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ABSTRACT
Let F be a foliation in the projective space of dimension two with a first integral of thef%pe
whereF andG are two polynomials on an affine coordinagé% = % andg.c.d.(p,q) = 1.
Let z be a nondegenerate critical point é{f— which is a center singularity of, and 7; be
a deformation ofF in the space of foliations of degrekg(F) such that its unique deformed
singularity z; nearz persists in being a center. We will prove that the foliatiBnhas a first
integral of the same type of. Using the arguments of the proof of this result we will give a lower
bound for the maximum number of limit cycles of real polynomial differential equations of a fixed
degree in the real plane.
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1. INTRODUCTION
Consider the Hamiltonian equation

dy  H;

dx _Fy
in C?, whereH is a morse polynomial of degree+ 1 in C?, i.e. the critical points off are
nondegenerate with distinct imagesGn The above equation hag singularities of center type
(Morse type). Let also consider the perturbation

dy  Hi+eP

dx ~ H,+€Q @)

whereP and Q are two polynomials of degree at mastllyashenko in (Ilyashenko 1969) proves
that if (1) has a center singularity for althen it must be again Hamiltonian. The objective of this
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article is to generalize llyashenko’s result to foliation€liR (2) with a generic first integral of the
type £7.
Let F andG be two polynomials of degrees+ 1 andb + 1, respectively, ifC?, 41 = % and

S
g.c.d.(p,q) = 1. Consider the foliatiodF in CP(2) with the first integral

f:CPQ\(F=0Nn{G=0}) > C

_F.y)”

f(x’y)_G(x—,y)q

In other wordsF is given by the 1-fornpGdF — g FdG. We will denote the foliation defined
by the 1-forme by F(w). Note that the line at infinityd,, = CP(2)\C? is neither pole nor
zero component of . A center singularity ofF is a nondegenerate singularity Bfwith a local
Morse integral i.e., around the singularity the foliation is givenxBy+ y?> = const. in some
analytic coordinate systeiw, y). Therefore in the leaves around a center singularity there exists
a nontrivial cycle which is called the Lefschetz vanishing cycle.

The points of F = 0} N {G = 0} are dicritical singularities of. If F = 0 intersects<z =0
transversally, these points are called the radial singulariti¢s of

Let w be a polynomial 1-form irfC?. Considering» as a meromorphic 1-form i@ P(2), it
has a pole of order alongH.,. The degree ob is defined to bé& — 2. This definition of degree
has a difference up to one with the maximum of the degrees of the polynomials defirgegp
(Lins Neto and Scardua 1997)).

We denote byZ (a, b) the set of all integrable foliations of the above typeh¥a, b) the set
of F = F(pGdF — qFdG) € Z(a, b) such that all singularities of are centers or radials and
the image of the centers undé?, 0 andoo are distinct points irC and by F (2, d) the space of
foliations of degreel in CP(2). It is easy to see thé&i(a, b) C F(2,d), whered = a + b. For
more information about holomorphic foliations the reader is referred to (Camacho and Sad 1987)
and (Lins Neto and Scéardua 1997).

ProprosiTION 1. 7, (a, b) isanopendense setinZ(a, b).

Let 7, € F(2,d), t € (C, 0) be a holomorphic deformation of the foliatioh = F, which
has at least one center for ale (C, 0). If we know the structure aofF, for example the type of
singularities, holonomy groups of some leaves and etc., then what can be said about the deformed
foliation F,?

The foliationF has afinite number of singularities therefore, there exists a cerdeting (F)
and a sequence of centgrs € sing(F;,) suchthap, — pwhens; — 0. The deformed holonomy
h.(x) related to the vanishing cycle aroupdis the identity forr = ¢;. Sinceh, is holomorphic in
t, h; is the identity for allr. In particular,p; is a center for alt € (C, 0).

Given an integrable foliatioi¥ (pGdF — qFdG) € Z(a,b), let p be one of the center
singularities ofF and letF;, = F(pGdF — qFdG + tw; + h.o.t.) be a holomorphic deformation
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of Fin F(2,d), whered = a + b, such that its unique singularify, nearp is still a center. Our
principal theorem in this article is the following:

THEOREM 1. In the above situation, if @ + b > 2 then there exists an open dense subset U
of Z(a, b) such that for all F(pGdF — qFdG) € U and for all deformations F; as before,
F: is also an integrable foliation. More precisely, there exist polynomials F;, and G, such that
F: = F(pG,dF, — qF,dG,), where F, and G, are holomorphicinz and Fp = F and Gy = G.

This theorem also says that the persistence of one center along the deformation implies the
persistence of all other centers and radials. J.R. Mucifio in (Mucifio 1995) has also studied this
problem in the casg = g = 1. However, he has not obtained the result of Theorem 1 in this case,
as we will explain later in 82.

ExaMmPLE. Let F andG be generic conics. The pendil+ tG = 0 contains a reducible fiber,
sayF + toG = F1F,, wheredeg(Fy) = deg(F2) = 1. NoOWF(FdG — GdF) = F(Fd(F1F3) —
F1 F>d F) and this foliation admits the deformation

dF dF, dF,
Fo— +A1— + Ao—), 24 A =0
(oF+1Fl+2F2) o+ A1+ A2

of degree two which is not integrable but has many center singularities. The reason for which
Theorem 1 fails is that in this example we have reducible fibers. In fact only in the:cage< 2

the foliationF € Z,,(a, b) has reducible fibers. In the above example Theorem 3 of 82 is not true
and hence Theorem 1 is not true also. From now on we will assume that > 2.

2. IDEA OF THE PROOF OF THEOREM 1

The proof of Theorem 1 lies in Theorems 2, 3, 4, and Proposition 2. First we consider the local
situation of the theorem.

THEOREM 2. Inthe above situation, if the singularity of 7, near p persistsin being a center then

w1

s FG
for all Lefschetz vanishing cycles$ intheleavesaround the center p, where w, isthetangent vector

of the deformation.

DerINITION 1. Let F € F(2,d) and lets§ andé$’ be two closed cycles contained in two leaves
of F. We say that the cyclé is F-equivalent with’, if there is a continuous sequence of closed
cycless, ,0 <t < 1 such that

* 4, is a cycle in some leaf of;

e §o=356ands; = 4.

An. Acad. Bras. Cienc., (2001)73 (2)



194 HOSSEIN MOVASATI

A closed cycle’ is called a vanishing cycle if it igF-equivalent with a zero cycle, which is a point
p,in (CP(2)\sing(F)) U{p}, and is called a Lefschetz vanishing cycle if itAsequivalent with
the singularityp of a center iNCP (2)\sing(F)) U {p}. Note that here we consider a singularity
as a leaf and therefore the cycles introduced around the centers satisfy this definition.

THEOREM 3. Let F(pGdF — qFdG) € I,,(a,b),a +b > 2, L bearegular leaf of 7 and §
be a Lefschetz vanishing cyclein L. Then the set of cyclesin L which are F-equivalent with § in
CP\(i_, f X)) U{F = 0} U {G = 0}) generate the first homology group of L in thefield of
rational numbers.

The proof of above theorem uses arguments of the article (Lamotke 1981). By definition,
the leaves ofF (pGdF — q FdG) are the fibers ofg—z without the radial singularities. Therefore
this theorem partially claims that the cycles around radial singularities are rational sums of cycles
F-equivalent with the cyclé. In the casep = ¢ = 1, F is a Lefschetz pencil and the mentioned
fact is not explicitly stated in the literature. This has not any contradiction with Hard Lefschetz
Theorem (4.1.3 p.29 (Lamotke 1981)). Note that the Hard Lefschetz Theorem is for compact fibers
and not fibers with deleted radial singularities. Disconsideration of the above theorem in (Mucifio
1995) has caused that the author of that paper has not obtained Theorem 1 in the case p=g=1. In
fact he assumes the following unnecessary hypothgfs% vanishes over cycles around radial
singularities. A deeper analysis of Lefschetz’'s argument (see (Lamotke 1981)) is needed to prove
the above theorem in the cage= g = 1.

Let p be the center ofF in Theorem 1 which persists in being a center after the deformation
of F. Applying Theorem 2 to the deformation

dF dG w
.Ep?—q?-i-fﬁ-i-h()t

we obtain that
w1
= -0 2
| FG 2
for all vanishing cycles in the leaves aroung and by Theorem 3 we conclude that the equality (2)
holds for all closed cycle&in the leaves of the foliatioff, where the integral is defined. Partially

we obtain that the residue gf. on a leaf around a radial singularity is zero. The 1-foffnis
called a relatively exact 1-form modulo the foliatigh pGdF — ¢ FdG).

THEOREM 4. Let F(pGdF — qFdG) € T,,(a, b). Suppose that w, isa polynomial 1-formin C?
withdeg(w1) < deg(F) and £ isrelatively exact modulo F. Thenthereis (P, Q) € Puy1 X Ppy1
such that w1 has the form

w1 = pGdP —qPdG + pQdF — qFdQ 3)
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Now let M (2, d) be the set of foliations of degrekin C P (2) with at least one center. | have
learned the statement and proof of the following proposition from A. Lins Neto.

ProposITION 2. M2, d) isan algebraic subset of 7 (2, d).
The next theorem identifies some irreducible componentst@2, d).

THEOREM 5. Ifa+b > 2thenZ(a, b) isanirreducible component of M (2, d), whered = a + b.

ProOF. SinceZ(a, b) is parameterized b, .1 x P11, Z(a, b) is an irreducible variety. For any
F(pGdF — qFdG) € Z,/(a, b), we have seen in the theorems 2, 3 and 4 that

[w1] € TFM(2,d) =
w1 =pGdP —qPdG + pFdQ — QdF, (P, Q) € Poy1 X Ppy1 =
[@1] € TFZ(a, b)

this and the fact that(a, b) ¢ M (2, d) imply that
TrM(2,d) = TrZ(a,b), VF € I, (a, b)

SinceZ,(a, b) is an open dense subset Bfa, b), we conclude thaf (a, b) is an irreducible
component ofM (2, d). O

Theorem 1 is a direct consequence of the above Theorem.

3. APPLICATION
The idea of the following definition comes from the converse version of Theorem 2.

DEeFINITION 2. Let X be an irreducible component o#1(2, d), F(wo) € X and p be a center
of F. There is a coordinatéx, y) in a small neighbourhood of p such that in this coordinate
p = (0,0) and

~  ~ 1
wo = gd(f), f = E(Xz +y) +h.o.t., g0 #0

Wheref and g are holomorphic functions oy. Define TrX as the set of all 1-formfw,] €
T=F(2,d) such that

“1_p
for all Lefschetz vanishing cycles in the leavesfoaroundp. By Theorem 2, we know that

TrX C T3X (4)

X is called a good irreducible componentof(2, d) if for a generic choice of € X, the equality
holds in (4). This definition does not depend on the choiceg. of
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The process of the proof of Theorem 1 shows #@t, ») is a good irreducible component of
M2, d).

Now let X be an irreducible component d¥1(2, d), F(wo) € X be a smooth point of
X\(M(2,d) n X) and p be a center singularity of. Furthermore, ifwg is a real 1-form as-
sume that the real foliation induced by has a real center at € R2.

THEOREM 6. Thereisareal polynomial differential equation of degree d and with at least
N =dim(TrF(2,d)/TfX) -1

limit cyclesin the real plane R
We obtain this fact by a small deformationB{wg), wherewy is a real 1-form. Applying the
above theorem t@(a, b) we have:

CoroLLARY 1. Thereisareal polynomial differential equation of degree d and with at least

3d®+2d —4/3) if d iseven

5
3d?+2d—13/3) ifdisodd ®)

limit cycles.

RESUMO

SejaF uma folheacdo no espaco projetivo de dimenséo dois e com integral primeira d@?tipmnde
F e G séo dois polinbmios numa carta afin‘gg% = % eg.c.d.(p,q) = 1. Sejaz um ponto critico
ndo degenerado d§§ e F; uma deformacdo d& no espaco das folheacOes de gy (F) tal que a
singularidade deformada perto dez ainda é um centro. Provamos que a folheagatem uma integral
primeira do mesmo tipo d&. Usando os argumentos da demonstracéo desse resultado daremos uma cota

inferior para o numero maximo de ciclos limites de uma equacéo differential de grau fixo no plano real.

Palavras-chave: folheagao holomérfica, ciclo limite, singularidade do tipo centro.
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