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ABSTRACT

A theory of differential characters is developed for manifolds with boundary. This is done from

both the Cheeger-Simons and the deRham-Federer viewpoints. The central result of the paper

is the formulation and proof of a Lefschetz-Pontrjagin Duality Theorem, which asserts that the

pairing

Ĥ
k(X, ∂X) × Ĥ

n−k−1(X) −→ S1

given by (α, β) �→ (α ∗ β) [X] induces isomorphisms

D : Ĥ
k(X, ∂X) → Hom∞(Ĥn−k−1(X), S1)

D′ : Ĥ
n−k−1(X) → Hom∞(Ĥk(X, ∂X), S1)

onto the smooth Pontrjagin duals. In particular, D and D′ are injective with dense range in the

group of all continuous homomorphisms into the circle. A coboundary map is introduced which

yields a long sequence for the character groups associated to the pair (X, ∂X). The relation of the

sequence to the duality mappings is analyzed.

Key words: Differential characters, Lefschetz duality, deRham theory.

INTRODUCTION

The theory of differential characters, introduced by Jim Simons and Jeff Cheeger in 1973, is of basic

importance in geometry. It provides a wealth of invariants for bundles with connection starting with

the classical one of Chern-Simons in dimension 3 and including large families of invariants for flat

bundles and foliations. Its cardinal property is that it forms the natural receiving space for a refined
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Chern-Weil theory. This theory subsumes integral characteristic classes and the classical Chern-

Weil characteristic forms. It also tracks certain “transgression terms” which give cohomologies

between smooth and singular cocycles and lead to interesting secondary invariants.

Each standard characteristic class has a refinement in the group of differential characters. Thus

for a complex bundle with unitary connection, refined Chern classes ĉk are defined and the total

class gives a natural transformation

ĉ = 1 + ĉ1 + ĉ2 + · · · : K(X) −→ Ĥ
∗(X)

from the K-theory of bundles with connection to differential characters which satisfies the Whitney

sum formula: ĉ(E ⊕ F ) = ĉ(E) ∗ ĉ(F ). This last property leads to non-conformal immersion

theorems in riemannian geometry.

Differential characters form a highly structured theory with certain aspects of cohomology:

contravariant functoriality, ring structure, and a pairing to cycles. There are deRham-Federer

formulations of the theory (Gillet and Soulé 1989), (Harris 1989), (Harvey et al. 2001), analogous

to those given for cohomology, which are useful for example in the theory of singular connections

(Harvey and Lawson 1993, 1995). Furthermore, the groups Ĥ
k(X) of differential characters carry

a natural topology. The connected component of 0 in this group consists of the smooth characters,

those which can be represented by smooth differential forms.

In (Harvey et al. 2001), where the deRham-Federer appoach is developed in detail, the au-

thors showed that differential characters satisfy Poincaré-Pontrjagin duality: On an oriented n

dimensional manifold X the pairing

Ĥ
k(X) × Ĥ

n−k−1
cpt (X) −→ S1

given by

(α, β) �→ (α ∗ β)[X]
(where Ĥ

∗
cpt denotes characters with compact support) induces injective maps

Ĥ
k(X) → Hom

(
Ĥ

n−k−1
cpt (X), S1

)
and Ĥ

n−k−1
cpt (X) → Hom

(
Ĥ

k(X), S1
)

with dense range in the groups of continuous homomorphisms into the circle. Moreover this range

consists exactly of the smooth homomorphisms. These are defined precisely in §4 but can be

thought of roughly as follows. The connected component of 0 in Ĥ
k(X) consists essentially (i.e.,

up to a finite-dimensional torus factor) of the exact (k +1)-forms dEk+1(X) with the C∞-topology.

Now Hom(dEk+1(X), S1) = Hom(dEk+1(X), R) is just the vector space dual. This is simply a

quotient of the space of currents, the (n − k − 1)-forms with distribution coefficients. The smooth

dual corresponds to those forms which have smooth coefficients.

In this paper we formulate the theory of differential characters for compact manifolds with

boundary (X, ∂X) and prove a Lefschetz-Pontrjagin Duality Theorem analogous to the one above.
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To do this we introduce the relative groups Ĥ
∗(X, ∂X) and develop the theory from (Harvey et al.

2001) for this case. The main theorem asserts the existence of a pairing

Ĥ
k(X) × Ĥ

n−k−1(X, ∂X) −→ S1

given by (α, β) �→ (α ∗ β)[X] and inducing injective maps with dense range as above.

The two pairings above have a formal similarity but are far from the same. The delicate part

of these dualities comes from the differential form component of characters. In the first pairing (on

possibly non-compact manifolds) we contrast forms having no growth restrictions at infinity with

forms with compact support. The second dualtiy (on compact manfiolds with boundary) opposes

forms smooth up to the boundary with forms which restrict to zero on the boundary.

In cohomology theory there are long exact sequences for the pair (X, ∂X) which interlace the

Pontrjagin and Lefschetz Duality mappings. In the last sections of this paper the parallel structure

for differential characters is studied. We introduce coboundary maps ∂ : Ĥ
k(X) → Ĥ

k+1(X, ∂X),

yielding long sequences which intertwine the duality mappings and reduce to the standard picture

under the natural transformation to integral cohomology.

1. DIFFERENTIAL CHARACTERS ON MANIFOLDS WITH BOUNDARY

Let X be a compact oriented differentiable n-manifold with boundary ∂X. Let E∗(X) denote the

de Rham complex of differential forms which are smooth up to the boundary, and set

E∗(X, ∂X) = {φ ∈ E∗(X) : φ
∣∣
∂X

= 0}.

The cohomology of this complex is naturally isomorphic to H ∗(X, ∂X; R). Let C∗(X) denote the

complex of C∞-singular chains on X and C∗(X, ∂X) ≡ C∗(X)/C∗(∂X) the relative complex.

Denote by

Z∗(X, ∂X) ≡ {c ∈ C∗(X, ∂X) : ∂c = 0}
the cycles in this complex. We begin with definitions of differential characters in the spirit of

Cheeger-Simons.

Definition 1.1. The group of differential characters of degree k on X is the set of homomor-

phisms

Ĥ k(X; R/Z) ≡ {α ∈ Hom(Zk(X), S1) : δ(α) ∈ Ek+1(X)}
where δ denotes the coboundary. Similarly the group of relative differential characters of degree

k on (X, ∂X) is defined to be

Ĥ k(X, ∂X; R/Z) ≡ {α ∈ Hom(Zk(X, ∂X), S1) : δ(α) ∈ Ek+1(X, ∂X)}

Inclusion and restriction give maps Ĥ
k(X, ∂X)

j→ Ĥ
k(X)

ρ→ Ĥ
k(∂X). with ρ ◦ j = 0.
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There is an alternative de Rham-Federer approach to these groups. Set

Ek

L1
loc

(X) ≡ k-forms on X with L1
loc-coefficients

Rk(X) ≡ the rectifiable currents of degree k (dimension n − k) on X

Ek

L1
loc

(X, ∂X) ≡ {a ∈ Ek

L1
loc

(X) : a in smooth in a neighborhood of ∂X and a
∣∣
∂X

= 0}
Rk

cpt(X − ∂X) ≡ {R ∈ Rk(X) : supp(R) ⊂ X − ∂X}

Definition 1.2. An element a ∈ Ek

L1
loc

(X) is called a spark of degree k on X if

da = φ − R where φ ∈ Ek+1(X) and R ∈ Rk+1(X). (1.3)

Denote by Sk(X) the group of all such sparks and by T k(X) the subgroup of all a ∈ Sk(X) such

that a = db + S where b ∈ Ek−1
L1

loc
(X) S ∈ Rk

cpt(X). Then the group of deRham-Federer characters

of degree k on X is defined to be the quotient

Ĥ
k(X) ≡ Sk(X)/T k(X).

Given a spark a ∈ Sk(X) we denote its associated character by 〈a〉 ∈ Ĥ
k(X).

We define relative sparks and relative deRham-Federer characterson (X, ∂X) by

Sk(X, ∂X) ≡ {a ∈ Ek

L1
loc

(X, ∂X) : da = φ − R, φ ∈ Ek+1(X, ∂X) and R ∈ Rk+1
cpt (X − ∂X)}

T k(X, ∂X) ≡ {a ∈ Sk(X, ∂X) : a = db + S, b ∈ Ek−1
L1

loc
(X, ∂X) and S ∈ Rk

cpt(X − ∂X)}
Ĥ

k(X, ∂X) ≡ Sk(X, ∂X)/T k(X, ∂X).

The decomposition (1.3) is unique. In fact we have the following. Recall that a current T is

said to be integrally flat if it can be written as T = R + dS where R and S are rectifiable. Then

from §1.5 in (Harvey et al. 2001) one concludes:

Proposition 1.4. Let a be any current of degree k on X such that da = φ−R where φ ∈ Ek+1(X)

and R is integrally flat. If da = φ′ − R′ is a similar decomposition, then φ = φ′ and R = R′.
Furthermore,

dφ = 0 and dR
∣∣
X−∂X

= 0

and φ has integral periods on cycles in X. In the case that φ ∈ Ek+1(X, ∂X) and supp(R) ⊂ X−∂X,

one has that dR = 0 and φ has integral periods on all relative cycles in (X, ∂X).

Set

Z�
0(X) = {φ ∈ E�(X) : dφ = 0 and φ has integral periods}

Z�
0(X, ∂X) = {φ ∈ E�(X, ∂X) : dφ = 0 and φ has

integral periods on relative cycles in (X, ∂X) }
Z�

rect(X) = {R ∈ R�(X) : dR
∣∣
X−∂X

= 0}
Z�

rect(X, ∂X) = {R ∈ R�
cpt(X − ∂X) : dR = 0}

(1.5)
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Corollary 1.6. Taking d1a = φ and d2a = R from the decomposition (1.3) gives well-defined

mappings

d1 : Sk(X) −→ Zk+1
0 (X), d2 : Sk(X) −→ Zk+1

rect (X),

and

d1 : Sk(X, ∂X) −→ Zk+1
0 (X, ∂X), d2 : Sk(X, ∂X) −→ Zk+1

rect (X − ∂X)

Proposition 1.7. There are natural isomorphisms

� : Ĥ
k(X)

∼=−→ Ĥ k(X; R/Z) and � : Ĥ
k(X, ∂X)

∼=−→ Ĥ k(X, ∂X; R/Z)

induced by integration.

Proof. The first is proved in (Harvey et al. 2001). The argument for the second is exactly the

same. �

Remark 1.8. In (Harvey et al. 2001) we showed that there are many different (but equivalent)

deRham-Federer definitions of differential characters on a manifold without boundary. Each of

these different presentations has obvious analogues for Ĥ
∗(X) and Ĥ

∗(X, ∂X). The proof of the

equivalence of these definitions closely follows the arguments in §2 of (Harvey et al. 2001) and

will not be given here. However, this flexibility in definitions is important in our treatment of the

∗-product.

To illustrate the point we give one example. Recall that a current R on X is called integrally

flat if R = S + dT where S and T are rectifiable. Denote by D′k(X) ≡ {En−k(X)}′ the space of

currents of degree k on X. Let Sk
max(X, ∂X) denote the set of a ∈ D′k(X) such that a is smooth

near

∂X, a
∣∣
∂X

= 0, and da = φ − R where φ ∈ Ek+1(X, ∂X)

and R is integrally flat. Let T k
max(X, ∂X) denote the subgroup of elements of the form db+S where b

is smooth near ∂X, b
∣∣
∂X

= 0, and S is integrally flat. Then the inclusion Sk(X, ∂X) ⊂ Sk
max(X, ∂X)

induces an isomorphism

Ĥ
k(X, ∂X) ∼= Sk

max(X, ∂X)/T k
max(X, ∂X)

2. THE EXACT SEQUENCES

The fundamental exact sequences established by Cheeger and Simons in (Cheeger and Simons

1985) carry over to the relative case.

Definition 2.1. A character α ∈ Ĥ
k(X, ∂X) is said to be smooth if α = 〈a〉 for a smooth

form a ∈ Ek(X, ∂X). The set of smooth characters is denoted Ĥ
k∞(X, ∂X). There is a natural

isomorphism

Ĥ
k
∞(X, ∂X) ∼= Ek(X, ∂X)/Zk

0 (X, ∂X)
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Proposition 2.2. The mappings d1 and d2 induce functorial short exact sequences:

0 → H k(X, ∂X; S1)
j1−→ Ĥ

k(X, ∂X)
δ1−→ Zk+1

0 (X, ∂X) → 0, (A)

0 → Ĥ
k
∞(X, ∂X)

j2−→ Ĥ
k(X, ∂X)

δ2−→ H k+1(X, ∂X; Z) → 0. (B)

Proof. Note that ∂X has a cofinal system of tubular neighborhoods each of which is diffeomorphic

to ∂X × [0, 1). We shall use the following elementary result.

Lemma 2.3. For any a ∈ Ek(∂X × [0, 1)) such that da = 0 and a
∣∣
∂X

= 0, there exists b ∈
Ek−1(∂X × [0, 1)) such that db = a and b

∣∣
∂X

= 0.

Proof. Write a = a1 + dt ∧ a2 where a1 and a2 are forms on X whose coefficients depend

smoothly on t ∈ [0, 1), or in other words, a1(t), a2(t) are smooth curves in Ek(X) and Ek−1(X)

respectively with a1(0) = 0. Now da = dxa1 + dt ∧ ∂a1
∂t

− dt ∧ dxa2 = 0. We conclude that

dxa1 = 0 and dxa2 = ∂a1
∂t

. Since a1(0) = 0 we have

a1(t) =
∫ t

0

∂a1

∂t
(s) ds =

∫ t

0
dxa2(s) ds = dx

∫ t

0
a2(s) ds

Set b ≡ ∫ t

0 a2(s) ds, and note that: b
∣∣
∂X

= 0, dxb = a1 and ∂b
∂t

= a2. Hence, a = db. �

We shall also need the following result. On any manifold Y let

F k(Y ) ≡ Ek

L1
loc

(Y ) + dEk−1
L1

loc
(Y )

denote flat currents and F k
cpt(Y ) those with compact support. Note that dF k(Y ) = dEk

L1
loc

(Y ). This

definition of F k
cpt(Y ) arises naturally in sheaf theory. However, the following equivalent definition

will also be useful here.

Lemma 2.4. F k
cpt(Y ) = Ek

L1
loc,cpt

(Y ) + dEk−1
L1

loc,cpt
(Y ) and so dF k

cpt(Y ) = dEk

L1
loc,cpt

(Y ).

Proof. Fix f ∈ F k
cpt(Y ) and write f = a + db where a ∈ Ek

L1
loc

(Y ) and b ∈ Ek−1
L1

loc
(Y ). Let

K = supp(f ), and note that in N ≡ Y − K we have that a = −db. By standard de Rham

theory there exists an L1
loc-form b0 on N such that a∞ ≡ a + db0 is smooth on N . Furthermore

since a∞ is weakly exact on N there exists a smooth form b∞ with a∞ = −db∞ on N . Choose

η ∈ C∞
0 (Y ) with η ≡ 1 in a neighbothood of K , let χ = 1 − η and set ã = a + d(χb0 + χb∞)

and b̃ = b − χb0 − χb∞ with χ as above. Then f = ã + db̃ and ã has compact support in Y .

Observe now that f − ã is d-closed and has compact support in Y . Since H ∗(E∗
cpt(Y )) ∼=

H ∗(F∗
cpt(Y )) we conclude that there exist a smooth form ω and a flat form g, both having compact

support on Y such that f − ã = ω + dg. Now by the paragraph above we can write g = b + de

where b is L1
loc with compact support. Hence f = ã + ω + db. �
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We first prove the surjectivity of δ1. Fix φ ∈ Zk+1
0 (X, ∂X). Then by Lemma 2.3 there is

a neighborhood N ∼= ∂X × [0, 1) of ∂X and a form A ∈ Ek(N) with dA = φ and A
∣∣
∂X

= 0.

Choose χ ∈ C∞
0 (N) with χ ≡ 1 in a neighborhood of ∂X, and set φ0 = φ − d(χA). Now

supp(φ0) ⊂⊂ X − ∂X and φ0 has integral periods, so there exists a cycle R ∈ Z�
rect(X, ∂X) with

[φ0 − R] = 0 in H ∗
cpt(X − ∂X; R). By Lemma 2.4 there are L1

loc-forms a, b with compact support

in X − ∂X such that d(a + db) = da = φ0 − R. Then d1(χA + a) = φ and surjectivity is proved.

We now construct the map j1. Recall from §1 in (Harvey et al. 2001) that

H k(X, ∂X; S1) ∼= H k
cpt(X − ∂X; S1) ∼= {f ∈ F k

cpt(X − ∂X) : df ∈ Rk+1
cpt (X − ∂X)}

dF k−1
cpt (X − ∂X) + Rk

cpt(X − ∂X)

Choose f ∈ F k
cpt(X − ∂X) with df = R ∈ Rk+1

cpt (X − ∂X), and write f = a + db where a and

b are L1
loc-forms with compact support in X − ∂X (cf. Lemma 2.4). Then a ∈ Sk(X, ∂X) and

we set j1(f ) ≡ 〈a〉 ∈ Ĥ
k(X, ∂X). Note that if f = a′ + db′ is another such decomposition, then

a − a′ = d(c′ − c) and 〈a〉 = 〈a′〉. Clearly j1 = 0 on

dF k−1
cpt (X − ∂X) + Rk

cpt(X − ∂X) = dEk−1
cpt (X − ∂X) + Rk

cpt(X − ∂X),

and so it descends to the quotient H k(X, ∂X; S1).

To see that j1 is injective, let f = a + db as above and suppose a = dc + S ∈ T k(X, ∂X)

where c is smooth and zero on ∂X. By Lemma 2.3 there exists an L1
loc-form e, smooth near ∂X,

such that c0 = c − de ≡ 0 near ∂X. Then a = dc0 + S ≡ 0 in H k(X, ∂X; S1).

We now prove the exactness of (A) in the middle. Suppose a ∈ Sk(X, ∂X) and δ1(〈a〉) = 0.

Then da = −R ∈ Rk+1
cpt (X − ∂X). Thus, in a neighborhood N of ∂X we have that a is smooth,

da = 0 and a
∣∣
∂X

= 0. By Lemma 2.3 there exists b ∈ Ek−1(N) with db = a and b
∣∣
∂X

= 0. Then

ã = a − d(χb), with χ as above, is equivalent to a in Ĥ
k(X, ∂X). Since ã has compact support in

X − ∂X and dã = −R, we see that 〈̃a〉 lies in the image of j1.

We now prove the surjectivity of δ2. Fix u ∈ H k+1(X, ∂X; Z) and choose a cycle R ∈ u.

Then there is a smooth form φ ∈ Zk+1
0 (X, ∂X) such that φ − R = df for f ∈ F k

cpt(X − ∂X). By

Lemma 2.4 f = a + db where a is L1
loc with compact support in X − ∂X. Then a ∈ Sk(X, ∂X)

and δ2(〈a〉) = u.

Now consider an element a ∈ Sk(X, ∂X) with δ2(〈a〉) = 0. Then da = φ − R where φ is

smooth and R = dS for some S ∈ Rk
cpt(X − ∂X). Then ã = a − S ≡ a in Ĥ

k(X, ∂X) and dã = 0

on X. Since ã is smooth near ∂X, standard de Rham theory shows that there is an L1
loc-form b with

compact support in X − ∂X such that ã − db is smooth. Hence, 〈a〉 = 〈̃a〉 ∈ Ĥ
k∞(X, ∂X). �

Note that

ker(δ1) ∩ ker(δ2) ∼= H k(X, ∂X; R)

H k(X, ∂X; Z)free

∼= H k
cpt(X − ∂X; R)

H k
cpt(X − ∂X; Z)free

(2.5)
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3. THE STAR PRODUCT

In this section we prove the following.

Theorem 3.1. There are functorial bilinear mappings

Ĥ
k(X, ∂X) × Ĥ

�(X, ∂X)
∗→ Ĥ

k+�+1(X, ∂X) and

Ĥ
k(X, ∂X) × Ĥ

�(X)
∗→ Ĥ

k+�+1(X, ∂X)

which make Ĥ
k(X, ∂X) a graded commutative ring and Ĥ

∗(X) a graded Ĥ
k(X, ∂X)-module. With

this structure the maps δ1, δ2 are ring and module homomorphisms.

Proof. Fix α ∈ Ĥ
k(X, ∂X) and β ∈ Ĥ

�(X). Then from (Harvey et al. 2001) we know that there

exist sparks a ∈ α and b ∈ β with

da = φ − R and db = ψ − S

with φ ∈ Zk+1
0 (X, ∂X), ψ ∈ Z�+1

0 (X), R ∈ Zk+1
rect (X, ∂X) and S ∈ Z�+1

rect (X), so that the wedge-

intersection products R ∧ b and R ∧ S are well defined. Furthermore, if supp S ⊂⊂ X − ∂X we

can also assume that a ∧ S is well defined. We then define

a ∗ b = a ∧ ψ + (−1)k+1R ∧ b, (3.2)

and if S ∈ Z�+1
rect (X, ∂X) or if a ∈ Ek

cpt(X − ∂X), we can also define

a∗̃b = a ∧ S + (−1)k+1φ ∧ b. (3.3)

Since a is smooth near ∂X and a
∣∣
∂X

= 0, a ∗ b also has these properties (as well as a∗̃b when it is

defined). Note that

d(a ∗ b) = d(a∗̃b) = φ ∧ ψ − R ∧ S (3.4)

The arguments from (Harvey et al. 2001) easily adapt to show that 〈a ∗ b〉 depends only on 〈a〉
and 〈b〉, and that 〈a ∗ b〉 = 〈a∗̃b〉 (when it is defined). Associativity, commutativity, etc. are

straightforward. Equation (3.4) establishes the homomorphism propertes of δ1 and δ2. �

4. SMOOTH PONTRJAGIN DUALS

The exact sequences of Proposition 2.2 show that Ĥ
∗(X, ∂X) has a natural topology making it a

topological group (in fact a topological ring) for which δ1 and δ2 are continuous homomorphisms.

Essentially it is a product of the standard C∞-topology on forms with the standard topology on

the torus H k(X, ∂X; R)/H k
free(X, ∂X; Z). It can also be defined as the quotient of the topology

induced on sparks by the embedding Sk(X, ∂X) ⊂ F k(X) × Ek+1(X, ∂X) × Rk+1
cpt (X − ∂X)

sending a �→ (a, d1a, d2a). (Similar remarks apply to Ĥ
∗(X).)
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It is natural to consider the dual to Ĥ
∗(X, ∂X) in the sense of Pontrjagin. For an abelian

topological group A we denote by A� ≡ Homcont(A, S1) the group of continuous homomorphisms

h : A → S1. Then 2.2(B) yields a dual sequence

0 → H k+1(X, ∂X; Z)� → Ĥ
k(X, ∂X)�

ρ→ Ĥ
k
∞(X, ∂X)� → 0. (4.1)

where ρ is the restriction mapping.

Definition 4.2. An element f ∈ Ĥ
k∞(X, ∂X)� is called smooth if there exists a form ω ∈

Zn−k
0 (X) such that

f (α) ≡
∫

X

a ∧ ω (mod Z)

for a ∈ α ∈ Ĥ
k∞(X, ∂X). An element f ∈ Ĥ

k(X, ∂X)� is called smooth if ρ(f ) is smooth. The

set of these is called the smooth Pontrjagin dualof Ĥ
k(X, ∂X) and is denoted by Ĥ

k(X, ∂X)�∞ =
Hom∞(Ĥk(X, ∂X), S1).

Proposition 4.3. The smooth Pontrjagin dual Ĥ
k(X, ∂X)�∞ is dense in Ĥ

k(X, ∂X)�.

Proof. Applying δ1 to Ĥ
k∞(X, ∂X) gives an exact sequence

0 → T → Ĥ
k
∞(X, ∂X) → dEk(X, ∂X) → 0

where T = H k(X, ∂X; R)/H k
free(X, ∂X; Z), with dual sequence

0 → dEk(X, ∂X)� → Ĥ
k
∞(X, ∂X)� → T � → 0 (4.4)

Observe that T � = H k
free(X, ∂X; Z) ∼= H n−k

free (X; Z), and that dEk(X, ∂X)� = {dEk(X, ∂X)}′
(the topological vector space dual) which is exactly the space of currents of degree n − k − 1 on

X restricted to the closed subspace dEk(X, ∂X). This gives a commutative diagram

0 −−−→ dEn−k−1(X) −−−→ Zn−k
0 (X) −−−→ H n−k

free (X; Z) −−−→ 0� � �∼=

0 −−−→ dD′n−k−1
(X) −−−→ Ĥ

k∞(X, ∂X)� −−−→ T � −−−→ 0

with exact rows. Since En−k−1(X) is dense in D′n−k−1
(X), the result follows. �

There is a parallel story for Ĥ
∗(X). The analogue of 2.2(B) gives an exact sequence

0 → H k+1(X; Z)� → Ĥ
k(X)�

ρ→ Ĥ
k
∞(X)�. → 0. (4.5)

Definition 4.6. An element f ∈ Ĥ
k∞(X)� is called smooth if there exists a form ω ∈

Zn−k
0 (X, ∂X) such that

f (α) ≡
∫

X

a ∧ ω (mod Z)
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for a ∈ α ∈ Ĥ
k∞(X) An element f ∈ Ĥ

k(X)� is called smoothif ρ(f ) is smooth. The set of these

is called the smooth Pontrjagin dual of Ĥ
k(X) and is denoted Ĥ

k(X)�∞ = Hom∞(Ĥk(X), S1).

Proposition 4.7. The smooth Pontrjagin dual Ĥ
k(X)�∞ is dense in Ĥ

k(X)�.

Proof. Applying δ1 to Ĥ
k∞(X) gives an exact sequence

0 → T → Ĥ
k
∞(X) → dEk(X) → 0,

where T = H k(X; R)/H k(X; Z), with dual sequence

0 → dEk(X)� → Ĥ
k
∞(X)� → T � → 0. (4.8)

Observe now that T � = H k(X; Z) ∼= H n−k(X, ∂X; Z), and dEk(X)� = {dEk(X)}′ is the space

of currents of degree n − k − 1 on X restricted to the closed subspace dEk(X). This gives a

commutative diagram:

En−k−1(X, ∂X)
d−−−→ Zn−k

0 (X, ∂X) −−−→ H n−k(X, ∂X; Z) −−−→ 0� � �∼=

D′n−k−1
(X)

d−−−→ Ĥ
k∞(X)� −−−→ T � −−−→ 0

with exact rows. Since En−k−1(X, ∂X) is dense in D′n−k−1
(X), the result follows. �

5. LEFSCHETZ-PONTRJAGIN DUALITY

This brings us to the main result of the paper.

Theorem 5.1. Let X be a compact, oriented n-manifold with boundary ∂X. Then the biadditive

mapping

Ĥ
k(X, ∂X) × Ĥ

n−k−1(X) −→ S1

given by

(α, β) �→ (α ∗ β) [X]

induces isomorphisms

D : Ĥ
k(X, ∂X)

∼=−→ Ĥ
n−k−1(X)�∞

and

D′ : Ĥ
k(X)

∼=−→ Ĥ
n−k−1(X, ∂X)�∞

Proof. Fix α ∈ Ĥ
k(X, ∂X) and suppose (α ∗ β)[X] = 0 for all β ∈ Ĥ

n−k−1(X). We shall show
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that α = 0. Choose a spark a ∈ α and write da = φ − R as in 1.4. Then for all smooth forms

b ∈ En−k−1(X) we have by (3.3) that

α ∗ 〈b〉 [X] = (−1)k+1
∫

X

φ ∧ b ≡ 0 mod Z

since d2b = 0. It follows that φ = 0.

Hence, da = −R ∈ Rk+1
cpt (X−∂X) is a cycle with [R] ∈ H k+1

cpt (X−∂X; Z)tor
∼= Hn−k−1(X−

∂X; Z)tor. Choose any u ∈ H n−k(X; Z)tor
∼= Hk(X, ∂X; Z)tor, and choose a relative cycle S ∈ u.

Let m be the order of u. Then there is a (k+1)-chain T on X with dT = mS rel ∂X. Set b = − 1
m

T

and consider b as a spark of degree n − k − 1 on X with db = −S. Now we may assume S and T

to have been chosen so that supp(S) ∩ supp(R) = ∅ and T meets R properly. Then

0 = α ∗ 〈b〉 [X] ≡ (−1)k+1R ∧ b [X] mod Z

≡ (−1)k+1 1

m
R ∧ T [X] mod Z

≡ (−1)k+1Lk([R], [S]) mod Z

≡ (−1)k+1Lk(δ2α, u) mod Z

where Lk denotes the de Rham-Seifert linking between the groups Hn−k−1(X − ∂X; Z)tor and

Hk(X, ∂X; Z)tor. By the non-degeneracy of this pairing we conclude that δ2α = 0.

Therefore α ∈ ker(δ1)∩ker(δ2) can be represented by a smooth d-closed form a ∈ Ek(X, ∂X).

In fact by Lemma 2.3 we may choose a to have compact support in X − ∂X. Now for any cycle

S ∈ Zn−k
rect (X), i.e., any k-dimensional rectifiable current S ∈ Rk(X) with dS ∈ Rk−1(∂X), we can

find ψ ∈ En−k(X) and b ∈ En−k−1
L1

loc
(X) with db = ψ − S. Then by (3.3) we have that

0 = α ∗ 〈b〉 [X] ≡ a ∧ S [X] mod Z

≡
∫

S

a mod Z.

Hence, a represents the zero class in

Hom(Hk(X, ∂X; Z), R)/ Hom(Hk(X, ∂X; Z), Z) ∼= H k(X, ∂X; R)/H k(X, ∂X; Z)free,

and by (2.2) and (2.5) we conclude that α = 0. Thus the map D is injective.

To see that D is surjective consider the commutative diagram with exact rows:

0 −−−→ H k(X, ∂X; S1)
j1−−−→ Ĥ

k(X, ∂X)
δ1−−−→ Zk+1

0 (X, ∂X) −−−→ 0

∼=
� �D

�D0

0 −−−→ Hom(H n−k(X; Z), S1) −−−→ Ĥ
n−k−1(X)�

ρ−−−→ Ĥ
n−k−1∞ (X)� −−−→ 0

where the top row is 2.2(A) and the bottom row is the dual of 2.2(B). By definition D0 is onto the

smooth elements in Ĥ
n−k−1(X)� and therefore the map D is surjective.
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The proof thatD′ is an isomorphism is parallel. Fix β ∈ Ĥ
n−k−1(X) and suppose (α∗β)[X] = 0

for all α ∈ Ĥ
k(X, ∂X). We shall show that β = 0. Choose a spark b ∈ β and write db = ψ − S

as in 1.4. Then for all smooth forms a ∈ Ek(X, ∂X) we have by (3.3) that

〈a〉 ∗ β [X] =
∫

X

a ∧ ψ ≡ 0 mod Z

since d2a = 0. It follows that ψ = 0.

Hence, db = −S ∈ Rn−k(X) is a relative cycle with torsion homology class

[S] ∈ H n−k(X; Z)tor
∼= Hk(X, ∂X; Z)tor.

Choose u ∈ H k+1(X, ∂X; Z)tor
∼= Hn−k−1(X; Z)tor, and choose a cycle R ∈ u with support in

X − ∂X. Let m be the order of u. Then there is a (n − k − 1)-chain T in X − ∂X with dT = mR.

Set a = − 1
m

T and consider a as a spark of degree k on X with da = −R. Now we may assume

R and T to have been chosen so that supp(R) ∩ supp(S) = ∅ and T meets S properly. Then

0 = 〈a〉 ∗ β [X] ≡ (−1)k+1a ∧ S [X] mod Z

≡ (−1)k+1 1

m
T ∧ S [X] mod Z

≡ (−1)k+1Lk([R], [S]) mod Z

≡ (−1)k+1Lk(u, δ2β) mod Z

where Lk denotes the de Rham-Seifert linking as before. We conclude that δ2α = 0.

Therefore β ∈ ker(δ1)∩ker(δ2) can be represented by a smooth d-closed form b ∈ En−k−1(X).

Now for any cycle R ∈ Zk+1
rect (X, ∂X), i.e., any (n − k − 1)-dimensional rectifiable current R ∈

Rn−k−1(X − ∂X) with dR = 0, we can find φ ∈ Ek+1(X, ∂X) and a ∈ Ek

L1
loc

(X, ∂X) with

da = φ − R. Then by (3.2) we have that

0 = 〈a〉 ∗ β [X] ≡ (−1)k+1R ∧ b [X] mod Z

≡ (−1)n(k+1)

∫
R

b mod Z.

Hence, b represents the zero class in

Hom(Hn−k−1(X; Z), R)/ Hom(Hn−k−1(X; Z), Z) ∼= H n−k−1(X; R)/H n−k−1(X; Z)free,

and by (2.2) and (2.5) we conclude that β = 0. Thus the map D′ is injective.

The surjectivity of D′ follows as before from the commutative diagram with exact rows:

0 −−−→ H n−k−1(X; S1)
j1−−−→ Ĥ

n−k−1(X)
δ1−−−→ Zn−k

0 (X) −−−→ 0

∼=
� �D

�D0

0 −−−→ Hom(H k+1(X, ∂X; Z), S1) −−−→ Ĥ
k(X, ∂X)�

ρ−−−→ Ĥ
k∞(X, ∂X)� −−−→ 0.

This completes the proof. �
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6. COBOUNDARY MAPS

It is natural to ask if there is a coboundary mapping ∂ with the property that the sequence

· · · −→ Ĥ
k−1(∂X)

∂−→ Ĥ
k(X, ∂X)

j−→ Ĥ
k(X)

ρ−→ Ĥ
k(∂X)

∂−→ Ĥ
k+1(X, ∂X) −→ . . .

(6.1)

is exact. The differential-form-component of characters makes this impossible. However, there do

exist natural coboundary maps ∂ with the following properties:

(1) Under δ2 the sequence (6.1) becomes the standard long exact sequence in integral cohomology.

(2) Under δ1 the sequence (6.1) becomes a sequence of smooth d-closed forms which induces the

standard long exact sequence in real cohomology.

Recall that the definitions of Thom maps and Gysin maps for differential characters depend

essentially on a choice of “normal geometry”. This will also be true for our coboundary maps. Fix a

tubular neighborhood N0 of ∂X in X and an identification N0
∼= ∂X ×[0, 2), and let π : N0 → ∂X

be the projection. Set N = ∂X × [0, 1) ⊂ N0 and let IN be the characteristic function of this

subset. Let χ be a smooth approximation to IN ; specifically choose χ(x, t) = χ(t) where χ ≡ 1

near 0 and χ(t) = 0 for t ≥ 1. Then set

λ ≡ χ − IN ∈ Ĥ
0(X)

Note that dλ = dχ − [∂N ] has compact support in X − ∂X.

Definition 6.2. We define the coboundary map ∂ = ∂λ : Ĥ
k(∂X) −→ Ĥ

k+1(X, ∂X) by

∂(a) = (π∗a) ∗ λ.

Verification of (1) and (2) above is straightforward, and the details are omitted.

7. SEQUENCES AND DUALITY

At the level of cohomology the long exact sequences for the pair (X, ∂X) are related by the duality

mappings. There is an analogous diagram for differential characters:

Ĥ
k(X, ∂X)

j−−−→ Ĥ
k(X)

ρ−−−→ Ĥ
k(∂X)

∂−−−→ Ĥ
k+1(X, ∂X)

D
� D

� D
� D

�
Ĥ

n−k−1(X)�
j∗−−−→ Ĥ

n−k−1(X, ∂X)�
∂∗−−−→ Ĥ

n−k−2(∂X)�
ρ∗−−−→ Ĥ

n−k−2(X)�

and it is natural to ask whether this diagram commutes (up to sign). The square on the left is evidently

commutative. The other two squares commute up to an error term which we now analyse.

We begin with the square on the right. Fix α ∈ Ĥ
k(∂X) and β ∈ Ĥ

n−k−2(X) and choose

L1
loc-sparks a0 ∈ α and b ∈ β with da0 = φ0 − R0 and db = ψ − S as usual. Let a = π∗a0,
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φ = π∗φ0 and R = π∗R0 denote the pull-backs to the collar neighborhood of ∂X via the projection

π : N0 → ∂X defined in §6. Then

{(D ◦ ∂)(α)}(β) = (π∗a ∗ b ∗ λ)[X] = {(a ∗ b) ∧ dχ + (−1)nd2(a ∗ b)λ}[X]. (7.1)

Now we may assume that S
∣∣
N0

= π∗S0 for some S0 ∈ Rk+1(∂X), and we may further assume that

supp(R0)∩supp(S0) = ∅ because dim(R0)+dim(S0) = n−2. Hence, d2(a∗b) = π∗R0 ∧π∗S0 =
π∗(R0 ∧ S0) = 0, and from (7.1) we see that

(−1)n−1{(D ◦ ∂)(α)}(β) = (−1)n−1(a ∗ b) ∧ dχ [X]
= (a ∗ b)[∂X] − χd(a ∗ b)[X]
= {(ρ∗ ◦ D)(α)}(β) − χd(a ∗ b)[X].

Now d(a ∗ b) = φ ∧ ψ − R ∧ S = φ ∧ ψ and we can write ψ = ψ1 + dt ∧ ψ2 as in the proof of
Lemma 2.3. Since φ = π∗φ0 we see that φ ∧ ψ1 = 0 and we conclude that

{(ρ∗ ◦ D)(α)}(β) + (−1)n{(D ◦ ∂)(α)}(β) =
∫

N

φ ∧ χdt ∧ ψ2

=
∫

∂X

φ ∧
∫ 1

0
χ(t) dt ∧ ψ2

=
∫

∂X

φ ∧ π∗ {χ(t) dt ∧ ψ2} ≡ E(λ).

(7.2)

Thus for example we see that (ρ∗◦D)(α) = (−1)n−1(D◦∂)(α) on all β which are π∗-pull backs in

N . Furthermore, we can consider the family of sparks λε ≡ r∗
ε λ where rε : ∂X×[0, ε) → ∂X[0, 1)

is given by rε(x, t) = (x, t/ε). From (7.2) we see that

lim
ε→0

E(λε) = 0.

A similar analysis applies to the middle square in the diagram and we have the following.

Proposition 7.3. The duality diagram above commutes in the limit as ε → 0.

This is the best one can expect. The “commutators” in this diagram do not lie in the smooth

dual. Of course by Propositions 4.3 and 4.7 they do lie in its closure.

Here is an explicit example of this non-commutativity. Let X = S2 × D3 be the product of

the 2-sphere and the 3-disk. Choose sparks α ∈ S1(S2) and b ∈ S2(D3) with da = ω − [x0] and

db = 5 − [0] for some x0 ∈ S2, where ω and 5 are unit volume forms on S2 and D3 respectively.

Direct calculation shows that

(a ∗ b)[∂X] = 1 but (a ∗ λ ∗ b)[X] =
∫

D3
(1 − χ)5 < 1.
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RESUMO

Uma teoria de caracteres diferenciais é aqui desenvolvida para variedades com bordo. Isto é feito tanto do

ponto de vista de Cheeger-Simons como do deRham-Federer. O resultado central deste artigo é a formulação

e a prova de um teorema da dualidade de Lefschetz-Pontrjagin, que afirma que o pareamento

Ĥ
k(X, ∂X) × Ĥ

n−k−1(X) −→ S1

dado por (α, β) �→ (α ∗ β) [X] induz isomorfismos

D : Ĥ
k(X, ∂X) → Hom∞(Ĥn−k−1(X), S1)

D′ : Ĥ
n−k−1(X) → Hom∞(Ĥk(X, ∂X), S1)

sobre os duais diferenciáveis de Pontrjagin. Em particular, D e D′ são injetivos com domínios densos no

grupo de todos os homeomorfismos contínuos no círculo. Uma aplicação de cobordo é introduzida, a qual

fornece uma sequência longa para os grupos de caracteres associados ao par (X, ∂X). A relação desta

sequência com as aplicações de dualidade é analisada.

Palavras-chave:caracteres diferenciais, dualidade de Lefschetz, teoria de deRham.
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