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ABSTRACT
Microorganisms associated with organic management are essential in nutrient transformation and release for 
plant use. The present study aimed to isolate, identify and characterize plant growth promoting diazotrophic 
rhizobacteria associated with sugarcane under organic management. Rhizospheres of organic sugarcane 
varieties IAC 911099 and CTC4 were sampled and inoculated onto nitrogen free NFb and Burk media. The 
isolated microorganisms were screened in vitro concerning their ability to produce plant growth promoting 
factors. Eighty-one bacteria were isolated; 45.6% were positive for the nifH gene and produced at least 
one of the evaluated plant growth promotion factors. The production of indole-3-acetic acid was observed 
in 46% of the isolates, while phosphate solubilization was observed in 86.5%. No isolates were hydrogen 
cyanide producers, while 81% were ammonia producers, 19% produced cellulases and 2.7%, chitinases. 
Microorganisms belonging to the Burkholderia genus were able to inhibit Fusarium moniliforme growth 
in vitro. Plant growth promoting microorganisms associated with organic sugarcane, especially belonging 
to Burkholderia, Sphingobium, Rhizobium and Enterobacter genera, can be environmentally friendly 
alternatives to improve sugarcane production.
Key words: organic agriculture, plant growth promoting rhizobacteria, nifH, Burkholderia, Sphingobium, 
Rhizobium.
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INTRODUCTION

The use of petroleum-derived fertilizers and 
chemical pesticides is a common practice in 
agriculture. In view of the current scenario, the use 

of these inputs is indispensable, making cultivation 
expensive and, associated with the expansion of the 
agricultural areas, causing a series of environmental 
impacts (Goldemberg et al. 2008, Severiano et al. 
2009, Schultz et al. 2014). In this sense, a growing 
interest in cheaper and less environmentally 
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impacting alternatives that reduce or replace the 
use of these implements in traditional agriculture 
has been observed (Crowder and Reganold 2015, 
Kanchiswamy et al. 2015). 

The use of plant growth promoting 
rhizobacteria (PGPR) is one of the available 
alternatives to reduce the use of synthetic fertilizers 
and products from non-renewable sources, 
presenting low production/implantation costs 
(Sadeghi et al. 2012, Szilagyi-Zecchin et al. 2014). 
PGPR correspond to bacteria that inhabit the 
rhizosphere, the soil zone immediately adjacent to 
the root, capable of promoting plant growth by one 
or more mechanisms (Noumavo et al. 2016). Their 
use is commonly adopted in traditional agriculture 
and empirically in organic agriculture, since this 
type of agriculture is extremely dependent on 
nutrient transformations mediated by natural soil 
microbiota (Pariona-Llanos et al. 2010, Bhardwaj 
et al. 2014, Järvan and Edesi 2015). 

PGPR can promote plant growth by increasing 
plant nutrient availability through nitrogen fixation, 
mineral solubilization and iron adsorption (Kukla et 
al. 2014). They can also produce phytostimulators, 
such as indole-acetic acid (IAA), gibberilinic 
acid, cytokinins and 1-aminocyclopropane-1-
carboxylate (ACC) deaminase, which stimulate 
root development and plant tissue growth (Sgroy 
et al. 2009). In addition, they play a fundamental 
role as biopesticides, through the production 
of metabolites that exhibit antibiotic action, and 
can also participate in the degradation of organic 
pollutants (Ahemad and Kibret 2014).

Due to the biological importance of nitrogen 
in biomolecule constitution and the high costs and 
environmental impacts caused by the production 
of synthetic nitrogen fertilizers, nitrogen-fixing 
bacteria (diazotrophic bacteria) are targets of interest 
(Karagöz et al. 2012). These microorganisms 
are able to convert molecular nitrogen (N2) into 
ammonia (NH3), a nitrogenous form absorbed by 
plants. This conversion is mostly mediated by the 

iron-molybdenum (FeMo) nitrogenase enzyme, 
which is encoded by the nif complex genes (nifH, 
nifD, nifK). Because they are highly conserved 
throughout species, genes from the nif complex 
can be used as indirect evidence of the presence 
of nitrogenase and as molecular markers for 
diazotrophic organism screening (Dai et al. 2014, 
Ji et al. 2014, Kumar 2014, MacKellar et al. 2016).

Diabotrophic PGPR associated with sugarcane 
present high taxonomic diversity, with several 
noteworthy genera, such as Herbaspirillum, 
Pantoea, Burkholderia, Azospirillum and 
Glucononacetobacter  (Lin et  al .  2012, 
Gopalakrishnan et al. 2015, Tam and Diep 2015). In 
this scenario, several studies have been conducted 
to isolate diazotrophic bacteria associated with 
sugarcane under traditional management and 
to characterize plant growth promoting factors 
produced by these organisms (Luvizotto et al. 2010, 
Lima et al. 2011, Beneduzi et al. 2013, Kruasuwan 
and Thamchaipenet 2016).

However, research on diazotrophic PGPR 
associated with sugarcane under organic 
management is scarce. This group is of great 
interest, since one of the major challenges of 
organic agriculture is soil nitrogen limitation, 
as synthetic nitrogen compounds are abolished 
(Wongphatcharachai et al. 2015). Thus, PGPR 
presenting multiple plant growth promotion factors 
can become a viable alternative in biofertilization, 
phytostimulation and biocontrol practices in 
organic sugarcane plantations.

In this context, the present study aimed to isolate 
and identify diazotrophic rhizobacteria associated 
with sugarcane under organic management from 
two sugarcane processing plants located in the 
state of Goiás, Brazil, and to evaluate plant growth 
promotion factor production.

MATERIALS AND METHODS

MICROORGANISM OR BACTERIA ISOLATION 

The microorganism/microbial isolations were 
conducted from rhizospheric soil obtained from 
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to verify possible bacterial morphotypes isolated 
simultaneously in the two media. After obtaining 
pure colonies, the samples were stored in 20% 
glycerol (m/v) at -20 ºC.

DNA EXTRACTION

DNA extraction was performed from microorganism 
growth in Luria-Bertani broth (LB) for 24 hours 
at 30 °C. MoBio’s UltraClean®Microbial DNA 
Isolation Kit was used for DNA extraction, 
according to the manufacturer’s recommendations.

nifH GENE AMPLIFICATION

The gene encoding the nitrogenase reductase 
subunit of the enzyme nitrogenase complex 
(nifH) was amplified to confirm diazotrophic 
potential. The PCR reaction of the nifH gene was 
conducted using the oligonucleotide primers PolF 
(TGCGAYCCSAARGCBGACTC) and PolR 
(ATSGCCATCATYTCRCCGGA), which generate 
a product with approximately 360 base pairs (Poly 
et al. 2001).

The reaction was prepared to a final volume of 
10 μl, consisting of 1 x Taq polymerase buffer, 2.3 
mM MgCl2, 0.25 mM of each dNTP, 1.0 μM of each 
primer, 0.2 U of Taq DNA polymerase and 1.0 μl of 
template DNA (50 ng). Amplification was conducted 
in a thermal cycler by the following cycling steps: 
initial denaturation at 94 °C for 5 minutes; followed 
by 35 denaturation cycles at 94 °C for 45 seconds, 
annealing at 57 °C for 30 seconds, extension at 72 
°C for 30 seconds and a final extension step at 72 
°C for 1 minute. The reaction products had their 
integrity confirmed on 1.2% (m/v) agarose gels. The 
nitrogen fixing strain Azospirillum brasilense was 
used as a positive control.

DIAZOTROPHIC RHIZOBACTERIA 
IDENTIFICATION 

All bacteria whose nifH gene can be amplified were 
identified from the partial sequencing of the 16S 

two sugarcane varieties (IAC 911099 and CTC4), 
grown under organic management at farms 
belonging to two sugarcane processing plants in 
the cities of Goiatuba (19º 00’ 023” S; 049º 40’ 
319” W) and Goianésia (15º 20’ 241” S; 048º 54’ 
253” W), Goiás, Brazil. Samplings were carried 
out from October/2015 to January/2016, and each 
variety was obtained from four distinct farms, with 
three replications. Farms with sugarcane specimens 
planted in different years (2009, 2012, 2013 and 
2014) and in different phenological stages were 
chosen, in order to obtain the greatest possible 
sample heterogeneity.

Sugarcane roots with adhered rhizospheric 
soil were conditioned in sterile plastic bags and 
stored at 4 ºC until processing the following day. 
The rhizospheric soil was considered as the soil 
intimately connected to the roots at a distance of 
up to 5 mm, carefully removed with the aid of a 
sterilized spatula (Santos et al. 2012).

For isolation of potentially diazotrophic 
bacteria, 1.0 g of rhizospheric soil was incubated 
in 100 mL of phosphate buffer (0.8% NaCl, 0.02% 
KCl, 0.14% Na2HPO4, 0.024% KH2PO4, pH 7.4), 
under stirring at 130 rpm at 30 °C, for one hour. 
The obtained suspension was serially diluted 
and concentrations of 10-3, 10-4 and 10-5 were 
inoculated, in triplicate, in nitrogen-free semi-solid 
NFb (Dobereiner et al. 1976) and Burk’s (Park et 
al. 2005) media.  

The media were then incubated at 30 °C for 
14 days. After growth, in the form of a diffuse film 
below the surface of the semi-solid medium, the 
microorganisms were peeled to new semi-solid 
media. After the growth in semi-solid media (three 
rounds), the microorganisms were transferred to 
the corresponding solid media. Microorganism 
isolation and purification occurred by depletion 
in solid media. Microorganisms whose colonies 
displayed the same morphology isolated from 
the same farm were discarded. After isolation, all 
colonies were transferred to nutrient agar plates 
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rRNA gene. The reaction was prepared to a final 
volume of 50 μl, containing 1 x Taq polymerase 
buffer, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.2 
mM of each primer, 2.5 U of Taq DNA polymerase 
and 1 μl of template DNA (50 ng). The 16S region 
was amplified using primers 27F (5’-AGA GTT 
TGA TCC TGG CTC AG-3’) and 1541R (5’- 
AAG GAG GTG ATC CAG CC-3’) (Lane 1991). 
DNA was amplified in a thermal cycler, under the 
following conditions: initial denaturation at 95 °C 
for 3 minutes; followed by 30 denaturation cycles 
at 94 °C for 1 minute, annealing at 55 °C for 30 
seconds, extension at 72 °C for 30 seconds and a 
final extension step at 72 °C for 10 minutes.

The amplified products had their integrity 
confirmed on 1.2% agarose gels and purified with 
isopropanol and ethanol using the method described 
by Sambrook and Russell (2001). Sequencing was 
conducted on the ABI 3130xl platform (Applied 
Biosystems), using the BigDye terminator cycle 
sequencing kit and the oligonucleotide primers 
27 F, 530F (5’-TGA CTG ACT GAG TGC CAG 
CMG CCG CGG-3’) and 519R (5’–GTN TTA 
CNG CGG CKG CTG –3’) (Lane 1991).  

The reads obtained from the sequencing of 
each microorganism were evaluated regarding 
quality. Subsequently, the sequences (reads) were 
joined in a single sequence (contig). These steps 
were performed using the CodonCode Aligner 
software, version 6.0.2. Then, the sequences were 
compared to those deposited at the NCBI (National 
Center for Biotechnology Information) 16S rRNA 
library using the BLAST tool (Altschul et al. 
1990). The identified sequences were deposited 
at the NCBI 16S rRNA database under accession 
numbers MG429815 to MG429819; MG459255 to 
MG459472 and MG459472.

In vitro SCREENING FOR PLANT GROWTH 
PROMOTING TRAITS 

Microorganisms positive for the nifH gene were 
screened, in vitro, regarding their IAA, phosphate 

solubilization, ammonia, hydrogen cyanide 
(HCN), celulase and chitinase production capacity 
and antagonism to Fusarium moniliforme. All 
evaluations were carried out in triplicate and the 
results are expressed as the means of the replicates.  

IAA PRODUCTION 

Rhizobacteria ability to produce IAA was 
quantitatively determined by the method 
described by Gordon and Weber (1951), with 
modifications. The microorganisms were adjusted 
to a concentration of 108 cells mL−1 (OD550nm =0.1) 
and inoculated in 10% tripticasein soy broth (TSB), 
supplemented with 5mM L-tryptophan. Growth 
aliquots were removed after 24, 48 and 72 hours 
and centrifuged for 12 minutes at 10,000 xg. The 
Salkowisk reagent (35% perchloric acid and 1 ml of 
0.5M FeCl3) was added to the culture supernatants 
at a 1:1 (v:v) ratio and the solutions were then 
incubated at room temperature, in the dark, for 
30 minutes. After incubation, absorbances were 
determined on a spectrophotometer at 530 nm. IAA 
concentrations were determined by comparison to 
a standard curve constructed from a commercial 
IAA solution (0 µg mL-1; 1.0 µg mL-1; 5.0 µg mL-1; 
10 µg mL-1; 25 µg mL-1; 50 µg mL-1; 75 µg mL-1; 
100 µg mL-1; 150 µg mL-1; 200 µg mL-1). Resuls 
were expressed as µg mL-1.

PHOSPHATE SOLUBILIZATION

Phosphate solubilization was quantitatively 
determined according to Nautiyal (1999). The 
microorganisms were adjusted to a concentration 
of 108 cells mL-1 (OD550nm =0.1) and inoculated, in 
triplicate, in NBRIP broth (Nautiyal 1999). The 
samples were incubated for 7 days at 30 °C, under 
agitation at 130 rpm. After incubation, 1,000 μl 
aliquots were centrifuged at 10,000 xg for 5 minutes. 
Soluble phosphorus content was determined by 
the addition of the molybdate-vandate reagent 
(5.0% ammonium molybdate, 0.25% ammonium 
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vanadate) to the supernatants at the following 
ratio: 200 μl supernatant, 200 μl reagent and 600 
μl distilled water. Solution absorbances were 
determined on a spectrophotometer at 420 nm. 
Soluble phosphate concentrations expressed 
as μg mL-1 were obtained by comparison to a 
standard curve constructed from a stock KH2PO4 

(0.0875%) solution and different soluble phosphate 
concentrations (0 µg mL-1; 1.0 µg mL-1; 5.0 µg mL-

1; 8.0 µg mL-1; 10 µg mL-1; 12 µg mL-1; 15 µg mL-1; 
18 µg mL-1; 20 µg mL-1; 50 µg mL-1; 75 µg mL-1). 

AMMONIA AND HCN PRODUCTION 

For  ammonia  p roduc t ion  eva lua t ion , 
microorganisms were inoculated in peptone 
water and incubated at 30 °C for 7 days. After 
centrifugation at 10,000 xg for 10 minutes, the 
Nessler reagent (10% HgI2, 7.0% KI and 50% 
aqueous NaOH 32% solution) was added to the 
supernatants at a 2:1 (v/v) ratio (Cappuccino and 
Sherman 1996). The development of a brown color 
was considered indicative of ammonia production 
(Dey et al. 2004).

HCN production was determined according 
to the technique described by Cattelan (1999), 
with modifications. Isolates were initially grown 
for 24 hours in 10% tripticasein soybean (TSA) 
agar, supplemented with 0.4% glycine. After 
microorganism growth, filter papers (Whatman # 
1) embedded in a picric acid solution (0.5% picric 
acid and 2.0% Na2CO3) were deposited on the plate 
lids. The plates were then again incubated for 48 
hours. Positive HCN production was considered 
when the filters became brownish (Walpola and 
Yoon 2013).

CHITINASE AND CELULASE PRODUCTION 

The ability of the isolates to produce chitinases 
was verified according to Cattelan (1999). Briefly, 
microorganisms were cultured for 14 days at 30 
ºC in nitrogen-free medium (MNL) supplemented 

with 8.0 g L-1 of colloidal chitin, 0.78 g L-1 NH4NO3 
and 15 g L-1 agar. The addition of chitin generates 
turbidity in the medium. A clear halo around the 
colony is observed when microorganism display 
the ability to degrade the chitin.

Cellulase production evaluation was carried 
out by culturing the microorganisms in minimal 
medium containing carboxymethylcellulose 
(CMC) (Stamford et al. 1998). After growth at 30 
°C for 48 hours, the plates were covered with a 0.3% 
Lugol solution. The presence of light halos around 
the colony were indicative of cellulase production 
(Kasana et al. 2008). For all evaluated enzymes, 
the enzymatic index (EI) was determined, obtained 
by dividing the size of the halo by the size of the 
colony.

ANTAGONISM AGAINST F. moniliforme

Bacteria were evaluated, in vitro, regarding their 
ability to inhibit the phytopathogenic fungus 
F. moniliforme, according to the methodology 
described by El-Sayed et al. (2014), with 
modifications. The microorganisms were initially 
cultured in TSA broth at 30 °C for 48 hours. 
Subsequentyl, they were inoculated into two 
parallel striae, 1.5 cm distant from the plate border, 
in potato dextrose agar. A 5 mm diameter disc 
with fungus growth was placed in the center of the 
plate, previously cultured for 7 days at 30 °C in 
potato dextrose agar. After 7 days, the ability of 
the isolates to inhibit fungal growth was evaluated 
by measuring the distance between the bacterial 
colony and the fungal colony. A plaque without the 
bacterial inoculum was used as a negative control.

STATISTICAL ANALYSES

The data obtained from the in vitro tests were 
submitted to an analysis of variance (ANOVA) and 
means were compared applying the Scott-Knott test 
at a 5.0% significance using the Sisvar software, 
version 5.6 (Ferreira 2011). When necessary, data 
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that did not present homogeneous variances or 
normal distribution were log corrected.

RESULTS

MICROORGANISM ISOLATION AND 
IDENTIFICATION 

Eighty-one sugarcane rhizosphere bacteria were 
isolated from sugarcane under organic management 
in nitrogen-free culture media. For the purposes of 
isolate nomenclature, the first letter corresponds to 
the isolation medium (B = Burk and N = NFB), the 
second, to the sugarcane variety (C = CTC4 and U 
= IAC 911099), and the numbers refers  to farm and 
striking order, respectively (Table I). Regarding 
origin, 57.3% of the bacteria were isolated from 
the CTC4 variety and 42.7% from the IAC 911099 
variety. The nifH gene was amplified in 45.6% of 
the isolates. All bacteria whose nifH gene could 
be amplified produced more than one mechanism 
to promote plant growth, characterizing them 
as rhizobacteria carrying multiple plant growth 
promoting factors. 

The 37 diazotrophic microorganisms identified 
by the partial sequencing of the 16S rRNA gene 
were distributed throughout 13 genera (Table I). 
The size of the obtained fragments varied from 473 
to 1467 base pairs, with similarity between 97 and 
99% (Table I).

The most common genera detected were 
Burkholderia, Bacillus and Rhizobium, with 15, 6 
and 3 isolates, respectively. In addition, bacteria 
belonging to the Cupriavidus (n=2), Dyella (n=1), 
Enterobacter (n=2), Erwinia (n=1), Flavobacterium 
(n=1), Methylobacterium (n=1), Mitsuaria (n=1), 
Sphingobium (n=2), Sphingomonas (n=1) and 
Variovorax (n=1) genera were also detected.  The 
classification of isolates NC92, BC26, NU45, 
NU92, NU32, BU97, BU32, BU92, NC93, BC91 
and BU24 occurred at the species level, supported 
by 99% similarity values (Table I).

All microorganisms belonging to the Bacillus 
genus were isolated from the CTC4 variety 
and found in most of the investigated sugarcane 
processing farms. The Burkholderia genus, 
however, was most frequently associated with 
IAC 911099 variety (Table I). The microorganism 
Sphingobium yanoikuyae (BU32 and BU92) was 
isolated from different locations and in the same 
sugarcane variety, while Rhizobium tropici (BC91 
and BU24) was isolated from different localities 
and varieties (Table I).

In vitro SCREENING FOR PLANT GROWTH 
PROMOTING TRAITS 

IAA production was observed in 46% of the 
evaluated diazotrophic isolates. The produced IAA 
concentrations ranged from 0.5 to 36.15 μg mL-1 
in 24 hours, from 0.5 to 59.48 μg mL-1 in 48 hours 
and 0.23 to 87.07 μg mL-1 in 72 hours (Table II). 
At 72 hours, most isolates produced over 20 μg 
mL-1 IAA. The highest IAA value was produced 
by Sphingobium yanoikuyae (BU32), followed by 
microorganisms belonging to the Sphingobium 
(BU92), Sphingomonas (BC44), Enterobacter 
(NC25 and NU33) and Rhizobium (NC24) genera.

The ability to solubilize phosphate was 
observed in 86.5% of the evaluated isolates, 
ranging from 1.82 to 53.78 μg mL-1 (Table II). 
Microorganisms belonging to the Burkholderia 
genus were noteworthy regarding phosphate 
solubilization, solubilizing 53.78 μg mL-1 (NC97), 
50.08 μg mL-1 (NU93), 50.03 μg mL-1 (BU95), 
45.82 μg mL-1 (NU92) and 44.8 μg mL-1 (BC43). It 
is importante to note that Sphingobium yanoikuyae 
(BU32), Rhizobium sp. (NC24), Enterobacter sp. 
(NC25) and Enterobacter sp. (NU33) as well as 
being the best IAA producers, were also efficient 
regarding phosphate solubilization (Table II).

Ammonia production was detected in 81% 
of the isolates, being the second most common 
plant growth promotion factor, after phosphate 
solubilization. In addition to nitrogen fixation 
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TABLE I 
Rhizobacteria isolated from sugarcane under organic management identification based on comparisons with 16S rRNA 

region sequences deposited at the GenBank database.

Isolate 
identification* Fragment size Nearest species Similarity

Accession number 
of the nearest 

species
Deposit number

BC211 1171 Burkholderia sp.  97% NR_026462.1 MG459286
BC23 961 Bacillus aryabhattai  99% NR_115953.1 MG459285
BC26 473 Bacillus megaterium  99% NR_117473.1 MG459284
BC27 1443 Bacillus sp. 97% NR_116873.1 MG459283
BC28 1071 Bacillus sp. 98% NR_148626.1 MG459282
BC42 1255 Cupriavidus sp. 98% NR_113619.1 MG459281
BC43 1246 Burkholderia sp.  98% NR_041720.1 MG459280
BC44 522 Sphingomonas sp.  99% NR_113637.1 MG459279
BC91 1183 Rhizobium tropici 99% NR_102511.1 MG459278
BC93 723 Burkholderia sp.  97% NR_102890.1 MG459277
BC95 1241 Burkholderia sp.  99% NR_042632.1 MG459276
BU23 1239 Burkholderia sp.  98% NR_126274.1 MG459275
BU24 1170 Rhizobium tropici 99% NR_102511.1 MG459274
BU32 777 Sphingobium yanoikuyae 99% NR_113730.1 MG429815
BU92 1197 Sphingobium yanoikuyae 99% NR_113730.1 MG459272
BU95 1229 Burkholderia sp.  99% NR_136496.1 MG459271
BU96 1266 Dyella sp. 97% NR_043258.1 MG459270
BU97 1258 Burkholderia vietnamiensis 99% KF114029.1 MG459269
BU98 1138 Burkholderia sp.  97% NR_114491.1 MG459268
NC24 724 Rhizobium sp. 97% FN645738.1 MG459267
NC25 1233 Enterobacter sp. 97% NR_146667.2 MG459266
NC26 1467 Flavobacterium sp.  97% NR_134727.1 MG459265
NC27 1168 Bacillus sp. 97% NR_118442.1 MG459472
NC29 1118 Cupriavidus sp.  97% NR_113619.1 MG459264
NC43 535 Erwinia sp. 97% NR_074869.1 MG459263
NC49 1253 Methylobacterium sp. 99% NR_074244.1 MG459262
NC92 631 Bacillus megaterium 99% NR_117473.1 MG429816
NC93 1090 Variovorax soli 99% NR_043811.1 MG459261
NC97 755 Burkholderia sp.  99% NR_104975.1 MG429817
NU21 1406 Burkholderia sp.  99% NR_113645.1 MG459260
NU31 1082 Burkholderia sp.  99% NR_114491.1 MG459259
NU32 770 Burkholderia gladioli 99% NR_113629.1 MG429818
NU33 1376 Enterobacter sp. 99% KF010362.1 MG459258
NU41 769 Mitsuaria sp. 98% NR_114070.1 MG429819
NU45 1279 Burkholderia ambifaria 99% NR_074687.1 MG459257
NU92 1197 Burkholderia cepacia  99% NR_114491.1 MG459256
NU93 1339 Burkholderia sp.  99% NR_114491.1 MG459255

* Regarding isolate nomenclature: N/B corresponds to the isolation medium (NFB and Burk) and C/U correspond to the variety (C 
= CTC4 and U = IAC1099).
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capacity, ammonia production was the only 
plant growth promoter observed for isolates 
Methylobacterium sp. (NC49), Mitsuaria sp. 
(NU41) and Variovorax soli (NC93). HCN 
production was not observed in any of the isolates.

Cellulase producers accounted for 19% of the 
isolates, with enzymatic indices ranging from 1.5 
and 3.41. Most of the cellulase-producing isolates 
belonged to the Bacillus genus (BC23, BC26, 
BC27, BC28 and NC27), but representatives of the 
Flavobacterium (NC26) and Sphingobium (BU32) 
genera were also proven as enzyme producers 
(Table II). Only Dyella sp. (BU96) was chitinase-
producing, with an enzyme index of 2.8 (Table II).

The ability to inhibit the pathogenic fungus 
F. moniliforme was observed for 21.7% of the 
isolates. All isolates displaying antagonism to the 
pathogenic fungus belonged to the Burkholderia 
genus. Isolates NC97, BU95, NU21, NU31 and 
NU45 exhibited the greatest distances between 
the fungal and bacterial colonies (Table II). It 
is noteworthy that not all microorganisms that 
presented fungus antagonism were indirect plant 
growth mechanisms producers (ammonia, HCN, 
cellulases and chitinases), responsible for pathogen 
attacks.

DISCUSSION

In the present study, 81 microorganisms from 
sugarcane under organic management were isolated 
using NFb and Burk nitrogen-free semi-solid 
media. The bacteria were isolated based on their 
morphological diversity, which takes into account 
characteristics such as color, contour and elevation 
wich allows to classify the bacteria differentially 
(Di Franco et al. 2002). This strategy was used to 
capture the largest number of isolates belonging to 
different species and to maximize resources. On 
the other hand, when discarding morphologically 
equivalent microorganisms, some species may 
have been underestimated, since there is no genetic 

evidence that two similar colonies are of the same 
species (Lebaron et al. 1998).	

Although the NFb medium facilitates the 
isolation of bacteria belonging to the Azospirillum 
genus (Kuss et al. 2007), several studies using this 
medium have described the isolation of other genera, 
such as Gluconacetobacter, Herbaspirillum, 
Burkholderia, Bacillus, Enterobacter, Klebsiella, 
Pantoea and Pseudomonas (Ambrosini et al. 2012, 
Tam and Diep 2015). On the other hand, Burk’s 
medium is not specific, being associated to a 
range of fixing species (Park et al. 2005). Semi-
solid nitrogen free media are considered ideal for 
diazotrophic bacteria isolation and screening. The 
reduced agar concentration determines an ideal 
microaerophilic condition for nitrogenase action, 
reduced in high oxygen concentrations (Baldani et 
al. 2014).

The isolation and application of diazotrophic 
bacteria in crops under organic regimes is extremely 
interesting from an agricultural point of view, since 
the great limitation of organic crops is precisely 
the available nitrogen supply. Diazotrophic 
microorganisms could be applied as substitutes 
to synthetic fertilizers (Wongphatcharachai et al. 
2015) or in association with animal and vegetable 
manure, usually used as nitrogen sources in organic 
crops (Hirel et al. 2011).

The nifH gene, being conserved throughout 
species, is often used as molecular marker for the 
screening of nitrogen-fixing bacteria (Raymond et 
al. 2004, Gaby and Buckley 2012) and was amplified 
in 45.6% of the isolates detected in this study. The 
fact that the nifH gene has not been amplified, 
however, does not mean that the microorganism is 
not fixative. The sequence of the main widely used 
primers, mostly constituted by degenerate bases, 
are designed to flank the same region or overlapping 
sites, restricting their reach (Poly et al. 2001, Zehr 
et al. 2003). In addition, not all organisms exhibit 
iron-molybdenum nitrogenase (nif), since other 
nitrogenases also exist, differentiated by the metal 
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TABLE II
 In vitro production of plant growth promoting traits by diazotrophic bacteria isolated from sugarcane under organic management1.
Isolate IAA (µg mL-1)

Phosphate (µg mL-1) Amo Cel2 Chit2 Ant3

24h 48h 72h
BC211 0 0 0 26.29g + - - -
BC23 0 0 0 18.11f + 2.71a - -
BC26 0 0 0 13.36e - 3.41a - -
BC27 0 0 0 12.59e + 2.20a - -
BC28 0 0 0 3.32b + 2.00a - -
BC42 0 0 0 1.82a + - - -
BC43 0 0 1.19b 44.81i + - - -
BC44 0 27.46f 48.65h 0 + - - -
BC91 0 0 9.85e 10.20d - - - -
BC93 0 0 0 26.57g - - - -
BC95 4.49c 16.25e 14.04f 29.12g + - - -
BU23 0 0 0 27.67g + - - -
BU24 2.47b 3.25b 6.06d 6.66c + - - -
BU32 36.15e 43.22g 87.07h 34.29h - 3.00a - -
BU92 25.84e 59.48g 63.68h 0 + - - -
BU95 0 0 0 50.03i + - - 6a
BU96 0 0 0 9.64d + - 2.8a -
BU97 0 0 4.15c 10.57d + - - 3b
BU98 0 11.55d 30.23g 26.98g + - - -
NC24 23.59e 48.73g 64.52h 33.23h + - - -
NC25 22.81e 50.52g 80.42h 38.56h + - - -
NC26 0 0 0 16.14f + 1.50a - -
NC27 0 0 0 24.96g - 2.60a - -
NC29 0 0 0 15.64f + - - -
NC43 0 0 23.29g 35.32h + - - -
NC49 0 0 0 0 + - - -
NC92 0 0 0 6.54c + - - -
NC93 0 0 0 0 + - - -
NC97 0.5a 0.5a 3.37c 53.78i - - - 7a
NU21 0 0 0 38.89h + - - 5a
NU31 0 0 0.23a 32.98h + - - 5a
NU32 0 0 0 15.09f - - - -
NU33 28.49e 37.85f 77.41h 34.37h + - - -
NU41 0 0 0 0 + - - -
NU45 0 2.25b 2.9c 15.45f + - - 4a
NU92 8.92d 9.29d 9.63e 45.82i + - - 3b
NU93 0 0 0 50.08i + - - 2c

IAA= production of 3-indole-acetic acid; Phosphate = phosphate solubilization; Amo = Ammonia; Cel = Cellulase; Chit = Chitinase; 
Ant = antagonism. 1. Means followed by the same letters do not differ statistically by Scott-Knott’s test at a 5% probability. 2. The 
expressed values correspond to the enzymatic index, obtained by dividing the diameter of the halo by that of the colony. The “-” 
label indicates bacterial growth without halo formation and label “+” indicates a positive test. 3. The values presented correspond to 
the distance between the fungal and bacterial colony. The label “-” indicates that the bacterium was not antagonistic to the fungus.
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contained in their structures, such as iron-vanadium 
nitrogenase (Vnf) or iron nitrogenase (Anf) (Dahal 
et al. 2017).

Other microorganisms are capable of growing 
in nitrogen-free media and are not fixers. It 
has been suggested that these organisms may 
incorporate ammonia or other nitrogen species at 
very low concentrations, or that they are capable 
of using fractions fixed by other organisms 
(Beneduzi et al. 2013, MacKellar et al. 2016). In 
addition, we emphasize that the amplification of 
the nifH gene has a confirmatory character, but 
cannot quantify the amount of fixed nitrogen, and 
the use of techniques such as acetylene reduction 
(ARA) and the incorporation of the15N2 isotope is 
recommended (Gtari et al. 2012).

The genus most detected in this study, 
Burkholderia, is widely distributed in nature and 
is often found associated with sugarcane under 
traditional management (Luvizotto et al. 2010, 
Castro-Gonzalez et al. 2011). From the point of 
view of organic agriculture, the Burkholderiaceae 
family and nifH genes have been reported as being 
more abundant in agricultural soils abundant in 
swine manure (Xun et al. 2018). In addition to their 
ability to fix nitrogen, it is also suggested that plant 
growth promotion performed by these organisms is 
associated with the production of IAA, phosphate 
solubilization and in vitro pathogen inhibition 
(Paungfoo-Lonhienne et al. 2014).  

The genus Bacillus, the second most detected 
in the present study, has also been described 
in association with sugarcane under traditional 
management and presents potential regarding 
the production of enzymes of agronomic interest 
(Beneduzi et al. 2008, Madhaiyan et al. 2011, Pisa et 
al. 2011). The other genera found herein have been 
mostly associated with sugarcane under traditional 
management or cultivated soils (Nicolaisen et al. 
2008, Burbano et al. 2011, Anand et al. 2012, Bers 
et al. 2012, Santi Ferrara et al. 2012, Fischer et al. 

2012, Lin et al. 2012, Hoang et al. 2015, Solanki et 
al. 2017).

The presence of Bacillus and Burkoholderia 
as more predominant groups was also observed by 
Xia et al. (2015), when evaluating the taxonomic 
distribution of maize, melon, pepper and tomato 
bacteria in organic systems. Oliveira (2009) using 
selective media for nitrogen fixers, including NFb, 
observed a range of microorganisms associated with 
sugarcane plantations under organic management in 
São Paulo, Brazil, with emphasis on Enterobacter, 
Klebsiella, Pseudomonas, Burkholderia and 
Beijerinckia species. Those authors also 
detected other species, such as Agrobacterium, 
Azozpirillum, Bosea, Bradyrhizobium, Brucella, 
Cohnella, Erwinia, Gluconacetobacter, Rhizobium, 
Stenotrophomonas, Variovorax and Xanthomonas.

The similarities and divergences of this 
study in relation to the study conducted by 
Oliveira (2009) reinforce the idea that, even if 
Enterobacter, Burkholderia and Rhizobium species 
are ubiquitous, factors such as plant age, variety, 
root exudates, management and soil chemical and 
physical attributes can influence the community 
distribution and species (Beneduzi et al. 2008, 
2013, Santi Ferrara et al. 2012, Noumavo et al. 
2016). Therefore, for each evaluated region, 
distinct distribution patterns of diazotrophic 
microorganisms are observed, which is interesting 
regarding PGPR prospecting.

Less than half of the evaluated isolates 
produced IAA, and a broad taxonomic variety was 
observed among the best producers. In addition, 
some individuals belonging to the same genus 
produced distinct IAA values and were classified 
into different groups, according to Scot-Knott’s 
test at a 5.0% probability. Enterobacter sp. NC25 
and NU33 strains produced 80.42 and 77.41 mg 
mL-1, respectively, similar to the strains reported 
by Rodrigues et al. (2016) when evaluating 
Enterobacter sp. rhizospheres from traditionally 
managed sugarcane.
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Although IAA production is commonly found 
among rhizobacteria (Sagar et al. 2017), different 
types of fertilizers impact on the number of bacteria 
in the soil and the diversity of bacteria producing this 
compound. In systems where, chemical fertilizers 
are withdrawn or where organic fertilizers are 
applied, the number and diversity of IAA-producing 
bacteria increases. The use of organic fertilizers 
improves the structure of the microbial community, 
in addition to selecting beneficial microorganisms 
(Yuan et al. 2011, Duangpaeng et al. 2012).

In addition to being the most active auxin, it is 
believed that IAA is physiologically active even at 
low concentrations, so even organisms that produce 
small IAA fractions may be able to contribute to 
plant health (Hayat et al. 2010, Vejan et al. 2016). 
IAA production leads to increased lateral roots, in 
addition to increasing root surface area and size, 
leading to increased water and nutrient supplies to 
plants (Brandl and Lindow 1998, Vessey 2003).

The ability to solubilize phosphate was the 
most common feature of the diazotrophic bacteria 
evaluated herein, with emphasis on bacteria 
belonging to the Burkholderia genus. In the 
case of sugarcane rizobacteria under traditional 
management, Inui-Kushi et al. (2012) verified that 
Burkholderia bacteria displayed with the highest 
phosphate solubilization index among 10 different 
bacteria belonging to the same genus.

Although not a mandatory feature of the 
Burkholderia genus, several species belonging 
to this genus have been associated with varying 
phosphate solubilization and rhizosphere acidity 
levels (Castro-Gonzalez et al. 2011). When 
studying the impact of organic management on 
the diversity of pepper phosphate-solubilizing 
bacteria (Capsicum frutescens L. cv. Hua Rua), 
Surapat et al. (2013) observed that most of their 
phosphate-solubilizing isolates were recovered 
from organic systems, and thet most belonged to 
the Burkholderia genus.

The most well-known phosphate solubilization 
mechanism involves medium acidification. Plants 
display the ability to acidify the rhizosphere, 
leading to phosphate solubilization, although this 
capacity is quite limited (Hamdali et al. 2008). It 
is suggested that even the phosphate solubilized 
in small amounts by bacteria still corresponds to 
a large part of the soluble phosphate available to 
plants, especially in organic crops, that are largely 
dependent on the natural soil microbiota and 
that display high amounts of organic phosphates 
(Pariona-Llanos et al. 2010).  

Ammonia production is quite common among 
rhizobacteria, as observed in this study and in 
studies conducted by Joseph et al. (2007) and 
Gayathri et al. (2010).  HCN production is rare, 
a fact corroborated by Kavamura et al. (2013) 
when evaluating bacteria obtained from cacti. 
Ammonia and HCN are volatile compounds that 
act as biocontrol agents. In addition to acting as 
pathogen responses, it is believed that ammonia 
can be used as a source of nitrogen supplementation 
by the host plant (Joseph et al. 2007, Marques et 
al. 2010, Passari et al. 2015). A study conducted 
by Marques et al. (2010) observed that ammonia 
production was positively correlated to nitrogen 
and phosphorus accumulation, root and stem 
elongation and biomass increases in maize.

The present study observed that most cellulase-
producing isolates belonged to the Bacillus genus, 
similarly to the results reported by Zhao et al. (2015). 
Cellulase-producing microorganisms belonging to the 
Bacillus genus are widely distributed in the sugarcane 
rhizosphere. They are believed to participate in the 
degradation of cellulolytic debris originating from 
the plant itself and, consequently, in element cycling 
(Ratón et al. 2012). In addition to potential for pathogen 
inhibition, cellulase production in rhizobacteria plays 
an important role in the penetration of these organisms 
into the host plant during colonization (Pariona-
Llanos et al. 2010).
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The BU96 isolate from the Dyella genus 
isolated herein was the only isolate able to degrade 
chitin. Microorganisms belonging to this genus 
have been isolated from soil and described as chitin-
degrading agents (Lee and Lee 2009). Although the 
presence of chitinolytic bacteria is ubiquitous, it 
is estimated that only 1% of rhizobacteria isolated 
from wheat, rice and maize present chitinolytic 
potential (Someya et al. 2011), which reinforces 
the low number of chitinolytics found in this study. 
The lytic enzymes cellulases and chitinases were 
selected for this screening since they are considered 
limiting factors for the growth of pathogenic 
fungi, as their lytic action is capable of causing 
degradation of the structural matrix of the fungal 
cell wall (El-Sayed et al. 2014). 

Sugarcane is attacked by several pathogens 
such as viruses, bacteria, nematodes, insects 
and fungi. These organisms cause a number of 
productivity losses (Zhang et al. 2015). Among 
the main fungi species that attack sugarcane is F. 
moniliforme, which causes changes in leaf and 
stem morphology in non-pest-tolerant varieties 
(Lin et al. 2014, 2015). In this sense, rhizobacteria 
have been reported as biocontrol agents against 
pathogenic F. moniliforme strains (Hebbar et al. 
1992, Figueroa-López et al. 2016). 

Bacteria belonging to the Burkholderia genus 
are noteworthy with regard to the inhibition of 
the F. moniliforme pathogen. Several bacteria 
belonging to this genus isolated from different 
environments, such as tomato (Omar et al. 2006), 
barley (Simonetti et al. 2018) and soil in the 
Amazon region (Silva et al. 2012), are also capable 
of inhibiting the growth of phytopathogenic 
Fusarium strains. Some microorganisms belonging 
to this genus are believed to produce the antibiotic 
pyrrolnitrine, which is a fungus respiratory chain 
inhibitor (Parke and Gurian-Sherman 2001). 

In vitro antagonistic test is important for the 
detection of potential biocontrol agents, especially 
in the presence of numerous isolates. However, 

theres is no guarantees that microorganisms 
producing antifungal substances in vitro will 
produce the same effects when inoculated in plants 
(Knudsen et al. 1997). In this sense, Shehata et 
al. (2016), simultaneously evaluated, in vitro and 
in vivo, the antifungal activity of 190 endophytic 
bacteria against the pathogen Sclerotinia 
homoeocarpa. These authors observed that out of 5 
positive microorganisms in the in vitro tests, only 3 
had in vivo activity. To produce antagonistic effects 
in vivo, microorganisms must be able to properly 
colonize the plant, settle in the plant tissue affected 
by the pathogen and survive the competition with 
the host’s natural microbiota (Pliego et al. 2011, 
Deketelaere et al. 2017).

It is recommended that the inoculant candidate 
presents the highest number of in vitro plant growth 
promoting traits, since this would lead to a higher 
probability of survival in the field, due to their 
ability to use several substrates (Rana et al. 2011). 
In this sense, the isolates: Sphingobium yanoikuyae 
(BU32), Rhizobium sp. (NC24), Enterobacter 
sp. (NC25) and Enterobacter sp. (NU33) are 
noteworthy in this study due to their ability to 
produce IAA, as well as the ability to solubilize 
phosphate, and microorganisms belonging to the 
Burkholderia genus, namely NC97, BU95, NU31, 
NU21 and NU92, due to their simultaneous ability 
to solubilize phosphate and promote biocontrol. 
In addition, it is suggested that these bacteria can 
be applied in mixed form in greenhouse and field 
evaluations in subsequent studies. 
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