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ABSTRACT
Proca’s equations for two types of fields in a Dirac’s aether with electric conductivilye
solved exactly. The Proca electromagnetic fields are assumed with cylindrical symmetry. The
background is a static, curved spacetime whose spatial section is homogeneous and has the
topology of either the three-sphes@ or the projective three-spad®. Simple relations between
the range of Proca field, the Universe radius, the limit of photon rest masa, and the
conductivityo are written down.
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INTRODUCTION

The possibility of a nonzero electric conductivity in cosmic scale (Dirac’s aether) has been
considered by several authors and in various contexts: Vigier (Vigier 1990), e.g., showed that
introducinge > 0 in the vacuum is equivalent to attributing a nonzero mass- 0 to the photon.
Further study of the relation betweenandm, was performed by Kar, Sinha and Roy (Keir
al. 1993), who also discussed possible astrophysical consequences of having monzifore
recently, Ahonen and Enqvist (Ahonen & Enqvist 1996) studied the electric conductivity in the hot
plasma of the early universe.

In this paper we study the time evolution of an electromagnetic field with> 0; in the
background we assume a curved spacetime together with a constant conductivif; In the
next section we present the three existing classes of exact solutions for the field; they depend on
the relative values of, m, and the curvature of spacetime as given by a constant r&lius
the last section we describe in some detail a set of solutions in which the quahtity-? B? is
homogeneous throughout the spacelike hypersurtagesons:.
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EQUATIONSAND SOLUTIONS

In the static elliptic spacetime we use the cylindrical Schrédinger coordinétes (ct; o, ¢, ¢)
and write the line element

ds? = ?dr® — R?(dp® + sir? pd¢? + cos pdc?) , L

whereR = const is the characteristic radius of the three-geometry.
We assume a nonstatic four-potential with cylindrical symmetry

@#(0; 0, ¢cf (1), 0), 2

where f (¢) is a function to be determined from the field equations; cle&Hysatisfies the Lorentz
gauge,[(—g)¥2®*] = 0. The only surviving independent componentsf = 3, ®, — 9, P,
are then

FR=f, FZ = 2cf cotp , (3)

where the overdot means the timderivative. In the orthonormal basis the nonvanishing compo-
nents of thee andB fields are

Ey=—Rfsinp, B, = 2fcosp . (4)
Proca equations in a conducting medium are
i+ (/32" = (/g F™ 5)

wheres > 0is the electric displacement conductivity, = 8¢ is the four-velocity of the observer,
A is the range of the Proca field, ard= +1 accounts for two different categories of field. For
v = 2 eq.(5) gives

f+2rf+yfr=o, (6)
where
F=0/2, y=4c%/R*+«kc?/A?. (7

Three classes of solutions of (6) exist, depending on the relative values of the cofs{ants
negative) ang (arbitrary); see Table |, wheK€; andC? are integration constants.

Solutionsinwhich the field energy is homogeneously distributed in three-space are of particular
interest. From eqs.(4) we find that the quaniiy= Ej + cng2 is independent op only when
R?f? = 4¢? £2, which implies thatf (x) « exp(2ect/R), with e = 1. Three non-equivalent sets
of solutions withd A /dp = 0 are discussed in the next section, and constraining relations among
the quantitiedo, A, R, ¢, k, €} in each set are given.
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TABLE|

Potential functions.

Classes Exact solution of (6)

r2=y f(t) = (C1+ Cat)e™ "

r2<y f(t) = Cre " cogy/y — T2t 4 C>)
I25y | £(t) = e T (CreV P74 CpeVTP-71)

DISCUSSION

As is seen from (4), in all solutions the and B fields are mutually orthogonal and spatially
inhomogeneous. The field is purely azimuthal, vanishes on theaxis (the axis wherg = 0),
and is maximum along the circle = n/2. Oppositely, theB field is purely longitudinal, is
maximum along the axis and vanishes on the cirgle= /2. These expressions for the fields are
globally possible whenever the topology of the underlying 3-space is either the simply connected
3-spheres? or the multiply connected real projective 3-spa@& No other multiply connected
3-space endowed with the elliptical geometry (e.g. the Poincaré dodecahedron) seems appropriat:
to globaly accomodate these forms of field.

From Table I we immediately distinguish twgtatic solutions: one is the trivial no-field solution
E =B = 0, corresponding t6; = C2 = 0; the other is a pure magnetostatic field witk= 0 and
B, = 2C; cosp, and belongs to clag®? > y with C2 =0,y = 0,k = —1, A = R/2.

All non-static solutions arestanding Proca waves. Most have exponential damping with
increasing time. Nevertheless, in the cla@¥s > y, an exception deserves mentioning: when
y < 0, thatisk = —1 andA < R/2 in eq.(7), the potentiaf (+) and the Proca fields show
an exponential growth as time increases. Three sets of non-static solutions with the quantity
A= Edz) + csz2 independent on the location in three-space were encountered: see Tabledl. Sets
andb both haveA o exp(—4ct/R) (damping along the time), and both contair> 0o, 0 = 4¢/R
(a Maxwell field) as a special case. The séiasA o exp(+4ct/R) (increasing along the time).
Setsb andc both contain the special case= R/+/8, 0 = 0 (vanishing conductivity).

TABLEII

Parametersfor uniform A(z).

al|k=+1|0=4c/R+cR/(22:?) rfree | e=-—1
k=-1|0c=4/R—cR/(22\%) | »>R/8 | e =—1
k=-1|0=cR/2%) —4c/R | < R/8 | e =+1

A few words seem worthwhile, concerning the physical values of the constanis o andR.
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First recall that the mass, and the rangé share the quantum correspondemce = i/, where

h = 6.6 x 10-34J sis Planck’s constant. Assumihg~ R ~ 10%°Ly. ~ 10?® m, thervn, ~ 1058

kg, which is fifteen orders of magnitude smaller than the upper limit obtained by experimental
techniques (Goldhaber & Nieto 1971); this amounts to saying that a Proca field with that value
for the rangeh is presently indiscernible from a Maxwell field. From Table II, and still assuming
A~ R ~ 10°° m, one should have ~ 10~1/s for systems witlE? + ¢? B> homogeneous over

the 3-space; this value for the conductivity coincides in order of magnitude with that of ref. (Kar
et al. 1993), obtained in a different context. To conclude, if we consider the above values for the
various constants in the damping harmonic clB$s< y in Table I, then the resulting frequency
would bes ~ 10718 Hz; fields with such a slow variation would seem static.
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