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ABSTRACT

Let F be a foliation in the projective space of dimension two with a first integral of the typeFp

Gq
,

whereF andG are two polynomials on an affine coordinate,deg(F )
deg(G)

= q
p

andg.c.d.(p, q) = 1.

Let z be a nondegenerate critical point ofF
p

Gq
, which is a center singularity ofF , andFt be

a deformation ofF in the space of foliations of degreedeg(F) such that its unique deformed

singularity zt nearz persists in being a center. We will prove that the foliationFt has a first

integral of the same type ofF . Using the arguments of the proof of this result we will give a lower

bound for the maximum number of limit cycles of real polynomial differential equations of a fixed

degree in the real plane.
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1. INTRODUCTION

Consider the Hamiltonian equation

dy

dx
= −Hx

Hy

in C
2, whereH is a morse polynomial of degreen + 1 in C

2, i.e. the critical points ofH are

nondegenerate with distinct images inC. The above equation hasn2 singularities of center type

(Morse type). Let also consider the perturbation

dy

dx
= −Hx + εP

Hy + εQ (1)

whereP andQ are two polynomials of degree at mostn. Ilyashenko in (Ilyashenko 1969) proves

that if (1) has a center singularity for allε then it must be again Hamiltonian. The objective of this
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article is to generalize Ilyashenko’s result to foliations inCP(2) with a generic first integral of the

type Fp

Gq
.

LetF andG be two polynomials of degreesa+ 1 andb+ 1, respectively, inC2, a+1
b+1 = q

p
and

g.c.d.(p, q) = 1. Consider the foliationF in CP(2) with the first integral

f : CP(2)\({F = 0} ∩ {G = 0})→ C

f (x, y) = F(x, y)p

G(x, y)q

In other wordsF is given by the 1-formpGdF − qFdG. We will denote the foliation defined

by the 1-formω by F(ω). Note that the line at infinityH∞ = CP(2)\C
2 is neither pole nor

zero component off . A center singularity ofF is a nondegenerate singularity ofF with a local

Morse integral i.e., around the singularity the foliation is given byx2 + y2 = const. in some

analytic coordinate system(x, y). Therefore in the leaves around a center singularity there exists

a nontrivial cycle which is called the Lefschetz vanishing cycle.

The points of{F = 0} ∩ {G = 0} are dicritical singularities ofF . If F = 0 intersectsG = 0

transversally, these points are called the radial singularities ofF .

Let ω be a polynomial 1-form inC2. Consideringω as a meromorphic 1-form inCP(2), it

has a pole of orderk alongH∞. The degree ofω is defined to bek − 2. This definition of degree

has a difference up to one with the maximum of the degrees of the polynomials definingω (see

(Lins Neto and Scárdua 1997)).

We denote byI(a, b) the set of all integrable foliations of the above type, byIm(a, b) the set

of F = F(pGdF − qFdG) ∈ I(a, b) such that all singularities ofF are centers or radials and

the image of the centers underF
p

Gq
, 0 and∞ are distinct points inC and byF(2, d) the space of

foliations of degreed in CP(2). It is easy to see thatI(a, b) ⊂ F(2, d), whered = a + b. For

more information about holomorphic foliations the reader is referred to (Camacho and Sad 1987)

and (Lins Neto and Scárdua 1997).

Proposition 1. Im(a, b) is an open dense set in I(a, b).
Let Ft ∈ F(2, d), t ∈ (C,0) be a holomorphic deformation of the foliationF = F0 which

has at least one center for allt ∈ (C,0). If we know the structure ofF , for example the type of

singularities, holonomy groups of some leaves and etc., then what can be said about the deformed

foliation Ft?
The foliationF has a finite number of singularities therefore, there exists a centerp ∈ sing(F)

and a sequence of centerspti ∈ sing(Fti ) such thatpti → pwhenti → 0. The deformed holonomy

ht(x) related to the vanishing cycle aroundp, is the identity fort = ti . Sinceht is holomorphic in

t , ht is the identity for allt . In particular,pt is a center for allt ∈ (C,0).
Given an integrable foliationF(pGdF − qFdG) ∈ I(a, b), let p be one of the center

singularities ofF and letFt = F(pGdF − qFdG+ tω1 + h.o.t.) be a holomorphic deformation
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of F in F(2, d), whered = a + b, such that its unique singularitypt nearp is still a center. Our

principal theorem in this article is the following:

Theorem 1. In the above situation, if a + b > 2 then there exists an open dense subset U

of I(a, b) such that for all F(pGdF − qFdG) ∈ U and for all deformations Ft as before,

Ft is also an integrable foliation. More precisely, there exist polynomials Ft and Gt such that

Ft = F(pGtdFt − qFtdGt), where Ft and Gt are holomorphic in t and F0 = F and G0 = G.

This theorem also says that the persistence of one center along the deformation implies the

persistence of all other centers and radials. J.R. Muciño in (Muciño 1995) has also studied this

problem in the casep = q = 1. However, he has not obtained the result of Theorem 1 in this case,

as we will explain later in §2.

Example. Let F andG be generic conics. The pencilF + tG = 0 contains a reducible fiber,

sayF + t0G = F1F2, wheredeg(F1) = deg(F2) = 1. NowF(FdG−GdF) = F(Fd(F1F2)−
F1F2dF) and this foliation admits the deformation

F(λ0
dF

F
+ λ1

dF1

F1
+ λ2

dF2

F2
), 2λ0 + λ1 + λ2 = 0

of degree two which is not integrable but has many center singularities. The reason for which

Theorem 1 fails is that in this example we have reducible fibers. In fact only in the casea + b ≤ 2

the foliationF ∈ Im(a, b) has reducible fibers. In the above example Theorem 3 of §2 is not true

and hence Theorem 1 is not true also. From now on we will assume thata + b > 2.

2. IDEA OF THE PROOF OF THEOREM 1

The proof of Theorem 1 lies in Theorems 2, 3, 4, and Proposition 2. First we consider the local

situation of the theorem.

Theorem 2. In the above situation, if the singularity of Ft near p persists in being a center then

∫
δ

ω1

FG
= 0

for all Lefschetz vanishing cycles δ in the leaves around the center p, whereω1 is the tangent vector

of the deformation.

Definition 1. Let F ∈ F(2, d) and letδ andδ′ be two closed cycles contained in two leaves

of F . We say that the cycleδ is F-equivalent withδ′, if there is a continuous sequence of closed

cyclesδt ,0 ≤ t ≤ 1 such that

• δt is a cycle in some leaf ofF ;

• δ0 = δ andδ1 = δ′.
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A closed cycleδ is called a vanishing cycle if it isF-equivalent with a zero cycle, which is a point

p, in (CP(2)\sing(F)) ∪ {p}, and is called a Lefschetz vanishing cycle if it isF-equivalent with

the singularityp of a center in(CP(2)\sing(F)) ∪ {p}. Note that here we consider a singularity

as a leaf and therefore the cycles introduced around the centers satisfy this definition.

Theorem 3. Let F(pGdF − qFdG) ∈ Im(a, b), a + b > 2, L be a regular leaf of F and δ

be a Lefschetz vanishing cycle in L. Then the set of cycles in L which are F-equivalent with δ in

CP(2)\(∪ri=1f
−1(ci) ∪ {F = 0} ∪ {G = 0}) generate the first homology group of L in the field of

rational numbers.

The proof of above theorem uses arguments of the article (Lamotke 1981). By definition,

the leaves ofF(pGdF − qFdG) are the fibers ofF
p

Gq
without the radial singularities. Therefore

this theorem partially claims that the cycles around radial singularities are rational sums of cycles

F-equivalent with the cycleδ. In the casep = q = 1, F is a Lefschetz pencil and the mentioned

fact is not explicitly stated in the literature. This has not any contradiction with Hard Lefschetz

Theorem (4.1.3 p.29 (Lamotke 1981)). Note that the Hard Lefschetz Theorem is for compact fibers

and not fibers with deleted radial singularities. Disconsideration of the above theorem in (Muciño

1995) has caused that the author of that paper has not obtained Theorem 1 in the case p=q=1. In

fact he assumes the following unnecessary hypothesis:
∫

ω1
FG

vanishes over cycles around radial

singularities. A deeper analysis of Lefschetz’s argument (see (Lamotke 1981)) is needed to prove

the above theorem in the casep = q = 1.

Let p be the center ofF in Theorem 1 which persists in being a center after the deformation

of F . Applying Theorem 2 to the deformation

Ft : pdF
F

− q dG
G

+ t ω1

FG
+ h.o.t.

we obtain that ∫
δ

ω1

FG
= 0 (2)

for all vanishing cyclesδ in the leaves aroundp and by Theorem 3 we conclude that the equality (2)

holds for all closed cyclesδ in the leaves of the foliationF , where the integral is defined. Partially

we obtain that the residue ofω1
FG

on a leaf around a radial singularity is zero. The 1-formω1
FG

is

called a relatively exact 1-form modulo the foliationF(pGdF − qFdG).
Theorem 4. Let F(pGdF − qFdG) ∈ Im(a, b). Suppose that ω1 is a polynomial 1-form in C

2

with deg(ω1) ≤ deg(F) and ω1
FG

is relatively exact modulo F . Then there is (P,Q) ∈ Pa+1×Pb+1

such that ω1 has the form

ω1 = pGdP − qPdG+ pQdF − qFdQ (3)
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Now letM(2, d) be the set of foliations of degreed in CP(2) with at least one center. I have

learned the statement and proof of the following proposition from A. Lins Neto.

Proposition 2. M(2, d) is an algebraic subset of F(2, d).
The next theorem identifies some irreducible components ofM(2, d).

Theorem 5. If a+ b > 2 then I(a, b) is an irreducible component of M(2, d), where d = a+ b.

Proof. SinceI(a, b) is parameterized byPa+1 ×Pb+1, I(a, b) is an irreducible variety. For any

F(pGdF − qFdG) ∈ Im(a, b), we have seen in the theorems 2, 3 and 4 that

[ω1] ∈ TFM(2, d)⇒
ω1 = pGdP − qPdG+ pFdQ−QdF, (P,Q) ∈ Pa+1 × Pb+1 ⇒

[ω1] ∈ TFI(a, b)

this and the fact thatI(a, b) ⊂ M(2, d) imply that

TFM(2, d) = TFI(a, b), ∀F ∈ Im(a, b)

SinceIm(a, b) is an open dense subset ofI(a, b), we conclude thatI(a, b) is an irreducible

component ofM(2, d). �

Theorem 1 is a direct consequence of the above Theorem.

3. APPLICATION

The idea of the following definition comes from the converse version of Theorem 2.

Definition 2. Let X be an irreducible component ofM(2, d), F(ω0) ∈ X andp be a center

of F . There is a coordinate(x, y) in a small neighbourhoodU of p such that in this coordinate

p = (0,0) and

ω0 = gd(f̃ ), f̃ = 1

2
(x2 + y2)+ h.o.t., g(0) �= 0

wheref̃ andg are holomorphic functions onU . DefineT ∗
FX as the set of all 1-forms[ω1] ∈

TFF(2, d) such that ∫
δ

ω1

g
= 0

for all Lefschetz vanishing cycles in the leaves ofF aroundp. By Theorem 2, we know that

TFX ⊂ T ∗
FX (4)

X is called a good irreducible component ofM(2, d) if for a generic choice ofF ∈ X, the equality

holds in (4). This definition does not depend on the choice ofg.
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The process of the proof of Theorem 1 shows thatI(a, b) is a good irreducible component of

M(2, d).

Now let X be an irreducible component ofM(2, d), F(ω0) ∈ X be a smooth point of

X\(M(2, d) ∩ X) andp be a center singularity ofF . Furthermore, ifω0 is a real 1-form as-

sume that the real foliation induced byω0 has a real center atp ∈ R
2.

Theorem 6. There is a real polynomial differential equation of degree d and with at least

N = dim(TFF(2, d)/T ∗
FX)− 1

limit cycles in the real plane R
2.

We obtain this fact by a small deformation ofF(ω0), whereω0 is a real 1-form. Applying the

above theorem toI(a, b) we have:

Corollary 1. There is a real polynomial differential equation of degree d and with at least{
3
4(d

2 + 2d − 4/3) if d is even
3
4(d

2 + 2d − 13/3) if d is odd
(5)

limit cycles.

RESUMO

SejaF uma folheação no espaço projetivo de dimensão dois e com integral primeira do tipoFp

Gq
, onde

F eG são dois polinômios numa carta afim edeg(F )
deg(G)

= q
p

e g.c.d.(p, q) = 1. Sejaz um ponto crítico

não degenerado deF
p

Gq
e Ft uma deformação deF no espaço das folheações de graudeg(F) tal que a

singularidade deformadazt perto dez ainda é um centro. Provamos que a folheaçãoFt tem uma integral

primeira do mesmo tipo deF . Usando os argumentos da demonstração desse resultado daremos uma cota

inferior para o numero máximo de ciclos limites de uma equação differential de grau fixo no plano real.

Palavras-chave: folheação holomórfica, ciclo limite, singularidade do tipo centro.
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