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ABSTRACT
In this present research, we assessed the performance of band algorithms in estimating chlorophyll-a 
(Chl-a) concentration based on bands of two new sensors: Operational Land Imager onboard Landsat-8 
satellite (OLI/Landsat-8), and MultiSpectral Instrument onboard Sentinel-2A (MSI/Sentinel-2A). Band 
combinations designed for Thematic Mapper onboard Landsat-5 satellite (TM/Landsat-5) and MEdium 
Resolution Imaging Spectrometer onboard Envisat platform (MERIS/Envisat) were adapted for OLI/
Landsat-8 and MSI/Sentinel-2A bands. Algorithms were calibrated using in situ measurements collected 
in three field campaigns carried out in different seasons.  The study area was the Barra Bonita hydroelectric 
reservoir (BBHR), a highly productive aquatic system. With exception of the three-band algorithm, the 
algorithms were spectrally few affected by sensors changes. On the other hands, algorithm performance 
has been hampered by the bio-optical difference in the reservoir sections, drought in 2014 and pigment 
packaging.
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INTRODUCTION

Retrieving the concentration of optically significant 
constituents (OSCs) is a challenge for the remote 
sensing of water color. Band algorithms have been 
widely used due to simple implementation and 
calibration based on statistical regression between 
reflectance data and water quality parameters of 

interest. Several band combinations were designed 
using different band quantities and structure (Carder 
et al. 1999, Dall’Olmo et al. 2005, Le et al. 2009, 
Mishra and Mishra 2010, 2012). These algorithms 
are better suited to environmental monitoring by 
satellite, which needs quick results for decision-
making, therefore the empirical approaches can 
be quickly and easily implemented. However, the 
empirical approach has the disadvantage of being 
limited to a geographic location and a seasonal 
regime (Moses et al. 2012). Despite of that, the 
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band combination may be appropriate for other 
aquatic systems, being need only calibration.

Initially, the algorithms for estimating 
chlorophyll-a (Chl-a) were originally developed 
for marine waters using bands at the blue and 
green regions of the electromagnetic spectrum 
(Aiken et al. 1995, Clark, 1997, Carder et al. 1999). 
However, in inland waters those algorithms are 
inappropriate due to the high colored dissolved 
organic matter (CDOM), which absorbs strongly 
in the blue region, masking the Chl-a absorption 
(Carder et al. 1999, Mannino et al. 2008). 
Additionally, atmospheric influence is higher at 
shorter wavelengths (ultraviolet and blue region) 
(Gordon et al. 1988, Siegel et al. 2000), hampering 
the performance of models using blue band 
(Mannino et al. 2008). Inland waters such as lakes 
and reservoirs undergo with high eutrophication 
level and toxic phytoplankton bloom (Tundisi et al. 
2008, Dantas et al. 2011, Oliveira et al. 2014).

Most of algorithms were designed for specific 
sensors such as MERIS, Moderate Resolution 
Imaging Spetroradiometer (MODIS), Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS) and sensors 
of Landsat mission. Considering the smaller 
dimension of freshwater bodies such as rivers and 
reservoirs, MERIS and Landsat sensors were the 
most suitable, due to their higher spatial resolution. 
However, MERIS sensor stopped transmitting 
data in 2011 and, in the next year, Thematic 
Mapper from Landsat-5 (TM/Landsat-5) became 
non-operational. There was a lack of images for 
inland water applications until the launch of the 
Operational Land Imager (OLI) sensor onboard 
Landsat-8 satellite in February 2014 (NASA, 
https://www.nasa.gov/). In turn, the MultiSpectral 
Instrument (MSI) onboard Sentinel-2A satellite was 
launched in June 2015 (ESA, http://www.esa.int/
ESA). Now with availability of both sensors data, 
several researches have been conducted in order 
to extract information for water color applications 
such as optical properties and OSCs (Watanabe et 

al. 2015). In this context, the goal of this research 
was to evaluate the performance of OLI/Landsat-8 
and MSI/Sentinel-2A sensors-based empirical 
algorithms in estimating Chl-a concentration in a 
tropical productive reservoir. The spectral indexes 
tested were based on those designed for TM/
Landsat-5 and MERIS/Envisat images in order to 
retrieve Chl-a in productive waters. Due to some 
changes in the band setting of the sensors, small 
adaptations were conducted in the spectral indexes, 
for instance, the MSI/Sentinel-2A band centered at 
709 nm was replaced for 705 nm.

MATERIALS AND METHODS

STUDY AREA AND FIELD SURVEY

The Barra Bonita hydroelectric reservoir (BBHR) 
(22º31’10”S and 48º32’3”W) is located in the 
middle course of the Tietê River, in São Paulo 
State, Brazil (Figure 1). The flooded area is of 310 
km2, with volume of approximately 3.622 x 106 m3 
whereas the quota ranges from 439.5 m to 451.5 
m (AES Tietê, http://www.aestiete.com.br/). The 
average depth is 10.2 m with a maximum of 25 m 
(Tundisi et al. 2008). The flow varies from 200 m3 
s-1 in the dry season (austral winter) to 1,500 m3 
s-1 in the rainfall season (austral summer), while 
the retention time ranges from 30 days (austral 
summer) to 180 days (austral winter) (Matsumura-
Tundisi and Tundisi 2005). The BBHR is the first 
dam of six reservoirs cascading in the Tietê River. 
The BBHR presents a high eutrophication level due 
to the wastewater discharge coming from the São 
Paulo metropolitan area. The region is characterized 
by a wet period between November and April and 
drought from May to October (Matsumura-Tundisi 
and Tundisi 2005).

Three field campaigns were conducted in the 
BBHR: two field surveys for collecting calibration 
dataset and one for validation dataset. Radiometric 
measures and water samples were acquired to 
estimate concentrations of Chl-a as well as total, 
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organic and inorganic suspended solids (TSS, ISS 
and OSS, respectively). Approximately 5 liters of 
water samples were collected at each sampling 
point. The samples were stored in sterile plastic 
bottles, and kept cold and in dark environment until 
filtration. Measurements of turbidity and Secchi 
disk depth (SDD) were also collected. The first 
calibration field campaign was conducted on May 
5 – 9, 2014 (austral autumn), while the second 
was carried out on October 13 – 16, 2014 (austral 
spring). The validation field survey was carried out 
on September 13 – 15, 2015 (austral winter). These 
dates were selected to match periods of low rainfall 
and Landsat-8 satellite overpass.

REMOTE SENSING REFLECTANCE

The remote sensing reflectance, Rrs (in sr-1), was 
derived from radiometric data measured above the 
surface and calculated using Equation 1 proposed 
by Mobley (1999).
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where Lt (W·m-2·sr-1) is the total radiance, i.e., the 
sum of water-leaving spectral radiance (Lw, in W·m-

2·sr-1) and reflected radiance from the water surface 
in the direction of the sensor (Lr, in W·m-2·sr-1); the 
influence of Lr is corrected from the incident sky 
radiance (Lsky, in W·m-2·sr-1); surface reflectance 
factor (ρ = 0.028) (Mobley 1999) and Es (W·m-2) is 
the irradiance incident onto water surface.

Three RAMSES spectroradiometers (TriOS, 
Rastede, Germany) were used to measure the 
radiometric quantities required for the calculation 
of the Rrs. Es was measured using a cosine collector, 
ACC-VIS RAMSES sensor, whereas Lt and Lsky 
were measured using two ARC-VIS RAMSES 
sensors, with a 7º FOV in air. The ACC-VIS and 
ARC-VIS work in a range of 320 to 950 nm with a 
spectral sampling and accuracy of 3.3 nm and 0.3 
nm, respectively. The operational temperature range 

Figure 1 - Study area. (a) Location of São Paulo State in Brazil. (b) Position of the Piracicaba and Tietê rivers in hydrographical 
network in São Paulo State. (c) Barra Bonita hydroelectric reservoir (BBHR) and distribution of the sampling stations along the 
reservoir.
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is between -10 ºC and +50 ºC with water resistance 
of 300 m. Radiometric data were collected using 
geometric acquisition proposed by Mobley (1999) 
and Mueller (2003). The cosine collector was 
pointed in an upward direction for collecting the 
incident spectral irradiance, Es(λ). The sensor was 
coupled to a structure of approximately 1.5 m to 
avoid shadows. One of the ARC-VIS sensors was 
pointed in an upward direction of 45º in relation 
to the zenith to measure the incident sky radiance, 
Lsky(λ). Another radiance sensor was pointed in 
a downward direction of 45º in relation to nadir 
position to measure the surface radiance, Lt(λ). 
All the sensors collected the measurements 
simultaneously.

CONCENTRATIONS OF OSCS

The collected water samples were filtered through 
a Whatman GF/F glass fiber filter, with 0.7 μm 
size pore and 47 mm diameter, to estimate Chl-a 
and particulate material concentration. A vacuum 
pressure pump and a filter holder were used in the 
filtration. Due to the high concentration of solids 
in the BBHR, a very small volume (250 mL) was 
filtered at each filtration. Filters with retained 
material were stored, frozen and in the dark, until 
analysis. Extraction by the acetone method was used 
to estimate Chl-a concentration (Golterman 1975). 
Chl-a was extracted using 90% acetone solution. 
Sample absorbance was measured at wavelengths 
of 663 nm and 750 nm using a spectrophotometer 
and a cuvette with 1 cm path length. The samples 
were afterwards acidified using a 0.1 N hydrochloric 
acid (HCl) solution to correct the interference of 
phaeophytin. Meanwhile, concentrations of TSS, 
OSS, and ISS were estimated using the 2540 Solids 
method proposed by APHA (1998, p. 2-54). 

CALIBRATION OF EMPIRICAL MODELS

Existing models were fitted taking into account 
OLI/Landsat-8 and MSI/Sentinel-2A bands. Bands 

of those sensors were simulated from in situ data 
and used to calibrate and validate models for Chl-a 
estimation. The simulation of bands was carried 
out from in situ Rrs measurements and the spectral 
response function of each sensor (Barsi et al. 2014, 
ESA 2015), using Equation 2 (Van der Meer 1999).
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where, Sk(λ) is the radiometric sensitivity of band 
k, whose band width is from wavelength λ1k to λ2k 
(λ1k < λ2k).

Simulated bands were used to test empirical 
models proposed by different authors to estimate the 
Chl-a concentration in BBHR. Empirical models 
were calibrated from spectral indexes proposed by 
different authors. Different band combinations were 
tested using two and three bands. Two-band (2B) 
and three-band (3B) models (Equation 3 and 4), 
originally developed to estimate Chl-a in terrestrial 
vegetation (Gitelson et al. 2003) and later adapted 
by authors for Chl-a algal in aquatic systems. In 
both models, the first band position λ1 must be 
maximally sensitive to absorption by Chl-a (aφ). 
To minimize the absorption effects of other OSCs, 
a second spectral band λ2 is used, which must be 
minimally sensitive to aφ, and present absorption 
by non-algal particles and CDOM, (aNAP and aCDOM, 
respectively), similar to the finding at λ1. 2B is still 
affected by backscattering (bb), which can produce 
different Chl-a estimates for locations with equal 
concentration. A third band, λ3, can be used in order 
to minimize the bb influence, where absorption 
must be associated only with pure water (Gitelson 
et al. 2008).

( ) ( )1
1 22 rs rsB R Rλ λ− = ×   (3)

( ) ( ) ( )1 1
1 2 33 rs rs rsB R R Rλ λ λ− − = − ×   (4)
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The slope model (Equation 5), developed by 
Mishra and Mishra (2010) for turbid waters based 
on the red and green bands of the MODIS sensor, 
was also tested. The Slope index represents the 
variation rate of reflectance from Rrs(λ2) to Rrs(λ1) in 
relation to the wavelengths λ2 to λ1. The wavelength 
λ1 is associated with minimum absorption by Chl-a, 
while λ2 is related to maximum absorption.
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Finally, the Normalized Difference Chlorophyll 
Index (NDCI) developed by Mishra and Mishra 
(2012), based on MERIS bands for applications 
in estuarine and coastal turbid productive waters 
(Equation 6), was tested. Similar to the Normalized 
Difference Vegetation Index (NDVI), the first band 
position λ1 is associated with maximally sensitive 
Chl-a in the red spectral region, while the second 
position λ2 meets the band of minimally sensitive 
Chl-a in NIR region, in this case at 709 nm.
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In OLI models, green (560 nm) and red bands 
(655 nm) were used as λ1 and λ2, respectively 
(Mishra and Mishra 2010, 2012), whilst MSI 
models, bands in red (665 nm), red-edge (705 
nm) and NIR (740 nm) were used as λ1, λ2 and λ3, 
respectively (Gitelson et al. 2008). All the models 
were calibrated using the least square method, 
testing linear and polynomial (second degree) 
adjustments. A prediction interval was taken 
into account, with a confidence level of 0.95, to 
calibrate the models. Samples positioned out of the 
prediction interval were considered as outliers and 
removed from the models.

CHL-A MAPPING

The fieldworks were carried out to coincide with 
OLI/Landsat-8 images in order to map the Chl-a 
using a model calibrated for the bands of the OLI 

sensor. However, a unique OLI/Landsat-8 image 
was acquired on October 13th, 2014 in suitable 
conditions (without clouds). Before algorithm 
application, two products were tested: Landsat 
8 Surface Reflectance (L8SR) (USGS, http://
landsat.usgs.gov/CDR_LSR.php) and at-surface 
reflectance (Rsup) computed by Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes) 
(Adler-Golden et al. 1998). Both L8SR and Rsup 
were converted into Rrs dividing them by π. To 
choose the most appropriate product an optical 
closure was conducted to check the matching 
between simulated Rrs from in situ dataset and 
L8SR product. Studies have shown high quality 
estimative in aquatic systems using L8SR product 
(Pahlevan et al. 2017, Bernardo et al. 2017). The 
comparison was carried out from five measurements 
collected precisely on the day of satellite overpass. 
Finally, the best models calibrated for OLI bands 
were applied to the corrected image.

VALIDATION

A 24-sample dataset collected on September 13-15, 
2015 was used to validate the empirical models. 
The statistical metrics used were: Root Mean 
Square Error (RMSE – Equation 7); Normalized 
Root Mean Square Error (NRMSE – Equation 
8); Mean Absolute Percentage Error (MAPE – 
Equation 9); bias (Equation 19); and determination 
coefficient (R2).
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where, ymax is the maximum measured value; ymim 
is the minimum measured value; y’i are predicted 
values; yi are measured values; and n is the number 
of samples.

RESULTS

WATER QUALITY PARAMETERS

Table I shows a summary of the water quality 
parameters collected along three field campaigns 
accomplished in BBHR. Analyzing Table I, the 
difference between values exhibited for each 
parameter in different months can be noticed.

The month of October presented the highest 
values for all parameters. Along the three fieldworks, 
BBHR exhibited high Chl-a concentrations, from 
which it is possible to classify it as a eutrophic 
environment (Chl-a > 60 mg m-3) (Vollenweider 
and Kerekes 1980). October exhibited especially 
high concentrations of Chl-a (up to 797.8 mg m-3), 
due to the below average rainfall in 2014 (Coelho 
et al. 2016, Getirana 2016, Watanabe et al. 2016, 
INMET, http://www.inmet.gov.br/portal/), causing 
a remarkable decrease in the water levels in the São 
Paulo State reservoirs and leading to a water supply 
crisis in some cities, and harming the commodity 
transportation via navigation. Hence, there was a 
greater water flow control in reservoirs, leading to 
an increase of time retention, contributing to the 
development of algal communities (Tundisi et 
al. 2008). According to SDD, the BBHR can be 
considered as eutrophic, with values less than 1.1 
m (Carlson 1977).

During data surveying, the presence of algal 
cells and filaments sparsely distributed in the water 
column was noted, making the measurements 
of turbidity difficult. In other words, there was 
a remarkable variation among the turbidity 
readings, because the beam was more attenuated 

in some samplings and less in others. Hence, three 
measurements were acquired at each sampling 
point and the average of the measures was used. 
In addition, it was noted that TSS was mainly 
composed of OSS, with a mean portion of 90%. 
Chl-a and OSS presented a positive correlation of 
approximately 0.82. Although October presented 
the highest Chl-a and OSS concentrations, 
correlation between both was low in this month, 
at about 0.33, while in May the correlation was 
0.75. The low correlation in October can be 

TABLE I
Descriptive statistics of the water quality parameters 

measured in the field campaigns carried out in May 2014 
(n = 18 samples), October 2014 (n = 20 samples) and 

September 2015 (n = 24 samples). Statistical metrics used 
were: minimum value (Min), maximum value (Max), 

mean and standard deviation (SD).

May 2014 Oct 2014 Sep 
2015

Chl-a, mg m-3 Min – 
Max

17.7 – 
279.9

263.2 – 
797.8

62.8 – 
245.7

Mean 
(SD)

120.4 
(70.3)

428.7 
(154.5)

127.1 
(51.3)

TSS, g m-3 Min – 
Max 3.6 – 16.3 10.8 – 

44.0
16.6 – 
22.0

Mean 
(SD) 7.2 (3.3) 22 (7.0) 17.6 

(1.1)

OSS/TSS, % Min – 
Max 45 – 98 78 – 96 -

Mean 
(SD) 83 (12) 87 (5.0) -

ISS/TSS, % Min – 
Max 2 – 55 4.0 – 

22.0 -

Mean 
(SD) 17 (12) 13.0 

(5.0) -

TSS:Chl-a, g 
mg-1

Min – 
Max

0.036 – 
0.248 

0.029 – 
0.077

0.016 – 
0.088

Mean 
(SD)

0.074 
(0.048) 

0.054 
(0.015)

0.047 
(0.014)

Turbidity, 
NTU

Min – 
Max 1.7 – 12.5 11.6 – 

33.2
3.1 – 
6.8

Mean 
(SD) 5.2 (2.4) 18.6 

(5.3)
4.2 

(0.8)

SDD, m Min – 
Max 0.8 – 2.3 0.4 – 0.8 1.0 – 

1.6
Mean 
(SD) 1.5 (0.4) 0.6 (0.1) 1.3 

(0.2)
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strongly linked to pigment packaging due to high 
phytoplankton growth (Alcântara et al. 2016).

CHL-A RETRIEVAL ALGORITHMS

Figure 2 illustrates the Rrs spectra collected in May 
and October 2014, and September 2015 (Fig. 2a, 2b 
and 2c, respectively) and simulated bands for OLI/
Landsat-8 (Fig. 2d, 2e and 2f) and MSI/Sentinel-2A 
(Fig. 2g, 2h and 2i) sensors. It is clear the loss of the 
spectral detailing with the simulated bands. At first, 
we notice the lack of the reflectance peak around 

715 nm associated with scattering of particles in 
simulated OLI/Landsat-8 bands, followed by the 
absence of the absorption and fluorescence features 
of phycocyanin pigment around 620 and 650 nm, 
respectively, for both sensors.

The linear relationship between the Chl-a and 
spectral indexes for calibration data and OLI bands 
are shown in Figure 3a and 3b. R2 lower than 1%, 
suggesting no correlation between 2O index and 
Chl-a concentration for BBHR, indicate that these 
indexes are not sufficient for Chl-a estimate models 

Figure 2 - Remote sensing reflectance spectra acquired in (a) May 2014, (b) October 2014, and (c) 
September 2015. Simulated Rrs spectra for OLI/Landsat-8 based on data collected in (d) May, (e) October 
2014 and (f) September 2015 and MSI/Sentinel-2A based on data collected in (g) May, (h) October 2014 
and (i) September 2015.
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in BBHR. As expected, the optical complexity 
of inland waters, with solute and particle inputs 
coming from the drainage basin, impairs the use 
of shorter wavelengths, strongly influenced by 
different OSCs. Despite this, even using the same 
bands of 2O index, the Slope structure considerably 
improved the relationship with Chl-a, increasing R2 
to 0.78. In this case, the Slope can be seen as the 
derived value in that spectral range (560 – 665 nm), 
minimizing multiple effects of OSC such as TSS 
and highlighting the Chl-a feature (Goodin et al. 
1993).

Plots between the Chl-a and spectral indexes 
proposed for applications to MSI/Sentinel-2A 
bands are presented in Figures 3c to 3f. The indexes 
of two bands presented satisfactory correlation 
with Chl-a (R = 0.859 for 2MSI, R = 0.832 for 
NDCI and R = 0.902 for SLMSI), showing that the 
replacement of the wavelength at 560 nm by 709 
nm improves the Chl-a estimation, in BBHR. 3MSI 
index also showed a satisfactory correlation with 
Chl-a (R = 0.915), corroborating the evidence that 
NIR-red combination produces high correlation 
with Chl-a. However, the insertion of 754 nm did 
not improve the relation with Chl-a, likely due to 
low bb for non-algal particles in NIR. 

As expected, the 2O index proposed for clear 
waters was not statistically significant to explain 
Chl-a concentration in the BBHR (R2 = 5.43 and 
p-value = 0.19 for linear fit and R2 = 7.35% and 
p-value = 0.32 for 2nd degree fit). Of the fits using 
OLI bands, the SLO exhibited the best adherence 
(R2 = 60.1% and p-value < 0.000 for linear fit and 
R2 = 60.3% and p-value < 0.000) for quadratic fit, 
while simple band ratios using the same bands 
presented expressionless R2 values of 5.4% to 7.4% 
(linear and quadratic fits, respectively).

Among the adjustments based on MSI/
Sentinel-2A bands, the calibrations for SLMSI 
index exhibited the best performance (R2 = 81.4% 
and p-value < 0.000 for linear fit, and R2 = 81.9% 
and p-value < 0.000 for 2nd degree fit). Following, 

the algorithms fitted based on 2MSI index showed 
satisfactory adherence (R2 = 73.8% and p-value < 
0.000 for linear fit and R2 = 75.3% and p-value < 
0.000 for 2nd degree fit). Algorithms fitted for 3MSI 
(R2 of 69.4% and p-value < 0.000 for linear fit and 
R2 = 70.5% and p-value < 0.000 for 2nd degree fit) 
and NDCI indexes (R2 of 69.2% and p-value < 
0.000 for linear fit and R2 = 71.3% and p-value < 
0.000 for 2nd degree fit) exhibited similar adherence. 
In this case, the insertion of 754 nm did not show 
improvement in prediction algorithm, most likely 
due to low bb of non-algal particles in the BBHR.

SLO (2nd degree fit) algorithm exhibited the 
second lowest errors (NRSME = 46.4% and MAPE 
= 47.1%) (Table II). Despite that, R2 were very 
low for both the algorithms (< 22%). Meanwhile, 
validation showed that all the algorithms for 
Sentinel-2A bands presented similar errors. Despite 
that, some indexes produced negative estimates 
such as NDCI indexes (linear fit) which highlighted 
with the lowest errors (NRMSE = 40.2% and 
MAPE = 57.4%). On the other hand, 2MSI (2nd 
degree fit) algorithm exhibited similar performance 
(NRMSE = 43.9% and MAPE = 58.2%), but there 
was no problem of negative predictions. Overall, 
the indexes based only on 665 nm and 709 nm 
exhibited the best results, corroborating that the 
insertion of 754 nm do not improve the Chl-a 
estimation in BBHR. SLMSI index (linear fit) also 
exhibited good results, with the lowest MAPE 
(49.02%) and underestimation (bias = 65.02 mg 
m-3).

 Analyzing the results, it was noticed that the 
algorithms underestimated the Chl-a for both OLI/
Landsat-8 and MSI/Sentinel-2A bands, indicating, 
once again, that empirical algorithms are limited 
for application in specific period. Overall, the 
algorithms showed a poorer performance for higher 
Chl-a concentrations, indicating that pigment 
packaging affects the algorithm performance. 
Further, the September dataset exhibited values of 
Chl-a, which can be negatively affected the SLO 
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Figure 3 - Models of retrieving Chl-a using OLI/Landsat-8 bands and considering the spectral indexes (a) 2O and (b) 
SLO, and MSI/Sentinel-2A bands and indexes (c) 2MSI, (d) 3MSI, (e) NDCI and (f) SLMSI
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TABLE II
Validation of the models considering RMSE, NRMSE, MAPE, bias and R2 for OLI and MSI.

Index Fit
RMSE

(mg·m-3)
NRMSE

(%)
MAPE

(%)
Bias

(mg·m-3)
R2 (%)

Validation of the models calibrated using OLI bands
SLO 1st 100.56 54.97 61.70 -84.62 0.01
SLO 2nd 84.95 46.44 47.14 -66.86 0.02

Validation of the models calibrated using MSI bands
2MSI 1st 111.50 69.65 98.57 -109.28 83.67
2MSI 2nd 75.13 43.85 58.18 -71.11 83.45
3MSI 1st 127.41 37.85 115.86 -122.86 84.34
3MSI 2nd 80.21 55.49 64.73 -77.31 84.94
NDCI 1st 69.24 40.62 57.41 -65.97 82.49
NDCI 2nd 101.51 47.71 90.68 -97.68 81.68

SLMSI 1st 74.31 69.65 49.02 -65.02 76.12
SLMSI 2nd 87.28 43.85 64.59 -80.92 76.04

performance. Its dependence to shorter wavelengths 
(green band) became the model more sensible to 
dataset than MSI/Sentinel-2A models. 

The SLO model using quadratic fit was applied 
to an OLI/Landsat-8 image acquired on October 
13th, 2014, in which the map of Chl-a concentration 
is illustrated in Figure 4. The model was applied 
in L8SR product, which showed a better matching 
with in situ Rrs (Bernardo et al. 2017). Comparing 
the Chl-a range in the map and collected in situ, the 
underestimation in the model is apparent; however, 
it better represented the Chl-a range and distribution 
in BBHR. Although SLO has not shown the best 
validation results, the fit was statistically significant 
(p-value = 0.000) and its application on the image 
from October 2014, matching with the fieldwork 
date, was performed satisfactorily.

DISCUSSION

P3 presented other different bio-optical status 
such the lowest dissolved organic carbon (DOC) 
concentration of 1.04 mg L-1, while the mean in the 
reservoir was of 10.1 mg L-1 (Table I). Furthermore, 
the fact that the highest Chl-a concentration values 

have been pointed as outliers also can be associated 
with pigment packaging or self-shading (Alcântara 
et al. 2016). The packing effect can lead to flattening 
the absorption coefficient spectra (Bricaud et al. 
1995, Carder et al. 1999, Ciotti et al. 2002). So, 
even though Chl-a concentrations increase, the 
Chl-a features are not still more highlighted in the 
absorption spectra, leading to underestimation of 
high concentrations. P3 is next to the dam, located 
before the channel narrows in the lacustrine zone. 
This region showed rather favorable conditions for 
algal blooms mainly due to high residence time 
(Prado and Novo 2015) and sewage discharge 
into the water, which increases the nutrients 
concentrations (see location on Fig. 1). Historically, 
the BBHR always was considered a eutrophic 
environment, however, in 2014 an extreme drought 
event caused an intense algal bloom (Coelho et 
al. 2016, Getirana 2016, Watanabe et al. 2016), 
contributing for package effect.

Furthermore, the underestimation of the 
model can also be related to pigment package 
effect, in which the Chl-a concentration increases, 
but the absorption by Chl-a does not (Alcântara 
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et al. 2016). Therefore, the use of the wavelength 
at 665 nm, associated with the absorption by 
Chl-a, in models, undergoes influence of pigment 
packaging. Figure 5 shows the average absorption 
coefficient of pure water (aw), aφ, aCDOM, and aNAP. 
It is clearly noticed the increase of aφ and aCDOM 
from the first field survey to the second one. This 
increase of absorption might be directly associated 
with 2014 drought, which led to closing dam 
and, consequently, accumulation of materials and 
nutrients for primary production.

The model underestimated strongly the 
Chl-a in Tietê River before confluence with the 
Piracicaba River. Samples collected in that region 
were identified as outliers and removed from the 
calibration of models; hence, the models are not 
representative of that reservoir region. In other 
words, these points are not bio-optically similar in 
relation to the rest of the reservoir. Certainly, the 
high wastewater load coming from the lower course 
of the Tietê River is responsible for the singular 
bio-optical status found in this section. Taking into 
account the spatial resolution of the OLI sensor (30 
m), the SLO model has shown satisfactory results. 

The model was sensitive in detecting the changes 
in water color associated with Chl-a concentration 
variation, although the calibration data were 
acquired in a GSD (Ground Sampling Distance) 
much smaller than the image. Analyzing Fig. 5, 
we noticed a spectral gradient between green and 
red regions, which was useful to estimate Chl-a. In 
addition, the Slope index highlighted further that 
gradient, since it determines the rate of spectral 
variation in that range, differently of simple ratio, 
in which simply defines how often the absorption at 
red band is greater than at green band.  

CONCLUSIONS

The results obtained in this work showed that the 
band ratios based on NIR-red algorithms based on 
Sentinel-2 image presented the best performance for 
estimating Chl-a in BBHR. Probably, the insertion 
of the reflectance peak at 705 nm was a differential, 
due to the contrast with maximum absorption in 
the red region (about 665 nm). Unfortunately, we 
do not have a Sentinel-2 image matching one of the 
fieldworks to map the Chl-a, because, it will likely 
produce good results.

Figure 4 - (a) Map of Chl-a concentration based on the SLO model using quadratic fit and (b) frequency plot of occurrence of 
Chl-a concentrations.
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The quadratic SLO model highlighted the 
difference between the gradient produced by the 
reflectance peak in the green region and absorption 
in the red, which the simple ratio (2O) was not 
able to show. Even though the Slope model has not 
obtained the best results in validation, it exhibited a 
satisfactory performance in mapping. The divergent 
results of fit and mapping with the validation 
confirm that the empirical models are limited by 
time. It is also possible that the atypical climate 
conditions found in 2014 caused the models not 
to be representative of other years. Below average 
rainfall required greater flow control in BBHR, 
increasing time retention, Chl-a concentration 
(greater than 700 mg·m-3) and, consequently, 
changed the bio-optical status.

Samples collected in the Tietê River before 
confluence with the Piracicaba River were 
identified as outliers, due to the singular bio-
optical status of this region of the reservoir. The 
discharge of wastewater coming from the São 
Paulo metropolitan area is certainly the main 
responsible for this bio-optical difference. In 
addition, the pigment packaging showed to 

interfere strongly in the performance of the Chl-a 
estimation model, since aφ does not increase 
proportionally with the elevation of concentration, 
promoting underestimation of Chl-a. Therefore, 
these results indicate that a unique model cannot be 
enough to explain the Chl-a in the entire reservoir. 
Thus, the development of regional models must be 
better investigated where the bio-optical status are 
partitioned horizontally.
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Figure 5 - Average absorption coefficients of pure water (aw, solid line), phytoplankton (aφ, dotted line), colored dissolved organic 
matter (aCDOM, dashed line), and non-algal particles (aNAP, dotted-dashed line) measured in (a) May and (b) October 2014.
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