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Abstract: Leptin plays a major role in the regulation of energy intake and energy 
expenditure, triggering effects on several tissues, such as the hypothalamic-pituitary-
thyroid axis. The reported effects of leptin on the thyroid are controversial, being mainly 
explored during energy imbalance. Therefore, the aim of this study was to evaluate the 
effects of leptin on thyroid function of rats fed ad libitum distinguishing direct leptin 
responses from those mediated by leptin-dependent suppression of food intake by 
comparing leptin-treated (L) with pair-fed (PF) animals. Leptin administration resulted 
in a decrease of 10% in food intake. Reduced mass gain was observed on both L and 
PF groups. Leptin administration decreased serum corticosterone, which did not occur 
in the PF group. TSH levels were reduced in PF group, but not in the L group. Both L 
and PF animals presented reduced iodide uptake and type 1 deiodinase (D1) activity in 
the thyroid gland. A decrease of D1 activity was also found in the PCCl3 rat thyroid cell 
lineage treated with leptin. Taken together the data suggest that leptin exerts paradoxical 
effects: a stimulatory effect on the hypothalamic-pituitary-thyroid axis by increasing TSH 
levels while directly inhibiting thyrocyte function in a TSH-independent fashion.

Key words: deiodinase, hypothalamus-pituitary-thyroid axis, iodide uptake, leptin, 
thyroid.

INTRODUCTION

The homeostatic mechanisms that regulate 
body mass and food intake are fairly complex 
and may involve numerous hormones, 
neurotransmitters and peptides that modulate 
responses in both the central nervous system 
and in peripheral tissues. Leptin, a 16 kDa 
peptide hormone secreted mainly by adipocytes, 
plays a major role in this issue, regulating both 
energy intake and energy expenditure (Ahima 
et al. 1996, Frederich et al. 1995, Pelleymounter 
et al. 1995, Zhang et al. 1994). This hormone acts 
predominantly on hypothalamic nuclei and, 
also, in neuronal circuits of the brainstem that 
regulate feeding behavior and energy balance 

(Campfield et al. 1995, Elmquist et al. 1999). 
When serum leptin levels are high, such as 
after a meal or when the adipose tissue mass 
accumulates, excitatory signals to hypothalamic 
neurons that express α-MSH/CART predominate, 
as well as inhibitory signals and connections 
to neurons that express NPY/AgRP. As a result, 
there is a reduction of orexin and melanin-
concentrating hormone (MCH) expression in 
the lateral nucleus of the hypothalamus, which 
altogether lead to diminished food intake 
(Horvath et al. 1999, Schwartz et al. 1996, 2000). It 
is well established that, in rodents and humans, 
mutations in the leptin or leptin receptor genes 
cause hyperphagia, morbid obesity, metabolic 
and neuroendocrine abnormalities, including 
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hyperinsulinemia, hypercortisolism and 
hypothalamic hypogonadism (Coleman 1978, 
Halaas et al. 1995).

Central regulation by leptin triggers complex 
processes that lead to indirect effects on 
peripheral tissues. Such leptin effects include 
the activation of the hypothalamic-pituitary-
thyroid axis. Nillni et al. (2000) demonstrated 
that leptin exerts important central regulation, 
such as the increase in proTRH gene expression 
and TRH release in the paraventricular nucleus of 
the hypothalamus (Nillni et al. 2000). Moreover, 
proTRH expression can be indirectly stimulated 
by leptin, since α-MSH (positively modulated by 
leptin) stimulates the secretion of TRH, whereas 
AgRP (negatively modulated by leptin) inhibits it  
(Fekete et al. 2000, 2002, Ghamari-Langroudi et 
al. 2010, Kim et al. 2000). Besides this action on 
the hypophysiotropic TRH neurons, the presence 
of the leptin receptor in pituitary and in thyroid 
gland suggests that leptin may also exert direct 
actions on the secretion of TSH and thyroid 
function (Jin et al. 2000, Nowak et al. 2002). In 
humans, a strong positive correlation between 
the circadian cycles of leptin and TSH has been 
demonstrated, and the circadian cycle of TSH 
is drastically altered in individuals with leptin 
production deficiency (Mantzoros et al. 2001).
In rodents fed ad libitum, an acute treatment 
with leptin was able to positively modulate TSH 
secretion in vivo and, paradoxically, to regulate 
it negatively in vitro (Ortiga-Carvalho et al. 2002). 

Similarly, reports of leptin actions on 
the thyroid gland are controversial. Iodide is 
essential for thyroid hormones biosynthesis 
and the sodium-iodide symporter (NIS) 
ensures the active transport of iodide into 
the thyrocytes. It has already been shown that 
leptin administration had inhibitory effects 
over thyroid iodide uptake in FRTL5 cells and in 
thyroid explants (Isozaki et al. 2004, de Oliveira 
et al. 2007). However, in vivo, treatment of rats 

with leptin for 6 days stimulated iodide uptake 
by the thyroid, whereas the acute treatment 
(1 day) did not cause modifications in this 
parameter (de Oliveira et al. 2007). It has also 
been demonstrated that leptin has a stimulatory 
effect on the thyroid type I deiodinase (D1) 
(Lisboa et al. 2003). These data suggest that 
leptin should be a modulator of thyroid function, 
independently of its central regulation mediated 
by TRH and TSH. 

In addition to its role as an anorexigenic 
hormone, leptin mediates the adaptation to 
fasting. This response is mediated by a reduction 
in insulin and a rise in counterregulatory 
hormones, i.e., glucagon, epinephrine, and 
glucocorticoids (Schwartz et al. 1997). Previous 
studies suggest that negative energy balance 
leads to suppression of the hypothalamus-
pituitary-thyroid axis, while positive energy 
balance stimulates it (Araujo et al. 2009, 2010, 
Connors et al. 1985, Rondeel et al. 1992). In 
situations of energy deprivation, when serum 
levels of leptin are low, there is inhibition of TRH 
release, a fact attributed to suppression of the 
proTRH gene and its processing into mature TRH 
(Légrádi et al. 1997, Nillni et al. 2000, Sanchez et 
al. 2004). TRH inhibition decreases TSH secretion, 
which leads to a reduction in thyroid function 
(Blake et al. 1991, Rondeel et al. 1992) In such 
a negative energy status, leptin administration 
was able to stimulate proTRH expression and to 
reestablish serum levels of thyroid hormones 
(Sanchez et al. 2004). 

It is well known that TSH is the most important 
stimulator of thyroid hormone biosynthesis and, 
thus, stimulates iodide uptake and thyroid type 1 
deiodinase expression. Replacement of leptin in 
rats that are food restricted, and therefore have 
low serum leptin, restored serum TSH levels 
but inhibited iodide uptake, this reinforces the 
idea of a direct negative effect of leptin on NIS 
regulation (Araujo et al. 2009).
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The investigation concerning the action 
of this hormone under different physiological 
conditions remain poorly understood.  It is 
important to note that the vast majority of 
studies previously published in the field have 
used models of energy imbalance (fasting, food 
restriction or obesity), while the effect of leptin 
on the hypothalamic-pituitary-thyroid axis 
under dynamic equilibrium conditions is not 
well known. Therefore, the main objective of this 
study was to investigate the direct influence of 
leptin on thyroid function in vitro and in vivo in 
rats fed ad libitum, differentiating direct leptin-
responses from those secondary to suppression 
of food intake that might be secondary to energy 
imbalance rather than to leptin actions. 

MATERIALS AND METHODS
Animals
Adult male Wistar rats weighing around 250 g 
were housed at controlled temperature (24 ± 2°C) 
with daily exposure to a 12 h light:12 h darkness 
cycle (lights on at 07:00 pm), and free access to 
tap water and standard rat chow. Animal care 
and procedures were conducted in accordance 
with the Guide for the Care and Use of Laboratory 
Animals published by the US National Institutes 
of Health (NIH Publication No.85-23, revised 1996) 
and the study was approved by the Institutional 
Animal Welfare Committee (CEUA - IBCCF 077). 
All the animals were individually housed for a 
2-week acclimation period and baseline control 
food intake was assessed.

Leptin treatment 
Rats were randomly assigned to three groups: 
Control (C), Leptin (L) and Pair-Fed (PF).  The 
treatment protocol entailed 10 consecutive 
days with twice daily (08:00 am and 05:00 pm) 
subcutaneous injections of 10 µg/100 g of body 
weight of recombinant rat leptin (National 

Institute of Diabetes & Digestive & Kidney 
Diseases - NIDDK) reconstituted in PBS buffer 
(pH 7.4) for L group. The leptin dose of each 
injection was daily adjusted for body weight. 
Control and Pair-Fed groups received PBS buffer 
(pH 7.4) injections at the same hours.

Pair-feeding
Because leptin administration results in reduced 
food intake (Mistry et al. 1997), a Pair-Fed (PF) 
group was created to rule out the effects of food 
restriction per se on the thyroid function, since 
we are specifically interested in the possible 
direct effects of leptin on thyroid. The PF group 
was fed with the average food intake of the 
leptin-treated group corrected for body mass. 
Example: If L group’s average food intake on day 
2 were 9.0 g/100 g of body weight, a pair-fed 
animal weighing 300 g would receive 27.0 g of 
chow on day 3. The values of food intake related 
to animal weight were corrected daily.

Blood and thyroid gland collection
After the experimental period (10 days), all 
animals were euthanized by decapitation and 
blood was collected from the trunk. The animals 
were euthanized 3 h after the last leptin or 
vehicle administration. Serum was obtained 
after centrifugation of blood at 1,500 × g for 
20 minutes at room temperature and stored at 
-20°C until specific radioimmunoassay (TSH, T3, 
T4, corticosterone and leptin) was performed. 
The thyroid gland was used for in vivo iodide 
uptake measurement (as described below) 
or stored at -70°C until processing for type 1 
deiodinase enzyme (D1) activity analysis.

Cell culture
The PCCl3 rat thyroid cell line (Fusco et al. 1987) 
was maintained in Coon’s modified Ham’s F-12 
medium supplemented with 5% fetal bovine 
serum, and a six-hormone mixture containing 5 
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µg/mL transferrin, 10 nM hydrocortisone, 10 ng/
mL somatostatin, and 10 ng/mL glycyl-L-histidyl-
L-lysine acetate, 1 mU/mL TSH, 10 µg/ml insulin 
(Souza et al. 2010). The effect of 100 ng/mL of 
recombinant leptin on type 1 deiodinase activity 
was studied using near-confluent cells in the 
absence of TSH and insulin, in the presence of 
0.2% fetal bovine serum (starving medium) for 24 
hours. TSH, insulin, transferrin, hydrocortisone, 
somatostatin, glycyl-L-histidyl-L-lysine acetate 
and dithiothreitol were purchased from Sigma-
Aldrich Corporation (St. Louis, MO, USA). F-12 
medium was obtained from HiMedia® (Mumbai, 
India) and Fetal Bovine Serum (FBS) from 
ThermoFischer (Waltham, MA, USA).

Serum TSH, leptin, corticosterone and total T3 
and T4
Serum TSH levels were evaluated by a specific RIA 
obtained from the National Institute of Diabetes, 
Digestive and Kidney Diseases (NIDDK, Bethesda, 
MD, USA). Serum total T3 and T4 concentrations 
were measured using commercial RIA kits (T3: 
DSL - 3100 Active; T4: DSL - 3200 Active; DSL, 
TX, USA), based on the presence of specific 
antibodies adhered to the internal surface of 
propylene tubes. Rat hormone-stripped serum 
was used for standard curves of TSH. Serum 
leptin concentrations were measured using a 
specific RIA for rat leptin obtained from the Linco 
Research Company (St. Charles, MO, USA). Serum 
corticosterone concentrations were measured 
using a specific RIA (ImmuChemTM 125I) obtained 
from MP Biomedicals, LCC (Orangeburg, NY, USA). 
All the procedures were carried out following 
the manufacturer recommendations.

In vivo rat thyroid iodide uptake
In vivo iodide uptake by the thyroid gland was 
performed as previously described (Ferreira et 
al. 2005). The animals received [125I] NaI (3,700 
Bq/300,000 CPM i.p., Amersham) 15 min prior 

to decapitation. Thyroids were removed and 
weighed, and their radioactivity was measured 
using a gamma counter. The iodide uptake by 
the thyroid gland was expressed as percentage 
of total 125I injected per mg of thyroid tissue.

Rat thyroid type 1 deiodinase assay
Type 1 iodothyronine deiodinase activity was 
evaluated by measuring the release of 125I- from 
[125I]-rT3 as previously described by our group 
(Araujo et al. 2008) and based on Berry et al. 
(1991). Fifteen milligrams of thyroid tissue were 
homogenized in 1 mL of 0.1 M sodium phosphate 
buffer containing 1 mM EDTA, 0.25 M sucrose, 
and 10 mM dithiothreitol (pH 6.9). Protein 
concentration was measured by the Bradford 
method (Bradford 1976). Thyroid homogenates 
containing 15 µg of protein were incubated for 
1 hour at 37°C with 1 µM rT3 (Sigma, St. Louis, 
MO, USA), containing [125I]-rT3 (Perkin-Elmer Life 
Sciences, Boston, MA, USA; previously purified 
using sephadex LH-2), in a final volume of 300 
µL of homogenization buffer. Negative control 
incubations were performed in the absence of 
sample. The reaction was stopped at 4°C by the 
addition of 200 µL fetal bovine serum (Cultilab, 
Campinas, Brazil) and 100 µL trichloroacetic acid 
(50%, v/v). The samples were centrifuged at 
8,000 × g for 3 min, and 360 µL of the supernatant 
was collected for measurement of 125I released 
from deiodination reaction using an automated 
gamma counter. The specific enzyme activity was 
expressed as picomoles of product per minute 
per milligram of protein (pmoles min-1 mg-1).

Statistical analysis
Results are expressed as mean ± S.E.M., and 
were analyzed by one-way ANOVA, followed 
by Bonferroni’s multiple comparison tests. In 
vitro results were analyzed by two-tailed t-test. 
Serum TSH concentration was analyzed by 
Kruskal-Wallis followed by the Dunn’s multiple 
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comparison tests. Results were analyzed with 
GraphPad Prism (version 8, GraphPad Software, 
Inc., San Diego, CA, USA). Differences were 
considered significant when P < 0.05.

RESULTS
Leptin effects on body mass, food intake and 
fat pads mass
The administration of 10 µg/100 g b.w. of leptin 
twice a day for 10 days promoted a statistically 
significant reduction in body mass gain in 
relation to the control animals. Remarkably, 
the vehicle-treated pair-fed animals had an 

even stronger reduction in mass gain (Figure 
1c). Leptin administration diminished food 
intake by 10% (Figure 1a-b) and this reduction 
was used to calculate the mass of food offered 
for the pair-fed animals. Although body mass 
gain was altered in both L and PF animals, the 
absolute and relative masses of epididymal and 
retroperitoneal fat deposits were not affected 
(Figure 1d-e).

Serum hormone concentrations are influenced 
by leptin treatment
After the 10-day experiment, serum was collected 
for hormonal analysis. Hyperleptinemia was 

Figure 1. Leptin effects on body mass, food intake, and fat deposits mass. a. Absolute food consumption of control 
and leptin groups. The pair-fed group was fed with the exact amount of chow consumed by the leptin group in the 
earlier day. b. Area under the curve of food consumption. c. Mean body mass gain of control, leptin, and pair-fed 
animals relative to the first day of treatment of each group. d-e. Absolute and relative values of epididymal (d) 
and retroperitoneal (d) fat deposits. N = 15-20 animals per group. *P<0.05, ****P<0.0001. 
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confirmed by radioimmunoassay (Figure 2a). 
Corticosterone was suppressed in the leptin-
treated group but not in the pair-fed group 
(Figure 2b). Indeed, a statistically significative 
negative correlation was observed between 
serum leptin and corticosterone (Figure 2c). The 
serum concentrations of total T3 and T4 were 
not altered by the treatments (Figure 2d-e), even 
though serum TSH was diminished in the pair-
fed group (Figure 2f). 

Leptin negatively impacts thyroid function
In order to investigate thyroid function, the 
activity of two key steps in the thyroid hormone 
secretion that are stimulated by TSH, the 
iodide uptake by the sodium-iodide symporter 
(NIS) and type 1 deiodinase  (D1) activity, were 
evaluated (Carvalho & Dupuy 2017). In rats, 

thyroid D1 activity was suppressed by both 
leptin treatment and pair-feeding (Figure 3a). 
Leptin also inhibited D1 activity in PCCl3 cells, an 
immortalized rat thyroid cell lineage (Figure 3b). 
The iodide uptake by the thyroid gland was also 
impaired in both Leptin and Pair-fed (Figure 4).

DISCUSSION

The direct effects of leptin on the thyroid gland 
remain controversial, probably as a result of 
the different methodologies used for each 
study, such as different leptin doses (Cabanelas 
et al. 2007), routes of administration (Deem 
et al. 2018), treatment duration (Lisboa et al. 
2003, de Oliveira et al. 2007), and mainly, the 
energy status of the subjects (fed, fasted, food 
restricted or obese) (Araujo et al. 2009, 2010, 

Figure 2. Serum hormone concentrations are influenced by leptin treatment. a-f. Serum hormone concentrations 
of leptin, corticosterone, total T3, total T4, and TSH were measured by radioimmunoassay after 10 days of leptin 
treatment or pair-feeding. c. Pearson’s correlation between serum leptin and serum corticosterone of animals 
from the three groups. N = 8-10 animals per group. *P<0.05, ****P<0.0001, ns: non-significant.
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Lisboa et al. 2015, Perello et al. 2010). Indeed, 
most of our current understanding about the 
role of leptin on the thyroid gland comes from 
animal models with energy imbalance (Ahima 
et al. 1996, Araujo et al. 2009, Blake et al. 1991, 
Légrádi et al. 1997, Rondeel et al. 1992) with very 
little information about its role in animals fed 
ad libitum. Thus, we designed a 10-days protocol 
in which male adult rats with free access to 
standard chow were injected twice a day, and 
constantly monitored for body mass gain and 
food intake. All experiments were conducted 
with a pair-fed group, allowing us to distinguish 
the direct effects of leptin from those secondary 
to the suppression of food intake. 

Our first observation was a very robust 
impact of leptin on body mass gain (Figure 1c). It 
is well established that leptin, besides its central 
effects on appetite, activates major metabolic 
pathways related to energy expenditure and 
may, hence, affect body mass (Döring et al. 1998, 
Hwa et al. 1997, Scarpace et al. 1997, Yadav et al. 
2009). We also observed in the pair-fed group, 
composed of animals that ate as much as the 
leptin-treated animals - but received no leptin 
- an even stronger impact on body mass loss. 
A major difference between these two groups 
is the fact that even though both are energy 
deprived, the leptin group is satiated, while the 

pair-fed group may be under mild starvation 
stress. Consistent with data from the literature 
(Araujo et al. 2009), the daily administration of 
0.2 µg/g b.w. was able to suppress food intake by 
10% (Figure 1a-b). Other studies that evaluated 
the effect of leptin administration on food intake 
of animals fed ad libitum with doses ranging 
from 0.5 to 10 µg/ g b.w. per day detected an 
inhibition ranging from 33 to 50%, disclosing a 
dose-dependent inhibitory effect of leptin on 
food intake (Barzilai et al. 1997, Cettour-Rose et 
al. 2002, Steinberg et al. 2002). Although we did 
observe a modulation of both body mass and 
food intake, fat deposits were not significantly 
altered by the 10 days treatment in either the 
leptin or the pair-fed group (Figure 1d-e).

Hyperleptinemia was confirmed in the leptin 
group and was not observed in the pair-fed 
group (Figure 2a). The levels of corticosterone 
were diminished in the leptin group but not in 
the pair-fed, suggesting a direct role of leptin 
on the adrenal and/or hypothalamus-pituitary-
adrenal axis, and not an effect secondary to food 
restriction (Figure 2b). An inverse relationship 
between leptin and corticosterone was first 
observed by Ahima (1996) more than 20 years 
ago, in a seminal paper, which suggested that 
leptin could regulate the pattern of diurnal 
corticosterone secretion in mice. It has been 

Figure 3. Ex vivo and 
in vitro thyroid type 1 
deiodinase activities are 
suppressed by leptin. 
a. Ex vivo D1 activity 
in the thyroid gland of 
male Wistar rats. N = 
9-12 animals per group. 
b. In vitro D1 activity 
in PCCl3 cell line. N = 3 
independent experiments. 
*P<0.05, **P<0.01, ns: 
non-significant.
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shown that leptin administration could 
prevent the fast-induced rise in corticosterone 
in rats (Ahima et al. 1996) and even suppress 
corticosterone levels in both fed and 48h-fasted 
rats (Coppola et al. 2005). Moreover, we detected 
a statistically significant negative correlation 
between serum leptin and corticosterone 
levels (Figure 2c). Of note, the leptin-induced 
suppression of corticosterone, an orexigenic 
hormone, might be a synergistic mechanism of 
leptin’s central effects on the arcuate nucleus in 
promoting anorexia.

Serum T3 and T4 levels are typically 
decreased in response to long-term energy 
deprivation, as an homeostatic mechanism to 
save energy by preventing catabolic pathways 
and thermogenesis (Iwen et al. 2018). This 
decrease is secondary to a suppression of the 
hypothalamus-pituitary-thyroid (HPT) axis that 
is triggered by multiple circulating factors, 
including low levels of leptin. A study from our 
group revealed that animals submitted to 25 days 

of a 40% food restriction presents decreased 
levels of leptin, T3, T4, and TSH. However, when 
leptin was administered during the last 10 days 
of the 25-day restriction protocol, all suppressed 
hormones were at least partially restored 
(Araujo et al. 2009). Still, it remained unclear 
whether the rescue of thyroid hormones levels 
was secondary to an attenuation in HPT axis 
suppression or a direct effect of leptin on the 
thyroid gland. Our results indicate that neither 
leptin treatment nor the 10% restriction to which 
pair-fed animals were submitted provoked a 
decrease in serum thyroid hormones (Figure 2d-
e), corroborating previous data that compared 
various degrees of food restriction and revealed 
that only restrictions greater than 30% are 
capable of promoting low serum T3 and T4 (Laws 
et al. 2007).

Additionally, serum concentrations of thyroid 
stimulating hormone (TSH) can be ambiguously 
modulated by leptin. Ortiga-Carvalho (2002) 
showed that the incubation of pituitary explants 
with nanomolar concentrations of leptin in 
vitro inhibited TSH secretion. However, this 
direct effect observed under non-physiological 
conditions seems to be surpassed in vivo by 
the positive effect of leptin on TRH, since the 
treatment of ad libitum fed rats with leptin leads 
to an increase in serum TSH (Ortiga-Carvalho et 
al. 2002). Our results show that food restriction 
of about 10% (pair-fed group) led to decreased 
serum TSH levels, while leptin treatment that 
induces the same level of food restriction, 
prevented TSH inhibition, suggesting a direct 
stimulatory effect of leptin on the pituitary 
(Figure 2f). One possible interpretation of this 
phenomena is that the mild food restriction to 
which leptin and pair-fed groups are submitted 
are inducing a decrease in TSH levels. However, 
due to the well stablished stimulatory effect of 
leptin on TRH, and consequently, TSH secretion, 
the leptin group has its TSH levels restored, while 

Figure 4. Leptin and pair-feeding impair in-vivo 
iodide uptake by the thyroid gland. Radioactivity 
was measured in the thyroid of Wistar rats 15 min 
after [125I] NaI (3,700 Bq/300,000 CPM) i.p. injection. 
N = 6-9 animals per group. *P<0.05, **P<0.01, ns: 
non-significant.
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pair-fed animals do not, which corroborates 
previous data showing that leptin can restore 
TSH levels in rats and humans under negative 
energy balance (Araujo et al. 2009, Chan et al. 
2003, Sanchez et al. 2004). Glucocorticoids are 
well-known regulators of HPT axis, reducing 
hypophyseal TSH secretion in both humans 
and rodent models (Annunziato et al. 1977, 
Pamenter & Hedge 1980, Samuels 1994, 2000, 
Wilber & Utiger 1969). It is important to note that 
the leptin-induced decrease of corticosterone 
serum levels found in our model, might be 
an additional mechanism involved in the TSH 
restoration in the leptin treated group (Figure 
2b).

Ex vivo, in vivo, and in vitro models were 
used to assess the activity of key enzymes of 
thyroid physiology. Previous studies have shown 
that the thyroid D1 activity is diminished during 
food restriction, and that leptin reposition to 
food restricted animals does not restore D1 
activity, although serum TSH was reestablished 
(Araujo et al. 2009). Another report revealed that 
the acute administration of a single dose of 
leptin to fed rats stimulates thyroid D1 activity 
(Lisboa et al. 2003), which is coherent with the 
acute stimulation of TRH and TSH secretions 
by leptin, since D1 is modulated by TSH (Araujo 
et al. 2009, Chan et al. 2003, Légrádi et al. 1997, 
Ortiga-Carvalho et al. 2002). However, the effect 
of a longer period of leptin treatment to fed 
animals remained unclear. We show herein that 
both leptin and pair-fed rats have diminished 
thyroid D1 activity compared to controls (Figure 
3a). Hence, this result indicated the existence 
of a direct inhibitory effect of leptin on the 
thyroid D1, apart from the consequence of food 
restriction alone, because TSH, a thyroid D1 
stimulator, was restored by leptin, but remained 
low in the pair-fed group. Using a cellular model 
of rat thyroid cells (PCCl3), we found that leptin 
can in fact directly suppress thyroid D1 activity 

(Figure 3b). Thus, it is possible to speculate that 
leptin-treated rats have decreased D1 activity 
due to a direct inhibition while pair-fed rats 
have decreased D1 activity due to lower serum 
TSH levels.

The role of leptin on iodide uptake by 
the thyroid, a crucial mechanism for thyroid 
function, is also a complex issue with divergent 
reports presented in the literature. Isozaki 
et al. (2004) showed that leptin treatment of 
FRTL-5 rat thyroid cell lineage downregulates 
NIS mRNA and iodide uptake (Isozaki et al. 
2004). Conversely, another group showed that 
the treatment of fed rats with leptin for 6 days 
stimulates iodide uptake in vivo (de Oliveira 
et al. 2007). However, when the thyroid glands 
from these animals were excised and incubated 
with iodide ex vivo, they had a lower capacity to 
uptake iodide (de Oliveira et al. 2007). Previous 
studies from our team also revealed that the 
treatment of food-restricted rats with leptin 
resulted in iodide uptake inhibition (Araujo et al. 
2009). In the present work, both leptin-treated 
and pair-fed animals had diminished thyroid 
iodide uptake compared to controls (Figure 4). 
It thus seems that, similarly to what happens 
with D1 activity, while leptin-treated animals are 
likely to have lower iodide uptake due to a direct 
effect of leptin, the pair-fed group might have 
lower iodide uptake due to lower serum TSH.

Considering that both leptin and thyroid 
hormones play a fundamental role in the 
regulation of energy expenditure and food intake, 
it is very important to understand how these 
hormones interact in order to better understand 
the mechanisms involved in body mass 
regulation. In the present study, we investigated 
the effects of leptin on thyroid D1 activity and 
iodide uptake that can be directly attributed to 
hyperleptinemia and dissociate it from those 
resulting from decreased food intake induced by 
leptin. It was found that leptin treatment causes 
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a decrease in iodine uptake and thyroid D1 
activity, demonstrating a direct inhibitory effect 
of leptin on these thyroid function parameters, 
since serum TSH is unchanged in these animals. 
Despite this, serum levels of TH remained 
unchanged, showing that 10 days of 10% food 
restriction is unable to significantly change 
serum thyroid hormone levels. Therefore, this 
work contributes to a better understanding 

of the fundamental role that leptin exerts on 
hypothalamic-pituitary-thyroid axis and, more 
specifically, on key-mechanisms related to 
thyroid gland function (model in Figure 5). 
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Figure 5. Leptin influences on the hypothalamus-pituitary-thyroid (HPT) axis of rats fed ad libitum. Leptin 
interacts with its receptor in multiple organs, eliciting direct and indirect effects. Leptin is a known positive 
regulator of TSH secretion, which might be secondary to its stimulatory effect on hypothalamic TRH. However, 
hyperleptinemia has repressive effects on thyroid function. Leptin diminishes thyroid iodide uptake and thyroid’s 
deiodinase 1 activity in vivo and in vitro. Thyroid hormones levels do not seem to be modulated in this condition. 
Hyperleptinemia also exerts important effects on the hypothalamus-pituitary-adrenal gland, as shown by reduced 
corticosterone levels.
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