogrande.rs.gov.br/

(Rio Grande City Hall) e http://pelotas.com.br/ (Pelotas City Hall).

In order to obtain a numerical solution for the generalized SIRD model (3.1), first we integrate
both sides of (3.1) with a fractional integral 0Jα

t of order α . From the Fundamental theorem of
Caputo Calculus, (2.3), we have:

Si(t) = Si(0)−
2
∑
j=1

βi j0Jα
t SiI j +µi0Jα

t (1−Si)

Ii(t) = Ii(0)+
2
∑
j=1

βi j0Jα
t SiI j− (γi +κi +µi)0Jα

t Ii

Ri(t) = Ri(0)+ γi0Jα
t Ii−µi0Jα

t Ri

Di(t) = Di(0)+κi0Jα
t Ii +µi0Jα

t Di.

(4.1)

The second and last step towards solving Problem 3.1 consists in defining discretized functions
from Si, Ii, Ri and Di. For a positive integer L, let tn = t0 + nh (n = 0,1, ...,L), where h = tL−t0

L

and t0 = 0. Then, let X (n)
i = Xi(tn) (where X states for S, I, R or D). The discretized functions are

defined by:
XL

i (t) = X (n)
i if tn ≤ t < tn+1. (4.2)

Since Xi(t) is a differentiable function, we have limL→∞ XL
i (t) = Xi(t). Consequently, the dis-

cretized functions XL
i (t) are an approximation for Xi(t) when L is large. We can now find the

values X (n)
i from the following recurrence relations:

S(n)i = S(0)i −
2
∑
j=1

βi j
1

Γ(α)

∫ tn
0

SL
i IL

j
(tn−t)1−α dt +µi

1
Γ(α)

∫ tn
0

1−SL
i

(tn−t)1−α dt

I(n)i = I(0)i +
2
∑
j=1

βi j
1

Γ(α)

∫ tn
0

SL
i IL

j
(tn−t)1−α dt− (γi +κi +µi)

1
Γ(α)

∫ tn
0

IL
i

(tn−t)1−α dt

R(n)
i = R(0)

i + γi
1

Γ(α)

∫ tn
0

IL
i

(tn−t)1−α dt−µi
1

Γ(α)

∫ tn
0

RL
i

(tn−t)1−α dt

D(n)
i = D(0)

i +κi
1

Γ(α)

∫ tn
0

IL
i

(tn−t)1−α dt +µi
1

Γ(α)

∫ tn
0

DL
i

(tn−t)1−α dt.

(4.3)

Finally, by computing the integrals in (4.3) we obtain an approximated solution for (3.1):

S(n)i = S(0)i −
2
∑
j=1

βi j
Γ(α+1)

n
∑

m=1
S(n−m)

i I(n−m)
j ∆α

n,m + µi
Γ(α+1)

n
∑

m=1
(1−S(n−m)

i )∆α
n,m

I(n)i = I(0)i +
2
∑
j=1

βi j
Γ(α+1)

n
∑

m=1
S(n−m)

i I(n−m)
j ∆α

n,m−
γi+κi+µi
Γ(α+1)

n
∑

m=1
I(n−m)
i ∆α

n,m

R(n)
i = R(0)

i + γi
Γ(α+1)

n
∑

m=1
I(n−m)
i ∆α

n,m−
µi

Γ(α+1)

n
∑

m=1
R(n−m)

i ∆α
n,m

D(n)
i = D(0)

i + κi
Γ(α+1)

n
∑

m=1
I(n−m)
i ∆α

n,m + µi
Γ(α+1)

n
∑

m=1
D(n−m)

i ∆α
n,m.

(4.4)

where
∆

α
n,m = (tn− tn−m)

α − (tn− tn−m+1)
α . (4.5)

For all the numerical results presented in the work we consider h = 0.5, given a time step of half
a day.

Trends Comput. Appl. Math., 23, N. 2 (2022)
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4.1 A single isolated population: model without the interaction between cities

Before considering the interaction between two cities, a preliminary analysis was made for only
a single city (N2 = 0). In this case, we consider real data of the infected and recovered population,
that is, the total number of cases registered in Rio Grande, in a period (t) of 284 days. For the
study, we considered the initial time (t = 0), and the final time (t = 284). The choice of the initial
time was made for the registration of the first case of infected people in the municipality, at 23 in
March of 2020.

In Figure 1 are displayed the real data of the population of Rio Grande and the solution for the
SIRD model with integer-order derivative (α = 1). The parameters used in the model in Figure 1
were γ1 = 2/3 (we assume an average time of 1.5 days (or 36 hours of contact with other people)
for the infected person to be diagnosed and isolated from the rest of the population) and, for
simplicity, κ1 = µ1 = 0.0. As an initial condition, we considered that there were 5 individuals
initially infected (we assume that when the first case was diagnosed, this patient would have
already infected other people). With these parameters, we find that the value β11 = 0.683 is the
one that best describes the real cases.

Figure 1: Comparison between the real data of the population of Rio Grande (Source:
https://www.riogrande.rs.gov.br/ (Rio Grande City Hall)) and the numerical solution of the model
without interactions and derivatives of order α = 1.

Finally, it can be seen that the curve does not describe well the cases reported by the official
data, since the real dynamics show an approximately linear growth. According to [6] this linear
growth may be an indication of the spread of the disease to neighboring cities and between
neighborhoods of the same city. This fact leads to anomalous growth dynamics, which motivates
the investigation of models of interacting populations and fractional models.

One of the main effects on the dynamics introduced by the fractional derivatives can be seen
in Figure 2. It can be seen in this figure that for the integer-order derivative, there is a very
narrow peak of infected people (I partition) for the epidemic. In the case of fractional deriva-
tives, as the α order of the derivative decreases, there is an elongation in the period of the

Trends Comput. Appl. Math., 23, N. 2 (2022)
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Figure 2: Numerical solution for the infected population of the model without the interaction
between cities, and derivatives of order α = 1, α = 0.75 and α = 0.5.

epidemic. This extension can describe, for example, the spread of the disease between neigh-
borhoods and neighboring cities. Diffusion produces an increase in the period of the epidemic
because, in each neighborhood and city, the peak of infection occurs at a different time [6],
as we will see in our model when considering the interaction between two cities. For the re-
sults presented in Figure 2 we used N1 = 211965 (data from the population of Rio Grande ob-
tained through the website https://www.riogrande.rs.gov.br/pagina/284-anos-rio-

grande-mantem-forte-potencial-economico-e-turistico/ (Rio Grande City Hall)),
β11 = 1, γ1 = 0.5, κ1 = 0 (for simplicity, we do not consider death cases) and µ1 = 0.001. In
addition, we considered that at t = 0 there were 2 infected individuals.

Figure 3: Numerical solution for the dead population of the model without the interaction be-
tween cities, and derivatives of order α = 1, α = 0.75 and α = 0.5.

We present at Figure 3 the behavior of the dead (partition D) for the model without interaction.
For this figure we use N1 = 211965, β11 = 1, γ1 = 0.5, κ1 = 0.01 and µ1 = 0.001. In addition,
we consider again that at t = 0 there were 2 infected individuals. We observed again that the

Trends Comput. Appl. Math., 23, N. 2 (2022)
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introduction of fractional derivatives in the system’s dynamics results in an extension of the time
necessary to reach the peak in the number of deaths. In addition, the amplitude of this peak
decreases with the order of the fractional derivative.

Finally, another important effect introduced by fractional derivatives in the dynamics is presented
in Figure 4, where we consider for simplicity κ1 = 0. The equilibrium point (Seq, Ieq,Req,0)
(where Seq = µ1+γ1

β1
, Ieq = µ1

µ1+γ1
− µ1

β11
and Req = 1− Seq− Ieq) do model is not affected by the

order of the derivative, however, the oscillatory behavior of the model with integer derivative
(α = 1) disappears in the model with fractional derivative (α = 0.75). For t → ∞ the model
reaches equilibrium, and the disease becomes endemic to µ1 6= 0. For the results shown in Figure
4 we used N1 = 211965, β11 = 1, γ1 = 0.5, κ1 = 0 and µ1 = 0.02 (in this case, we use a large
value for µ to facilitate graphical visualization of the balance for those infected). In addition, we
considered that at t = 0 there were 2 infected individuals.

Figure 4: Numerical solution of the model without interactions for derivatives order α = 1 and
α = 0.75. In graphs (a), (b) and (c), Seq, Ieq and Req represent the equilibrium values, respectively.

Trends Comput. Appl. Math., 23, N. 2 (2022)
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4.2 Interacting populations

Based on the geographical spread of the disease, it was decided to analyze the interaction between
neighboring cities. For simplicity, let us consider the case where the two cities have the same total
population, that is, N1 = N2. We consider that there were initially 2 infected in the city 1 and 0
infected in the city 2. Note that in Figure 5, for the graph (a), there is a difference in the time
in which the epidemic occurs in each city since initially we had infected individuals only in
the first city. The contamination of the population of the second city occurs initially due to the
interaction with the first city. This difference in time leads to a phenomenon of widening of the
peak and duration of the epidemic in the total population N1 +N2, as pointed out in [6]. We
can see this widening in the graph (b), where we present the total sum of infected (I1 + I2) of
these interacting populations. The parameters used in this simulation were α = 1, γ1 = γ2 = 0.5,
κ1 = κ2 = µ1 = µ2 = 0.0, β11 = β22 = 1 and β12 = β21 = 0.0005 (we assume that 1 for every
2000 inhabitant transits between the two cities daily).

Figure 5: Graph of the fraction of the infected population between two interacting cities (a) for
integer order derivative α = 1 (on the left); Graph of total infected population per day (b) (on
the right).

The same widening phenomenon is also present in the model with fractional derivatives, as can
be seen in Figure 6 for α = 0.75.

Figure 6: Graph of the fraction of the infected population between two interacting cities (a) or
fractional derivative of order α = 0.75 (on the left); Graph of total infected population per day
(b) (on the right).

Trends Comput. Appl. Math., 23, N. 2 (2022)
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In Figures 7 and 8 we show the asymptotic behavior of models with integer derivatives
(α = 1) and fractional derivatives (α = 0.75). For simplicity, we consider the symmetric case
β11 = β22 = 1, β12 = β21 = 0.0005, γ12 = γ21 = 0.5, µ1 = µ2 = 0.2 and κ1 = κ2 = 0. In
this symmetrical case, in equilibrium we have: limt→∞ S1 = limt→∞ S2 = Seq = 0.51974013,
limt→∞ I1 = limt→∞ I2 = Ieq = 0.01847153, limt→∞ R1 = limt→∞ R2 = Req = 0.46178833 and
D1 = D2 = Deq = 0. We observed again that one of the effects of the fractional derivative on the
dynamics is the disappearance of the oscillatory behavior of the model variables before reaching
the asymptotic equilibrium.

Figure 7: Numerical solution of the model with interactions between two populations for deriva-
tives of the order α = 1. In graphs (a), (b) and (c), Seq, Ieq and Req represent the equilibrium
values, respectively.
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Figure 8: Numerical solution of the model with interactions between two populations for deriva-
tives of the order α = 0.75. In graphs (a), (b) and (c), Seq, Ieq and Req represent the equilibrium
values, respectively.

4.3 A comparison with real data

We now present a comparison with real data between the model of interacting populations with
integer derivatives and the model with fractional derivatives. We used data obtained from the
websites of https://www.riogrande.rs.gov.br/ (Rio Grande City Hall) and the http:

//pelotas.com.br/ (Pelotas City Hall). We consider the total number of cases recorded in
Rio Grande and Pelotas over a period of 284 days. For the study, we considered the initial time at
t = 0, and the final time at t = 284. The choice of the initial time coincides with the registration
of the first case of infected people in the municipality of Rio Grande, being set at 23 in March of
2020. The last day corresponds to the 31 December 2020 record. Data for the first 2 months of
2021 were not included in the analysis as the municipality of Rio Grande did not release the data
on a daily basis in January.
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For a more realistic description of the real data of an epidemic, we should consider that the
parameters defining the model (βi,βi j,γi,κi,µi) are functions of time, since the value of these
parameters depends, for example, on public policies and public awareness. But for the purpose
of this work, which is to compare the results obtained by the model of interacting populations
with fractional derivatives with the model with integer derivatives (α = 1), we will consider all
these parameters as constants. In addition, we considered, as an initial condition, that at t = 0
there were 5 infected in Rio Grande and 0 in Pelotas. The beginning of the epidemic in Pelotas
is due to the interaction with Rio Grande. We consider as population 1 the city of Rio Grande,
where the first case was diagnosed, and as population 2 the city of Pelotas. In this case, we have
N1 = 211695 and N2 = 343651 (data from the population of Pelotas obtained through the website
https://www.pelotas.com.br/cidade/dados-gerais (Pelotas City Hall)).

In Figures 9 and 10 we present the comparison for the accumulated data of infected Irg and Ip

(I +R+D) and of dead Drg and Dp for the cities of Rio Grande and Pelotas, respectively. For
simplicity, we set γ1 = γ2 = 2/3 and µ1 = µ2 = 0. In addition, we also consider that β12 = β11/500
and β21 = β22/500 (on average, 1 for every 500 inhabitants of the city has contact with the
inhabitants of the neighboring city). In Figure 9 we present the comparison with the number
of infected and killed for the model with integer derivatives (α = 1). The parameters that best
describe the official data in this case are: β1 = 0.7, β2 = 0.706, κ1 = 0.017 and κ2 = 0.014.
In Figure 10 we present the results of the interacting model with fractional derivatives of the
order (α = 0.8). The parameters that best describe the actual data in this case are: β1 = 0.723,
β2 = 0.738, κ1 = 0.016 and κ2 = 0.013. Although we believe that initially in Pelotas there was
0 infected, due to the interaction between the two cities, the disease spreads quickly to Pelotas.

Figure 9: Infected population and number of deaths for the interacting cities of Rio
Grande and Pelotas (Source: https://www.riogrande.rs.gov.br/ (Rio Grande City Hall) and
http://pelotas.com.br/ (Pelotas City Hall)). In (a) the cumulative number of infected for the model
with integer derivative (α = 1), and in (b) the number of deaths.
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Figure 10: Infected population and number of deaths for the interacting cities of Rio
Grande and Pelotas (Source: https://www.riogrande.rs.gov.br/ (Rio Grande City Hall) and
http://pelotas.com.br/ (Pelotas City Hall)). In (a) the cumulative number of infected for the model
with fractional derivative (α = 0.8), and in (b) the number of deaths.

We observed that both cases (integer derivative and fractional derivative) describe the dynamics
of the epidemic qualitatively well in the first 284 days in Rio Grande and Pelotas. Despite this,
the fractional derivative model behaves quite differently from the integer derivative model when
considering time intervals greater than 284 days. In Figure 11 we show the forecast of the total
cumulative number of people who will be infected and killed. Figure 11 (a) shows the result for
the number of infected for the integer (α = 1) and fractional (α = 0.8), derivative, and Figure
11 (b) corresponds to the model result for the number of deaths. The fractional derivative model
predicts a higher number of infected and dead compared to the integer derivative model. As the
epidemic in the cities of Rio Grande and Pelotas is still far from reaching equilibrium, we cannot
determine which of the two models (fractional and integer) will best describe the entire dynamics
of the epidemic.

Figure 11: Numerical solution of the model with interactions between two populations for deriva-
tives of order α = 1 (graph (a)) and α = 0,8 (graph (b)).
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5 CONCLUSION

The objective of the present work is to investigate the use of fractional calculus in the modeling
of epidemics of interacting populations. We propose a SIRD model for two interacting cities
with fractional derivatives. We made some preliminary analyzes, and as a continuation of the
work, we will analyze the data, over a longer time period, regarding the cumulative number
of confirmed cases and deaths caused by COVID-19 in the municipalities of Pelotas and Rio
Grande. From the preliminary analysis, it was possible to observe that the classic SIRD model,
without interaction between cities and without fractional derivatives, does not describe the official
data of the municipality of Rio Grande as well, since the dynamics show a linear growth. This
result motivates a more detailed investigation of the fractional interacting model that we propose.
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