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ABSTRACT

Proca’s equations for two types of fields in a Dirac’s æther with electric conductivityσ are

solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The

background is a static, curved spacetime whose spatial section is homogeneous and has the

topology of either the three-sphereS3 or the projective three-spaceP 3. Simple relations between

the range of Proca fieldλ, the Universe radiusR, the limit of photon rest massmγ and the

conductivityσ are written down.
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INTRODUCTION

The possibility of a nonzero electric conductivityσ in cosmic scale (Dirac’s æther) has been

considered by several authors and in various contexts: Vigier (Vigier 1990), e.g., showed that

introducingσ > 0 in the vacuum is equivalent to attributing a nonzero massmγ > 0 to the photon.

Further study of the relation betweenσ andmγ was performed by Kar, Sinha and Roy (Karet

al. 1993), who also discussed possible astrophysical consequences of having nonzeromγ . More

recently, Ahonen and Enqvist (Ahonen & Enqvist 1996) studied the electric conductivity in the hot

plasma of the early universe.

In this paper we study the time evolution of an electromagnetic field withmγ > 0; in the

background we assume a curved spacetime together with a constant conductivityσ > 0. In the

next section we present the three existing classes of exact solutions for the field; they depend on

the relative values ofσ , mγ and the curvature of spacetime as given by a constant radiusR. In

the last section we describe in some detail a set of solutions in which the quantityE2 + c2 B2 is

homogeneous throughout the spacelike hypersurfacest = const .
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EQUATIONS AND SOLUTIONS

In the static elliptic spacetime we use the cylindrical Schrödinger coordinatesxµ = (ct; ρ, φ, ζ )

and write the line element

ds2 = c2dt2 − R2(dρ2 + sin2 ρdφ2 + cos2 ρdζ 2) , (1)

whereR = const is the characteristic radius of the three-geometry.

We assume a nonstatic four-potential with cylindrical symmetry

�µ(0; 0, cf (t), 0) , (2)

wheref (t) is a function to be determined from the field equations; clearly�µ satisfies the Lorentz

gauge,∂µ[(−g)1/2�µ] = 0. The only surviving independent components ofFµν = ∂µ�ν − ∂ν�µ

are then

F 2
0 = ḟ , F 2

1 = 2cf cotρ , (3)

where the overdot means the timet derivative. In the orthonormal basis the nonvanishing compo-

nents of theE andB fields are

Eφ = −Rḟ sinρ , Bζ = 2f cosρ . (4)

Proca equations in a conducting medium are

F
µν

;µ + (κ/λ2)�ν = (σ/c)uαF να , (5)

whereσ > 0 is the electric displacement conductivity,uα = δ0
α is the four-velocity of the observer,

λ is the range of the Proca field, andκ = ±1 accounts for two different categories of field. For

ν = 2 eq.(5) gives

f̈ + 2%ḟ + γf = 0 , (6)

where

% = σ/2 , γ = 4c2/R2 + κc2/λ2 . (7)

Three classes of solutions of (6) exist, depending on the relative values of the constants% (non-

negative) andγ (arbitrary); see Table I, whereC1 andC2 are integration constants.

Solutions in which the field energy is homogeneously distributed in three-space are of particular

interest. From eqs.(4) we find that the quantity' = E2
φ + c2B2

ζ is independent ofρ only when

R2ḟ 2 = 4c2f 2, which implies thatf (x) ∝ exp(2εct/R), with ε = ±1. Three non-equivalent sets

of solutions with∂'/∂ρ = 0 are discussed in the next section, and constraining relations among

the quantities{σ, λ, R, c, κ, ε} in each set are given.
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TABLE I

Potential functions.

Classes Exact solution of (6)

%2 = γ f (t) = (C1 + C2t)e−%t

%2 < γ f (t) = C1e−%t cos(
√

γ − %2t + C2)

%2 > γ f (t) = e−%t (C1e
√

%2−γ t + C2e−
√

%2−γ t )

DISCUSSION

As is seen from (4), in all solutions theE and B fields are mutually orthogonal and spatially

inhomogeneous. TheE field is purely azimuthal, vanishes on theζ axis (the axis whereρ = 0),

and is maximum along the circleρ = π/2. Oppositely, theB field is purely longitudinal, is

maximum along theζ axis and vanishes on the circleρ = π/2. These expressions for the fields are

globally possible whenever the topology of the underlying 3-space is either the simply connected

3-sphereS3 or the multiply connected real projective 3-spaceP 3. No other multiply connected

3-space endowed with the elliptical geometry (e.g. the Poincaré dodecahedron) seems appropriate

to globaly accomodate these forms of field.

FromTable I we immediately distinguish twostatic solutions: one is the trivial no-field solution

E = B = 0, corresponding toC1 = C2 = 0; the other is a pure magnetostatic field withE = 0 and

Bζ = 2C1 cosρ, and belongs to class%2 > γ with C2 = 0, γ = 0, κ = −1, λ = R/2.

All non-static solutions arestanding Proca waves. Most have exponential damping with

increasing time. Nevertheless, in the class%2 > γ , an exception deserves mentioning: when

γ < 0, that isκ = −1 andλ < R/2 in eq.(7), the potentialf (t) and the Proca fields show

an exponential growth as time increases. Three sets of non-static solutions with the quantity

' = E2
φ + c2B2

ζ independent on the location in three-space were encountered: see Table II. Setsa

andb both have' ∝ exp(−4ct/R) (damping along the time), and both containλ → ∞, σ = 4c/R

(a Maxwell field) as a special case. The setc has' ∝ exp(+4ct/R) (increasing along the time).

Setsb andc both contain the special caseλ = R/
√

8, σ = 0 (vanishing conductivity).

TABLE II

Parameters for uniform '(t).

a κ = +1 σ = 4c/R + cR/(2λ2) λ free ε = −1

b κ = −1 σ = 4c/R − cR/(2λ2) λ ≥ R/
√

8 ε = −1

c κ = −1 σ = cR/(2λ2) − 4c/R λ ≤ R/
√

8 ε = +1

A few words seem worthwhile, concerning the physical values of the constantsmγ , λ, σ andR.
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First recall that the massmγ and the rangeλ share the quantum correspondencemγ c = h/λ, where

h = 6.6×10−34 J s is Planck’s constant. Assumingλ ≈ R ≈ 1010 l.y. ≈ 1026 m, thenmγ ≈ 10−68

kg, which is fifteen orders of magnitude smaller than the upper limit obtained by experimental

techniques (Goldhaber & Nieto 1971); this amounts to saying that a Proca field with that value

for the rangeλ is presently indiscernible from a Maxwell field. From Table II, and still assuming

λ ≈ R ≈ 1026 m, one should haveσ ≈ 10−17/s for systems withE2 + c2 B2 homogeneous over

the 3-space; this value for the conductivity coincides in order of magnitude with that of ref. (Kar

et al. 1993), obtained in a different context. To conclude, if we consider the above values for the

various constants in the damping harmonic class%2 < γ in Table I, then the resulting frequency

would beδ ≈ 10−18 Hz; fields with such a slow variation would seem static.
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