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ABSTRACT

The main goal of this study was to investigate how climate and human activities may have influenced ecotonal areas

of disjoint savannas within Brazilian Amazonia. The fossil pollen and charcoal records of Lake Márcio (Amapá) were

used to provide aHolocene palaeoecological history of this region. Detrended correspondence analysis (DCA)was used

to enhance the patterns of sample distribution along the sediment core. A marked vegetation change from closed forests

with swamp elements to open flooded savanna at c. 5000 yrs BP was evident from the pollen record. Charcoal analysis

revealed a pattern of increased accumulation of particles coincident with the establishment of savannas, suggesting

higher fire frequency and human impacts near the lake. A 550-year sedimentary hiatus suggests that the lake depended

heavily on floodwaters from the Amazon River, and that it became suddenly isolated from it. When sedimentation

restarted in the lake, the environment had changed. A combination of factors, such as reduced river flooding, palaeofires

and human occupation may have had a tremendous impact on the environment. As there are no other major changes in

vegetation, after 4700 yrs BP, it is plausible to assume that the modern mosaic vegetation formed at that time.

Key words: pollen record, palaeofires, Amazonia, savannas, climate change, palaeoecology.

INTRODUCTION

Even though the core area of savannas is in central

Brazil, disjunct savannas are present in the Brazilian

Amazonia (e.g. Amapá, Marajó Island, Alter do Chão,

and Roraima) (Salgado-Labouriau 1997). However, the

largest continuous area (c. 40,000 km2) of natural savan-

nas within the Brazilian Amazonia is located in Roraima

(Miranda and Absy 1997, Silva 1997).

Over the last 20 years, the early view of an Ama-

zonia pristine and untouched has changed. Archeologi-

cal studies provided evidence that humans have lived in

Amazonian lowlands for at least 11,000 years (Roose-

velt et al. 1991, 1996). Further evidence that these

landscapes have been intensely used and modified by

pre-Columbian human populations comes from savan-
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nas in the Bolivian Amazonia and Upper Xingu (Erick-

son 2000, 2001, Heckenberger et al. 2003). However, the

full extent of the Pre-European manipulation of Amazo-

nian habitats remains unclear (Meggers 2003).

Althoughhumanactivities are known tohave altered

Amazonian environments, Holocene climatic changes

have also been invoked to account for variation in the

range of savannas. A palaeoecological study conducted

on a landscape of forest-savanna ecotone in Bolivia re-

vealed a forest expansion of c. 100 km in the last 3000

years (Mayle et al. 2000). Similarly, palaeoecological

records from Colombian savannas also suggest a forest

expansion in the last 4000 years (Behling and Hooghi-

emstra 1998, 1999, Berrio et al. 2002).

Associated either with human activity or climatic

change, fires can be an important element in shaping

the environment and vegetation of a region (Cochrane
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and Schulze 1999), and in determining the community

structure of some ecosystems. As fire frequency is at

least partially climatically controlled, charcoal analy-

ses of sediments that quantify palaeofires may provide

a proxy for past climate changes (Patterson et al. 1987,

Clark 1988, Behling 1996, Clark et al. 1996, Kennedy

and Horn 1997, Bush et al. 2000). Although it can also

indicate anthropogenic activities, as humans have used

fire to modify landscapes throughout human history.

Because the size of charcoal particles may indicate

the distance from the fires to the study site, charcoal par-

ticles in lake sediments can provide information about

fire frequency on a small or large geographic scale (lo-

cal or regional fires respectively). Small particles can

be transported further than larger particles, and there-

fore represent regional fires. Whereas large particles of

charcoal reflect fires that burned near the site.

STUDY SITE

Lake Márcio (c. 0◦07′40.9"N 51◦04′47.8"W) is 10 km
from the Amazon River. The lake is 1.5-2.5 m deep, and

lies at less than10mabove sea level (Fig. 1), beingpart of

a much larger hydrologic system known as Curiaú. Lake

Curiaú is an L-shaped basin 6.5 km long in the vertical

axis, 3.5 km long in the horizontal axis, and 1.2 kmwide;

its watershed is estimated to be at least 150 km2. Lake

Márcio occupies an area of about 300 × 350 m on the

northern tip of Lake Curiaú, and although Curiaú may

dry out almost completely in the dry season, Márcio is

known as a permanent water body.

The studied lake is located in an area presently occu-

pied by small settlements that forma community founded

by former slaves who escaped and built a village during

the XVIII century. About 1500 people, all descendants

of the former slaves live today in the village.

The vegetation of the study site is a mosaic of dry

and flooded savannas and patches of secondary and dry

forests. Gallery forests and palm swamps are also present

along thewater drainages (igarapés). LakeMárcio is sur-

rounded by savanna vegetation, with a fringe ofMauritia
palms on the shoreline. In a phytosociological study in

this region, Thomaz et al. (2004) identified 44 families,

83 genera and 119 species. The most important fami-

lies were Cyperaceae (18 species), Poaceae (15 species),

Fabaceae (7 species), Rubiaceae (3 species), Lentibula-

Fig. 1 – Map of the study area, showing the location of Lakes Curiaú

andMárcio (the study lake), theCity ofMacapá, and theAmazonRiver.

riaceae andOnagraceae (5 species each). It is noteworthy

to mention that among the dominant species were Sagit-
taria rhombifolia,Montrichardia arborescens andMau-
ritia flexuosa, and the latter ones are found in isolated
populations throughout the Curiaú watershed.

The climate in this region is tropical humid, with

mean annual temperatures of 25-27◦C and 2500 mm of
precipitation, falling mainly between December-August

with a dry season from September to November (IBGE

2002).

MATERIALS AND METHODS

The sediment core was raised from the middle of the

lake using a Colinvaux-Vohnout piston corer (Colinvaux

et al. 1999). The sealed core tubes were transported un-

opened to the laboratory and stored in a dark cold room

until opened and the sediments described. Twenty-nine

samples (0.5 cm3) for pollen and 39 for charcoal were

collected from the sediment core. The C14 (AMS) sam-

ples were dated at the INSTAAR (University of Colorado

at Boulder), and the ages were calibrated using CALIB

4.0 (Stuiver and Reimer 1993).

Standard pollen extraction procedures with HCl,

KOH, HF, and acetolysis followed (Faegri and Iversen

1989) and (Stockmarr 1971) for the addition of tablets
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of Lycopodium spores to calculate pollen concentrations.
At least 300 grains of terrestrial taxa were counted for

each sample. Pollen grains were identified using the

Florida Tech reference collection and published pollen

catalogs (Hooghiemstra 1984, Roubik andMoreno 1991,

Colinvaux et al. 1999). The pollen sum (only terrestrial

taxa), percentage and concentration were calculated in

TILIA (Grimm 1992). The diagrams were plotted in C2

1.4 (Juggins 2003).

Samples for charcoal analysis were processed with

KOH (10%) and sieved through a 170µmmesh (keeping

particles > 170 µm). The charcoal analysis was con-

ducted under an Olympus dissection microscope (20×
magnification) equipped with a video camera (Clark and

Patterson 1997). Charcoal particles were digitally mea-

sured using image recognition software (NIH-IMAGE),

which provides the area of particles (mm2) according to

the number of pixels occupied by the fragment on the

screen.

Detrended Correspondence Analysis – DCA (Hill

andGauch1980)was performedusingPC-ORD4.0 (Mc-

Cune and Mefford 1999). This technique was chosen

because it is not subject to the infamous arch effect, and

the axes can be rescaled to estimate the degree of species

turnover. The matrix included only taxa with percentage

values equal to or higher than 1% and present in at least

3 samples throughout the core, and was standardized by

square root transformation (McCune and Grace 2002).

Because the eigenvalues provided by DCA cannot be

used to demonstrate the proportion of variation, we used

an after-the-fact coefficient of determination (McCune

and Grace 2002) in order to evaluate the effectiveness

of the ordination. The sample scores from axis 1 were

plotted against sample depths.

RESULTS

STRATIGRAPHY

The 470 cm-long sediment core from Lake Márcio

(Fig. 2) shows a strong change in sediment type at

118 cm. Below 118 cm the core is composed of blue-

grey claywithwood and charcoal fragments, while above

118 cm sediments are composed of gyttja rich in plant

remains (Table I). The core pierced and passed through

a log of wood, 38 cm in width that forms the section of

core from 347-385 cm.

Fig. 2 –Lithology of sediment core fromLakeMárcio, Amapá (Brazil).

Also showing location of dated samples in cal yrs BP (top). Radiocar-

bon ages from Lake Márcio plotted against depth (cm) (bottom).

RADIOCARBON DATES

Chronology for LakeMárcio was derived from fiveAMS

dates (Table II). All ages used henceforth will be inter-
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TABLE I

Sediment description of core from Lake Márcio (Amapá – Brazil).

Depth (cm) Sediment description

0–118 Gyttja – black peaty mud, very organic rich in plant remains

118–347
Blue-gray clay, with wood and charcoal fragments at

different concentrations throughout the core

347–385 Piece of a log that was cored through longitudinally

385–470 Gray clay with pieces of charcoal

TABLE II

Radiocarbon dates from Lake Márcio.

Sample Depth (cm) 14C yr BP 13C/12C ratio Age (cal years BP)

OS-24117 116 4100± 35 –27.30 4520–4660

OS-24118 218 5330± 45 –25.60 5990–6210

OS-24119 317 6050± 40 –29.30 6790–7000

OS-24120 432 6280± 40 –27.30 7160–7280

OS-24121 470 6320± 45 –27.80 7160–7330

polated calibrated years (cal. yrs) before present (BP),

unless noted otherwise. The basal age of 7250 cal. yrs

BP for Lake Márcio indicates that the sediments provide

a Holocene history. The 38 cm width of the log pene-

trated in Márcio is taken to represent instant deposition

and so was removed from the calculations of sedimenta-

tion rates. The age vs. depth relationship (Fig. 2) shows

that sedimentation rates were not constant through time,

being fast in the basal portion of the core, and slowing

up core (Fig. 2).

PALAEOECOLOGICAL RECORD

The pollen and charcoal records (Fig. 3) allow the dis-

tinction of two main zones: zone M1 (from c. 7250 cal.

yr BP until 4590 cal. yr BP), being subdivided into zones

M1A, M1B, and M1C; and zone M2 (from c. 4,590 cal.

yr BP until the present). The diagram zonationwas based

on DCA results and visual inspection.

M1A (470 cm – 320 cm; c. 7250 to c. 6910 yrs BP)

Sediments are composed of blue-grey clay with wood

and charcoal fragments. Pollen concentration increases

from c. 50,000 to c. 170,000 grains cm–3 of sediment

upwards (Fig. 3). The pollen spectra are characterized

by the presence of Alseis and Apeiba (not shown in the
diagram) at low percentages; this is the only zone in

which these 2 genera were found. Arecaceae and Rhi-
zophora show their highest values in this zone. Apocyna-
ceae, Araliaceae, Asteraceae, Astronium, Bignoniaceae,
Cassia, Cupania, Cecropia, Dalbergia, Malpighiaceae,
Mauritia, Poaceae, Protium, Symphonia, and Virola are
present with low percentages. Papillionaceae occurs at

3-5% in this zone. Pollen from Andean taxa, such as

Alnus, Iriartea, and Podocarpus are present with low
percentages. The amount of charcoal particles present

is negligible (c. 0.5 mm2 cm–3 of sediment).

M1B (320 cm – 200 cm; c. 6910 to 5840 yrs BP)

Sediments are composed of blue-grey clay with wood

and charcoal fragments. Pollen concentration decreases

from c. 150,000 to c. 50,000-80,000 grains cm–3 of sed-

iment upwards (Fig. 3). The pollen spectra are charac-

terized by low percentages of Alchornea and Poaceae.
Pollen of Apocynaceae, Araliaceae, Arecaceae, Astera-

ceae,Cupania,Dalbergia, Papillionaceae and Rhizopho-
ra all decline in abundance. Conversely, pollen from
Astronium, Bignoniaceae, Cassia, Cecropia, Euterpe,
Malpighiaceae, Protium, Symphonia, and Virola show
increased percentages in this zone. Pollen from swamp/

aquatic plants such as Cyperaceae, Sagittaria and Typha
start being deposited. Podocarpus (with slightly higher
percentage values) and pollen of the western Amazonian
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Fig. 3 – Pollen percentage diagram of LakeMárcio, Amapá (Brazil), showing the most representative taxa, including Andean taxa, area of charcoal

particles (mm2 cm–3 of sediment), pollen concentration (grains cm–3 of sediment), and radiocarbon dates (cal years BP). The hollow curves are

exaggerated 5 times.
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palm Iriartea are also recorded in this zone. A peak in
the accumulation of charcoal particles (c. 16 mm2 cm–3

of sediment) occurs at the beginning of this zone.

M1C (200 cm – 120 cm; c. 5840 to 4750 yrs BP)

Sediments are composed of blue-grey clay with wood

and charcoal fragments. Pollen concentration decreases

from c. 80,000 to c. 15,000 grains cm–3 of sediment

upwards (Fig. 3). The pollen spectra are characterized

by increased percentages of Alchornea, Apocynaceae,
Araliaceae, Arecaceae, Asteraceae, Bignoniaceae, Dal-
bergia, Papillionaceae, Melastomataceae/Combretaceae
type (Mel/Comb), and Podocarpus. Poaceae pollen has
a 7-fold increase in abundance (c. 5-35%) in the top

part of this zone. Cassia, Cecropia, Malpighiaceae, Pro-
tium, Virola and Rhizophora show slightly decreased

percentages. Pollen from Amaranthus/Chenopodiaceae
type (Ama/Che) is recorded for the first time, but still at

low values. Pollen grains from Andean taxa such as Al-
nus and Podocarpus are recorded at this zone, although
pollen from Iriartea is absent. Another peak in the accu-
mulation of charcoal particles (c. 13 mm2 cm–3 of sedi-

ment) is found in the beginning of this zone.

M2 (120 cm – 0 cm; c. 4750-4650 yrs BP to present)

Sediments are composed of gyttja rich in plant remains.

Pollen concentration fluctuates around c. 30,000 grains

cm–3 of sediment (Fig. 3). Pollen spectra are character-

ized by relatively low percentages of Alchornea, Apo-
cynaceae, Arecaceae, Bignoniaceae, Cassia, Dalbergia,
Papillionaceae, Malpighiaceae, Protium, Symphonia,
Virola, and Rhizophora. Pollen from Alnus, Iriartea,
and Podocarpus are absent from this zone. Ludwigia,
Macrolobium, Polygalaceae, Polygonum, and Utricula-
ria are recorded only in this top zone with percentage
values varying from 2-3% (Polygalaceae) to 20% (Poly-
gonum). Amaranthus / Chenopodiaceae pollen shows
slightly higher percentage values. Percentage of Poaceae

pollen displays some fluctuation, but remains high until

the end of the zone. Accumulation of charcoal parti-

cles is greatly increased in this zone. There are at least 5

peaks of charcoal varying in area from 50-140mm2 cm–3

of sediment.

MULTIVARIATE ANALYSIS

The resulting DCA scores were plotted in two different

ways. First, axis 1 vs. axis 2, then the sample scores

fromaxis 1were plotted against the corresponding depths

(Fig. 4). The proportion of variance explained by the

first two axes, as given by the after-the-fact coefficient of

determination, was 88%.

Axis 1 vs. Axis 2

The DCA scores from axes 1 and 2 (Fig. 4) showed

a strong polarization of samples on axis 1 that divided

them into two main groups: the bottom samples of the

core on the right and the top samples of the core on

the left representing zones M1 (ABC) and M2 (respec-

tively). The species that scored highest and therefore

were the most characteristic of samples being placed on

the positive side of axis 1 were Alseis, Podocarpus, Rhi-
zophora, Symphonia, and Arecaceae. The lowest scores
were yielded by Polygala,Utricularia, Polygonum, Lud-
wigia, and Macrolobium, which brought the samples to
the negative side of axis 1 in zone M2. A relatively

weaker polarization of samples that corresponded to

zones M1A and M1C was also observed on axis 1. Axis

2 displayed a very weak polarization of samples into

groups subdividing zone M1, therefore only axis 1 was

plotted against depth.

Axis 1 vs. Depth

The contrast in the DCA scores between the samples in

groups M1 (ABC) and M2 was especially pronounced

when plotted against depth (Fig. 4). Within their respec-

tive groups the samples showed little variation, however

the transition from zone M1 (ABC) to zone M2 is seen

to occur abruptly at 120 cm (between c. 6100 cal. yr BP

and 4590 cal. yr BP).

DISCUSSION

Stratigraphy alone indicates that Lake Márcio provides

a record of an environmental change, as the core showed

blue-grey clay being replaced by black-organic sedi-

ments (Fig. 2). The sharp transition of the sediments im-

plied that this change was at least locally profound and

maybe even abrupt. The blue-grey clay that constituted

the bottom of the sediment corewas full of plant remains,
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Fig. 4 – DCA scores from Lake Márcio. Top graph shows axis 1 vs. axis 2. Samples
are grouped according to zones interpreted from pollen diagrams. Bottom graph displays

resulting DCA scores of axis 1 plotted vs. depth (cm) showing a strong polarization of
samples into two main groups representing zones M1 (ABC) and M2.

wood and fragments of charred wood, indicating a shal-

low and unstable depositional environment. The coring

location may have supported a gallery forest subjected

to periodic river flooding, which may explain the pres-

ence of wood and plant fragments, especially the log that

was pierced during coring.

The sedimentation rates provided further evidence

of an alteration in the environment (Fig. 2). The clays

of zone M1 had an average sedimentation rate of

∼ 0.13 cm yr–1, but sedimentation in the upper 116 cm

of the core was at just 0.03 cm yr–1, a five-fold decrease.

The obvious slowing coincided with the transition from

a core dominated by allochthonous clays to autochtho-

nous organic material.

A sharp break in sediment type, a rapid change in

community composition, and different sediment depo-

sition rates above and below the boundary suggest the

possible presence of a sedimentary hiatus in the lake.
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Given the above, a simple projection of sedimentation

rates above and below the sediment boundary to the point

of the transition at 118 cm revealed a temporal mismatch

in the sediment core (i.e. an apparent gap). Applying

the sedimentation rate of 0.123 cm yr–1 (317-218 cm),

the interpolated age for the clay at 120 cm (immediately

beneath the transition) would be 5300 cal. yrs BP. Sim-

ilarly, by projecting the sedimentation rate for the sedi-

ments between 0-116 cm downward, an interpolated age

for onset of the organic sediment deposition at 120 cm

would be 4750 cal. yrs BP. A possible explanation of

all the observed sedimentary and biological changes is

a 550-year gap in sedimentation (5300 − 4750 = 550).

Such breaks in sedimentation are common in shallow

tropical lakes (Listopad 2001) and are generally taken to

indicate conditions in which lake level fell.

The timing of this event is consistent with the most

significant change in sediment and pollen inputs to an

11,000-year record fromLago Tapajós (Irion et al. 2006)

that took place between 5500 and 4200 yrs BP. In that

record, increased abundance of Poaceae pollen and a

shift to finer sediments is inferred to represent a com-

bined human and climatically-induced expansion of open

habitats and reduced river discharge.

The pollen and charcoal records from Lake Márcio

revealed two main contrasting zones. The most obvious

biological distinction between these zones was the in-

crease in Poaceae pollen, rising from < 10% in M1 to

almost 60% (30-55%) in M2. These percentage values

are comparable with the proportion of Poaceae pollen

(50-90%) that is found in the pollen rain of cerrados

(Salgado-Labouriau 1973), suggesting the establishment

of the savanna vegetation.

Even though comparable percentages of Poaceae

pollen are also observed in records from Colombian sa-

vannas such as LagunasCarimagua andEl Piñal (Behling

andHooghiemstra 1999), LagunasChenevo andMozam-

bique (Berrio et al. 2002), and Lagunas Angel and Sar-

dinas (Behling and Hooghiemstra 1998), an increase in

Poaceae, as marked as the one observed in Lake Márcio

could be found only in the Lake Crispim (northern coast

of Pará) pollen record (Behling and Costa 2001).

A further indication of a significant vegetation

change was the loss of Rhizophora pollen in zone M2.
After c. 7000 cal. yr BP the declining proportion of

Rhizophora pollen suggests a weakening of the marine
influence, possibly as the Curiaú hydrologic system be-

came more isolated from the Amazon channel. Replace-

ment of forest taxa, e.g. Alseis, Apocynaceae, Bignonia-
ceae, Cassia, Malpighiaceae, Papillionaceae, Podocar-
pus, Protium, Symphonia, and Virola (Marchant et al.
2002) inM2with those fromflooded savanna and swamp

vegetation, such as Amaranthus/Chenopodiaceae, Aste-
raceae, Ludwigia, Macrolobium, Mauritia, Polygonum,
Cyperaceae, and Utricularia, is consistent with a shift
toward less dense forest. Significantly, some swamp in-

dicator taxa such as Ludwigia, Macrolobium, and Poly-
gonum were present only in M2, reinforcing the sugges-
tion of a general trend towards flooded savanna vegeta-

tion.

The sample scores derived from DCA when plotted

with core depths provided an illustrative way to demon-

strate the impact of environmental changes that took

place in that system. The axis 1 demonstrated the same

general pattern, and was interpreted to show a hydrol-

ogy gradient, changing from an environment subjected

to seasonal river flooding, to a more isolated one. The

landscape changed from a gallery forest type to a swamp

forest with strong influence of savanna. The timing of the

environmental change was coincident with the on set of

fires around the lake. The replacement of Symphonia and
Virola in M1 byMacrolobium,Mauritia, e Polygonum in
M2 suggested subtle changes within the community of

wetland plants.

To sum up, a general environmental trend from gal-

lery forest (M1) to a savanna with swamp elements (M2)

was apparent. Anthropogenic impacts on the environ-

ment were suggested by extremely large quantities of

charcoal particles especially after c. 4590 cal. yr BP.

THE VEGETATION CHANGE

When sedimentation at Márcio resumes at c. 4700 cal.

yr BP, the pollen signal is very different to that prior

to the hiatus. The reduction in wet forest taxa and the

abundance of open ground indicators, coupled with the

consistent presence of large quantities of charcoal lead us

to infer that fire was maintaining these areas of savanna.

A combination of factors may have contributed to

this change. A change in the flood regimes probably

amplified the effects of lake isolation, which may have
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caused the system to shift from allochthonous to auto-

chthonous deposition. The locally drier conditions at

c. 5200 cal. yr BP may have also encouraged human

expansion into this setting. The precise pattern of events

remains to be resolved, but the effect was that by 4700

yr BP land adjacent to Márcio supported an extensive

savanna/swamp and a landscape subject to regular burn-

ing rather than wet forest. As there is no evidence of

changes in lake status, and that no significant change

in pollen composition has taken place in the last 4700

years, it is parsimonious to assume that the modern lake

and savannas formed at this time.

COMPARABLE POLLEN RECORDS

The fossil pollen records from Amazonia that present

the most similar vegetation change are located relatively

near Amapá (Guyana, French Guyana, Suriname, and

Pará State). Even though all these records show the

same overall pattern of vegetation change with a simi-

lar timing (i.e. forests and mangroves being replaced by

savannas), the interpretation of each record was slightly

different. While the vegetation changes inferred from a

sediment core fromFrenchGuyanawere interpreted to be

the result of a coastal progradation due to sea-level

changes (Tissot et al. 1987), the records from Guyana

(van derHammen 1963), Suriname (Wijmstra 1971), and

coastal Pará (Behling and Costa 2001), were simply at-

tributed to sea-level fall, which would produce a simi-

lar effect. The apparent synchronism of these vegeta-

tion changes makes the argument of lake isolation from

river floods, proposed here to explain the environmental

change, even more appealing.

THE CHARCOAL RECORD AND HUMAN IMPACTS

The quantity of charcoal particles present in the sedi-

ments fromLakeMárcio, measured here as charcoal area

(mm2) per volume of sediment (cm3), was used as proxy

for past fire frequency. Fires were recorded since 6900

cal. yrs BP, but very sporadically and at insignificant

levels. However, they became much more frequent after

4590 cal. yr BP. As fire is most unlikely to have occurred

in themesic forests present around the sites at c. 7000BP,

the most probable cause of fire is human activity. Hence,

these charcoal records may provide evidence of human

impacts in the area since c. 6900 cal. yr BP.

As the dramatic increase of fire frequency is coinci-

dent with the vegetation change, it is possible that human

impacts played an important role in the establishment of

savannas in the region. Indeed, a testable hypothesis is

that as the lake isolation reduced flooding in these sys-

tems, they became more suitable for human habitation.

As people moved onto this landscape they introduced

regular fire, thereby contributing to the expansion of the

savannas.

CONCLUSIONS

The Holocene fossil pollen and charcoal records from

Lake Márcio revealed a change from allochthonous to

autochthonous sedimentation that was initiated by a re-

duction in river flooding. As the lake was dependent on

seasonal flooding to maintain its hydrological balance,

the reduced inputs resulted in a sedimentary hiatus last-

ing c. 550 years (5300 cal. yr BP to 4750 cal. yr BP).

The return of local wet conditions did not bring

about a return to pre-drought conditions as a combination

of factors, reduced river flooding, human occupation and

fires, may all have played a role in deflecting the system

onto a new path.

From these data it appears probable that the mod-

ern mosaic of savanna and mesic forest found around

the lake formed by 4700 cal. yr BP, correlating closely

with the estimated age of savanna mosaic formation in

the lower Tapajós drainage (Irion et al. 2006). Despite

resumption of wet conditions, the flooding of the system

was never reestablished, consistent with the long-term

change in hydrology induced by falling sea-levels in the

late Holocene.
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RESUMO

O objetivo deste estudo foi investigar a influência do clima

e atividades antrópicas em ecótonos de savanas da Amazônia

Brasileira. Os registros palinológicos e de microcarvões do

Lago Márcio (Amapá) foram utilizados a fim de fornecer a

história paleoecológica desta região durante o Holoceno. Foi

utilizada a técnica de DCA (Análise de Correspondência Des-

tendenciada) para demonstrar os padrões de distribuição de

amostras ao longo do testemunho. O registro palinológico evi-

denciou mudança na vegetação, passando de floresta com ele-

mentos brejosos para savana inundada há cerca de 5000 anos

AP. A análise de microcarvões revelou um aumento na acu-

mulação de partículas paralelo ao estabelecimento de savanas,

indicando alta freqüência de queimadas e do impacto humano

próximo ao lago. A ocorrência de um hiato sedimentar de 550

anos sugere que o lago dependia das enchentes sazonais do rio

Amazonas, e que se tornou abruptamente isolado. Quando a

deposição de sedimentos reiniciou no lago, o ambiente estava

mudado. Uma combinação de fatores, tais como redução na

freqüência de cheias fluviais, paleo-incêndios, e ocupação hu-

mana deve ter tido um tremendo impacto no ambiente. Como

não foram observadas outras mudanças importantes na vege-

tação, após 4700 anos AP, é plausível supor que o mosaico da

vegetação atual formou-se naquele período.

Palavras-chave: registro palinológico, paleoqueimadas, Ama-

zônia, savanas, mudança climática, paleoecologia.
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