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ABSTRACT

A quantum version of the Monty Hall problem, based upon the Positive Operator Valued Measures
(POVM) formalism, is proposed. It is shown that basic normalization and symmetry arguments
lead univocally to the associated POVM elements, and that the classical probabilities associated
with the Monty Hall scenario are recovered for a natural choice of the measurement operators.
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INTRODUCTION

The physics of information has been the focus of intensive research in recent years (Frieden 2004,

Leff and Rex 2003, Nielsen and Chuang 2000, Plastino and Daffertshofer 2004, von Baeyer 2003).

The discovery of novel and counter-intuitive ways of processing and transmitting (quantum) in-

formation (Nielsen and Chuang 2000) has greatly increased the interest in this emerging field.

Probabilistic concepts play, of course, a prominent role in this multidisciplinary area of science.

The quantum mechanical formalism itself can be regarded as a generalization of classical proba-

bility theory. From this point of view, classical probabilistic settings can be “quantized” (Meyer

1999). The extension of classical probability problems to quantum mechanical scenarios (and
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the study of classical analogues of quantum mechanical information processes) illuminates funda-

mental issues concerning the relation between classical and quantum probabilities (Meyer 1999,

Plastino and Daffertshofer 2004). Classical probability puzzles have also been used in order to

clarify the application to statistical physics (and other fields) of subtle probabilistic ideas related

to the concept of information (Tsallis et al. 1996).

The aim of the present contribution is to revisit the celebrated Monty Hall Problem (MHP)

(Gillman 1992, Glazer and Work 2001, Hoffman 1999, von Baeyer 2003) and propose a new

quantization scheme for it, based on positive operator valued measures (POVM) (Nielsen and

Chuang 2000). The MHP (for an early and specially clear discussion see (Gillman 1992)) has

aroused considerable interest among mathematicians, philosophers and psychologists because it

touches on fundamental issues that revolve around the concept of probability and, further, onhow

people assess probabilities (von Baeyer 2003). The MHP is even becoming a staple illustration in

the teaching of probability theory (see for instance (Glazer and Work 2001)).

More explicitly, in the present work we show how the POVM formalism leads to a rather

“natural” formulation of a “minimalist” quantum version of the MHP.

POVM MEASUREMENTS

The von Neumann projective measurement discussed in standard textbooks of quantum mechan-

ics does not constitute the most general kind of measurements allowed by the laws of Quantum

Mechanics. General quantum measurements are described by a collection{Mm} of measurement

operators, the indexm referring to the possible measurement outcomes of the concomitant experi-

ment (Nielsen and Chuang 2000).

If the state of the quantum system is described, immediately before the measurement, by the

density matrixρ, then the probability that the resultm occurs is given by

p(m) = tr (M†
mMmρ). (1)

The density operator after obtaining the resultm is

ρm =
MmρM†

m

tr (M†
mMmρ)

. (2)

The measurement operators satisfy the completeness equation,
∑

m M†
mMm = I . The measurement

operators are not necessary orthogonal and the number of available outcomes may differ from

the dimensionN of the Hilbert space. Let us now consider the hermitian, positive operators

Em ≡ M†
mMm. It is plain that

∑
m Em = I and thatp(m) = tr (Emρ). Thus the set of operators

Em are sufficient to determine the probabilitiesp(m) of the different measurement outcomes. The

complete set{Em} is known as a POVM (Nielsen and Chuang 2000). Given an arbitrary set of

hermitian positive operators{Em} such that
∑

m Em = I , one can show that there exists at least

one set of measurement operatorsMm defining a measurement described by the POVM{Em}. For

instance, we haveMm =
√

Em ≡
∑N

j =1 λ
1/2
j | j 〉〈 j |, where the| j 〉’s andλ j ’s, j = 1, 2, . . . N,
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are the eigenvectors and eigenvalues ofEm, respectively. Another possible set of measurement

operatorsMm is given byMm = Um
√

Em, where theUm are arbitrary unitary operators.

A QUANTIZATION SCHEME FOR THE MONTY HALL PROBLEM

The well-known classical Monty Hall problem was originally set in the context of a game show

(von Baeyer 2003, D’Ariano et al. 2002).

1. Before the show starts a prize is hidden behind one of three closed boxes. The show master

knows where the prize is but, of course, the candidate does not.

2. The candidate is asked to choose one of the three boxes, which is, however, not opened at

this stage.

3. The show master opens another box, and shows that it is empty. (He can do this, because he

knows where the prize is.)

4. The candidate can now open one of the remaining boxes to either collect her prize or lose.

The question is now,whether the candidate should stick to her original choice or change to the

other remaining box. Classically, the optimum strategy is to alter her choice of box, thereby

doubling her chance of winning the prize. Even if there is a general consensus that this conclusion

is correct, the probabilistic reasoning leading to it is rather subtle, and has been the focus of heated

controversy (von Baeyer 2003, Hoffman 1999). Like other probabilistic puzzles of this sort it

can be “quantized”, i.e., its key elements can be translated into a quantum mechanical language.

Usually there are different ways of performing these quantizations, depending on what features of

the problem are seen as essential, and also on how are the relevant information gathering processes

formalized. The MHP is no exception and quantization schemes have already been proposed [see

(Li et al. 2001, D’Ariano et al. 2002, Flitney and Abbott 2002)].

Our present purpose is to advance adifferentquantum version of the MHP based upon POVM.

The main quantum variable will be the location of the prize which is a quantum mechanical particle

lying in a three-dimensional Hilbert space. Thus, the particle’s Hilbert space is spanned by the

orthonormal basis|0〉, |1〉 and|2〉, the state| i 〉 corresponding to the particle in thei -box. Person

A then selects a superposition of these states as the initial state of the particle and person B selects

a particular box, say|0〉. This initial choice (|0〉) stays fixed throughout the problem. Since now

either box|1〉 or |2〉 can be opened (opening a box corresponds to a POVM measurement), there

will be two possible measurement outcomes: employment of the POVM formalism entails that

there will be two operatorsE1 and E2 that are, precisely, the POVM elements associated with

measurement outcomes 1 and 2. In the present quantum mechanical scenario, person A performs

the POVM measurement (E1, E2) in order to decide which box to open. If she gets the outcomeE1,

she opens box|2〉 and if she gets outcomeE2, she opens box|1〉. From the properties of the POVM

elements and from the fact thatE1 andE2 form a complete set, it follows that (a)E1 + E2 = I , (b)
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E1 andE2 are positive, (c)E1 andE2 are Hermitian. Also, since the problem is symmetric with

respect to 1 and 2, it means that (d)E1 andE2 are symmetric in 1 and 2. The problem requires that

the probability that box|1〉 is opened is zero when the particle is in state|1〉 and similarly for box

|2〉. From that condition it follows that when the particle is in box|1〉, box|2〉 must be opened, that

is, the probability of opening|2〉 must be one. Another condition is that, when the particle is in box

|0〉, the probability of either box|1〉 or |2〉 being opened is the same, as neither box is preferred.

Therefore, from the relationEm ≡ M†
mMm and equation (1), one obtains〈1| E2 |1〉 = 〈2| E1 |2〉 = 0,

〈1| E1 |1〉 = 〈2| E2 |2〉 = 1, and〈0| E1 |0〉 = 〈0| E2 |0〉 = 1
2. These constraints forE1 andE2 imply,

after some algebra, that their associated matrices are

E1 =






1
2 c −c

c∗ 1 ib

−c∗ −ib 0




 ; E2 =






1
2 −c c

−c∗ 0 −ib

c∗ ib 1




 (3)

wherec andb are complex numbers. The eigenvalues ofE1,2 are given by the third order equation

−λ3 +
3

2
λ2 + λ

(
−

1

2
+ b2 + 2|c|2

)
−

b2

2
− |c|2 = 0 .

The positiveness ofE1,2 then requires thatb2 + 2 | c |2≤ 0, implying thatc = b = 0. Therefore,

the POVM operatorsEi = 1
2 | 0〉〈0 | + | i 〉〈i |, (i = 1, 2) are univocally determined by the basic

normalization and symmetry features of the MHP. On the contrary, the measurement operators

M1,2 are not univocally determined. The general solutions for the equationsE1,2 = M†
1,2M1,2

determining the measurement operatorsM1,2 compatible with the POVM operatorsE1,2 are of the

form M1 = 1√
2

| φ1〉〈0 | + | ψ1〉〈1 | andM2 = 1√
2

| φ2〉〈0 | + | ψ2〉〈1 |, where| φ1〉, | ψ1〉, | φ2〉,

and| ψ2〉 are arbitrary (normalized) states verifying〈φ1 | ψ1〉 = 0 and〈φ2 | ψ2〉 = 0.

On the basis of the above results we see that various quantum versions of the MHP are

possible (depending on the choice of the initial stateρin and the measurement operatorsM1,2)

leading to different post-measurement outcomes, with different associated probabilities. Notice

that the classical version of the MHP also admits several variants, corresponding to different initial

probability distributions for the three boxes, the usual case being that of equiprobability. An initial

equiprobable state in the quantum case would be described by a density matrix of the form

ρe = λ | 9〉〈9 | +
1

3
(1 − λ)I , where |9〉 =

1
√

3
(|0〉+|1〉+|2〉), 0 ≤ λ ≤ 1 ,

and I stands for the three-dimensional identity matrix. The quantum MHP proceeds as follows.

PersonA chooses an initial stateρin and then performs the quantum measurement{M1,M2}

(assuming that the box selected byB was 0). The stateρaft after the measurement is (depend-

ing on the measurement outcome) given by equation (2). The probabilities of finding the particle in

one of the states{| 0〉, | 1〉, | 2〉} are〈k | ρaft | k〉, k = 0, 1, 2. Adopting the initial “equiprobable”

stateρe andM1,2 =
√

E1,2 it can be shown, after some algebra, that these final probabilities lead to
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the same conclusion (i.e., personB must change her initial choice in order to double her chances

of success)as on the classical way if reasoning. It is interesting that this result does not depend on

the value of the parameterλ.

It is worth to stress the main features in which ourpresentquantum version of the Monty Hall

problem differs from theother quantum versionsalready discussed in the literature. First of all,

ours is a direct quantization of the MHP without recourse to ancillary particles (as opposed, for

instance, to the quantization advanced in (Li et al. 2001)). In this respect, the present approach has

some similarities with the quantization scheme proposed in (Flitney and Abbott 2002).

However, our quantum version of the Monty Hall game also exhibits important differences

from the one discussed in (Flitney and Abbott 2002). In this last case, the quantum game is

modelled on the basis of a composite quantum system consisting ofthree qutrits: one associated

with the location of the prize, a second one corresponding the candidate’s choice and a third one

associated with the master’s choice regarding which box is to be open (Flitney and Abbott 2002).

Our approach can be regarded as more economical.The state of the system is here described by

just one qutritrepresenting the location of the prize, and the combined choices of the candidate

and the master determine the structure of the generalized quantum measurementM1,M2 (and the

associated POVME1, E2).

CONCLUSIONS

A “minimalist” quantum version of the MHP, based upon the POVM formalism, has been advanced.

The corresponding POVM elementsE1,2 were seen to be completely determined by the basic

normalization and symmetry properties of the MHP scenario.

Starting from the an initial “equiprobable” state (with the natural choiceM1,2 =
√

E1,2 for

the measurement operators) leads to identical conclusions, concerning the MHP puzzle, as in the

classical probabilistic reasoning. It is remarkable that the argument leading to these conclusions

seems to be more straightforward in the quantum than in the classical setting. It is perhaps not too

farfetched to assert that the correct answer to the MHP puzzle is “embodied” in the very formalism

of quantum mechanic’s measurement theory.
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RESUMO

Uma visão quântica do problema Monty Hall é proposta baseada no formalismo das Medidas Avaliadas

do Operador Positivo (POVM). Demonstra-se que os argumentos de normalização básica e simetria levam

de maneira inequívoca para elementos associados a POVM e que as probabilidades clássicas associadas ao

cenário Monty Hall são recuperadas para uma escolha natural de medidas operadoras.
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