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ABSTRACT

We prove general optimal euclidean Sobolev and Gagliardo-Nirenberg inequalities by using mass

transportation and convex analysis results. Explicit extremals and the computation of some optimal

constants are also provided. In particular we extend the optimal Gagliardo-Nirenberg inequality

proved by Del Pino and Dolbeault 2003 and the optimal inequalities proved by Cordero-Erausquin

et al. 2004.

Key words: best constants, Gagliardo-Nirenberg inequalities, mass transportation, convex anal-

ysis.

1 INTRODUCTION AND MAIN RESULTS

For 1 < p < n, the optimal euclidean Sobolev inequality states that

||u||p∗ ≤ Kn,p||∇u||p (1)

for any function u ∈ D1,p (the completion of C∞
0 (R

n) under the norm ||∇u||p), where

||∇u||p
p =

∫
Rn

|∇u|p dx,

p∗ = np

n − p
, Kn,p = p − 1

n − p

(
n − p

n(p − 1)

) 1
p

(
�(n + 1)

�( n
p )�(n + 1 − n

p )ωn−1

) 1
n

.

Moreover, equality in (1) holds if and only if u(x) = αw(β(x − x0)) for some α ∈ R, β �= 0 and

x0 ∈ Rn , where w(x) = (1 + |x | p
p−1 )

− n
p∗ . This result was proved independently by Aubin 1976

and Talenti 1976.

Correspondence to: Marcos Montenegro
E-mail: montene@mat.ufmg.br

An Acad Bras Cienc (2005) 77 (4)



582 JURANDIR CECCON and MARCOS MONTENEGRO

Recently, Del Pino and Dolbeault 2003 established for 1 < p < n the following optimal

euclidean Gagliardo-Nirenberg inequality, which extends (1),

||u||r ≤ Lp,q ||∇u||θp||u||1−θ
q (2)

for any function u ∈ D p,q (the completion of C∞
0 (R

n) under the norm ||∇u||p + ||u||q), where

p < q ≤ (n − 1)p

n − p
, r = p(q − 1)

p − 1
, θ = n(q − p)

(np − (n − p)q)(q − 1)
(3)

and

Lp,q =
(

q − p

p
√
π

)θ ( pq

n(q − p)

) θ
p
(

np − q(n − p)

pq

) 1
r

(
�(

q(p−1)
q−p )�(

n
2 + 1)

�(
p−1

p
np−q(n−p)

q−p )�(
n(p−1)

p + 1)

) θ
n

.

Moreover, the extremal functions of (2) are given precisely by u(x) = αw(β(x − x0)) for α ∈ R,

β �= 0 and x0 ∈ Rn , where w(x) = (1 + |x | p
p−1 )

− p−1
q−p . Note that when q = (n−1)p

n−p , the inequality

(2) becomes (1), and the same holds for the respective extremal functions.

The proofs of (1) and (2) provided in Aubin 1976, Talenti 1976 and Del Pino and Dolbeault

2003 rely on techniques from calculus of variations such as symmetrization of minimizers and

uniqueness of radial solutions of Euler-Lagrange equations of related variational problems.

More recently, Cordero-Erausquim et al. 2004 introduced a new method in the proof of (1)

and (2) based on a refinement by McCann 1995 of a mass transportation result due to Brenier. This

new approach allowed them to generalize (1) and (2) considering arbitrary norms on Rn .

The main purpose of this note is to extend (1) and (2) in the same spirit of the recent work

of Gentil 2003, which presents a general version of the optimal L p-euclidean logarithmic Sobolev

inequality by using estimates of semigroups associated to Hamilton-Jacobi equations.

In order to state our results, let C : Rn → R be an even, positive (C(x) > 0, ∀x �= 0),

p-homogeneous (C(λx) = λpC(x), ∀λ ≥ 0), 1 < p < ∞, and convex function. Let us denote

by C∗ the Legendre transform of C and by p′ the conjugate of p, i.e. 1
p′ + 1

p = 1. It is easy to

show that C∗ is an even, positive, p′-homogeneous and convex function.

Our main results are the following:

THEOREM 1.1 (Sobolev inequality). Let 1 < p < n and C be an even, positive, p-homogeneous

and convex function on Rn. Then for any u ∈ D1,p, we have

||u||p∗ ≤ K C
n,p||C(∇u)||

1
p

1 (4)

with K C
n,p = ||C(∇wC)||−

1
p

1 , where wC(x) = (σ + C∗(x))−
n
p∗ with σ > 0 chosen such that

||wC ||p∗ = 1. Moreover, the extremal functions of (4)are given precisely by u(x) = αwC(β(x−x0))

for α ∈ R, β �= 0 and x0 ∈ Rn.
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THEOREM 1.2 (Gagliardo-Nirenberg inequality). Let 1 < p < n and C be an even, positive,

p-homogeneous and convex function on Rn. Then for any u ∈ D p,q , we have

||u||r ≤ LC
p,q ||C(∇u)||

θ
p

1 ||u||1−θ
q (5)

with LC
p,q = (||C(∇wC)||

θ
p

1 ||wC ||1−θ
q )−1, where q, r , θ satisfy (3) and wC(x) = (σ +

q − p

p − 1
C∗(x))−

p−1
q−p with σ > 0 chosen such that ||wC ||r = 1. Moreover, the extremal functions of

(5) are given precisely by u(x) = αwC(β(x − x0)) for α ∈ R, β �= 0 and x0 ∈ Rn.

Taking C(x) = |x |p, where | · | is the euclidean norm, we see that inequalities (4) and (5)

extend (1) and (2), respectively. More generally, if C(x) = ||x ||p, where || · || denotes an arbitrary

norm on Rn , inequalities (4) and (5) coincide with the optimal Sobolev and Gagliardo-Nirenberg

inequalities established by Cordero-Erausquim et al. 2004. Note also that Theorem 1.2 provides

an alternative proof of Theorem 1.1 of Gentil 2003 for 1 < p < n and C(x) only continuous by

passing to the limit q ↓ p in (5).

Clearly the general conditions on C do not allow us to use arguments of symmetrization and

uniqueness for Euler-Lagrange equations. We instead carry out the proof of Theorems 1.1 and

1.2 by mass transportation tecniques in a similar spirit as used by Cordero-Erausquim et al. 2004,

except that we shall rely on results of convex analysis involving C and C∗.

REMARK 1.1. Natural generalizations of Theorems 2 and 4 of Cordero-Erausquim et al. 2004 are

obtained by using a similar reasoning to that used in the proofs of Theorems 1.1 and 1.2.

As a consequence of Theorems 1.1 and 1.2, we have the explicit form of the constants K
Cµ
n,p and

LCµ
p,q for the family of p-homogeneous functions Cµ(x) = 1

p |x |p
µ in terms of the optimal constants

related to the classical euclidean Sobolev and Gagliardo-Nirenberg inequalities, where | · |µ denotes

the µ-norm |x |µ = (∑n
i=1 |xi |µ

) 1
µ for 1 ≤ µ < ∞ and |x |∞ = max{|xi | : i = 1, ..., n}. In fact,

we have:

THEOREM 1.3. Let 1 < µ ≤ ∞ and ν be the conjugate of µ. The optimal constants K
Cµ
n,p and

LCµ
p,q are given by

K C1
n,p = p

1
p

√
π

2�( n
2 + 1)

1
n

Kn,p, K
Cµ
n,p = p

1
p

(
�( 1

2 + 1)

�( 1
ν

+ 1)

)(
�( n

ν
+ 1)

�( n
2 + 1)

) 1
n

Kn,p,

LC1
p,q = p

θ
p

( √
π

2�( n
2 + 1)

1
n

)θ
Lp,q, LCµ

p,q = p
θ
p

(
�( 1

2 + 1)

�( 1
ν

+ 1)

)θ (
�( n

ν
+ 1)

�( n
2 + 1)

) θ
n

Lp,q,

where Kn,p and Lp,q are the optimal constants of (1) and (2), respectively.

Note that Theorem 1.3 expresses the optimal constants K
Cµ
n,p and LCµ

p,q essentially in terms of

K C2
n,p and LC2

p,q . Stated in this form, its proof requires several changes of variables followed by

straightforward computations. Note also that the asymptotic behaviours of K
Cµ
n,p and LCµ

p,q as µ

tends to 1 are exactly K C1
n,p and LC1

p,q , respectively, as expected.
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2 PROOF OF THEOREMS

In the sequel we prove only Theorems 1.2 and 1.3 since the first one extends Theorem 1.1. We

begin with some preliminary results. Consider functions u, v ∈ C∞
0 (R

n) such that u, v ≥ 0 and

||u||r = ||v||r = 1. Let ϕ be the Brenier map which transports the measure ur (x)dx onto the

measure vr (x)dx .

LEMMA 2.1. The inequality holds

p(q − 1)

q − p

∫
Rn
vqdx ≤ −q

∫
Rn

uq−1∇u · ∇ϕdx + p(q − 1)− n(q − p)

q − p

∫
Rn

uqdx .

PROOF. See page 322 in Cordero-Erausquim et al. 2004.

Another essential ingredient in the proofs is the following lemma:

LEMMA 2.2. Let 1 < p < ∞ and C be a positive, p-homogeneous and convex function on Rn.

Then

(p − 1)C(∇C∗(x)) = C∗(x)

almost everywhere.

PROOF. From the conditions under C we have C∗∗ = C , thus C(y) = supz∈Rn {y · z − C∗(z)}. The

positivity and p-homogeneity of C imply that C∗ is finite. So, from the convexity and continuity of

C∗, it follows that ∇C∗(x) exist a.e.. Moreover, we have ∇C∗(x) ·x −C∗(x) ≥ ∇C∗(x) · y−C∗(y)
a.e. in x . Therefore, C(∇C∗(x)) = ∇C∗(x) ·x −C∗(x). On the other hand, the p′-homogeneity of

C∗ implies that ∇C∗(x) · x = p′C∗(x). Finally we have C(∇C∗(x)) = (p′ − 1)C∗(x) as wished.

PROOF OF THEOREM 1.2. For u ∈ D p,q we have |u| ∈ D p,q and ∇|u| = ±∇u. So, it is sufficient

to prove (5) for nonnegative functions, since C(x) is an even function. Moreover, we may assume

that u ∈ C∞
0 (R

n) such that ||u||r = 1 by using density and homogeneity. At first, utilizing the

Fenchel inequality x · y ≤ C(x) + C∗(y), with x = −∇u and y = uq−1∇ϕ, the Monge-Ampère

equation ur (x) = vr (∇ϕ(x)) det(D2ϕ(x)), satisfied by the Brenier map, and the density argument

in Lemma 2.1, we find

p(q − 1)

q(q − p)

∫
Rn
w

q
C dx −

∫
Rn

C∗(x)w
p(q−1)

p−1
C dx

≤
∫
Rn

C(∇u)dx + p(q − 1)− n(q − p)

q(q − p)

∫
Rn

uqdx,

(6)

where again we use that C is even. Now applying this inequality to the function uλ(x) =
λ

n(p−1)
p(q−1) u(λx) in the place of u, we obtain for any λ > 0,

K1 ≤ λ
n(p−q)+p(q−1)

q−1 ||C(∇u)||1 + K2λ
n(p−q)
p(q−1) ||u||qq (7)

where

K1 = p(q − 1)

q(q − p)

∫
w

q
C dx −

∫
C∗(x)w

p(q−1)
p−1

C dx and K2 = p(q − 1)− n(q − p)

q(q − p)
≥ 0.
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Minimizing in λ we arrive at a general Gagliardo-Nirenberg inequality. Let us show now that wC

is an extremal function for such general inequality. For this, it is sufficient to check that inequality

(6) becomes an equality for u = wC . In fact, equality in (6) with u = wC implies equality in

(7) with λ = 1, and therefore the infimum in (7) is achieved for λ = 1 and its value is K1. This

concludes (5). The key ingredients in the proof of the equality in (6) are the following identities:

∫
Rn
w

q
C dx = 1

n

∫
(σ + q − p

p − 1
C∗(x))−

q(p−1)
q−p div(x)dx

= q

n

∫
Rn
(σ + q − p

p − 1
C∗(x))−

p(q−1)
q−p ∇C∗(x) · xdx

= pq

n(p − 1)

∫
Rn
(σ + q − p

p − 1
C∗(x))−

p(q−1)
q−p C∗(x)dx

= pq

n(p − 1)

∫
Rn

C∗(x)w
p(q−1)

p−1
C dx,

where we utilize integration by parts and the property ∇C∗(x) · x = p
p−1C∗(x), and

∫
Rn

C(∇(wC))dx =
∫
Rn

C((σ + q − p

p − 1
C∗(x))−

q−1
q−p ∇C∗(x))dx

= 1

p − 1

∫
Rn
(σ + q − p

p − 1
C∗(x))−

p(q−1)
q−p C∗(x)dx = 1

p − 1

∫
Rn

C∗(x)w
p(q−1)

p−1
C dx,

by Lemma 2.2. Replacing these relations in (6), the desired equality follows. Finally, let u be

an extremal for (5). Adaptating the proof of Theorem 5 in Cordero-Erausquim et al. 2004, one

concludes that the inequality stated in Lemma 2.1 becomes an equality with v = wC . Next,

proceeding as in Cordero-Erausquim et al. 2004 we finish the proof.

PROOF OF THEOREM 1.3. In the sequel, we only furnish the steps of the calculus of LCµ
p,q . The

form of the optimal Sobolev constant follows by taking q = (n−1)p
n−p . Lemma 2.2 applied to C∗

in the place of C furnishes C∗(∇C(x)) = (p − 1)C(x). Using this relation with C = Cµ, we

find C∗
µ(x) = 1

p′ |x |p′
ν for 1 < µ < ∞. By approximation, we also have C∗

1 (x) = 1
p′ |x |p′

∞ and

C∗∞(x) = 1
p′ |x |p′

1 . The computation of LCµ
p,q depends on the integral

∫
Sn−1

n∏
i=1

|yi | 2−ν
ν ds, (8)

where Sn−1 denotes the (n − 1)−dimensional unit sphere. In order to compute this integral we

consider the chart ψ : Dn−1 ⊂ R
n−1 → Sn−1 defined by ψ(y1, · · ·, yn) = (y1, · · ·, yn−1, (1 −

(y2
1 + · · · + y2

n−1))
1
2 ), where Dn−1 denotes the unit ball in Rn−1. Clearly, the Riemmanian metric

An Acad Bras Cienc (2005) 77 (4)



586 JURANDIR CECCON and MARCOS MONTENEGRO

g of Sn−1 on the chart ψ satisfies |g| = 1
1−(y2

1+···+y2
n−1)

. So, we have

∫
Sn−1

n∏
i=1

|yi | 2−ν
ν ds = 2

∫
Dn−1

|y1| 2−ν
ν . · · · .|yn−1| 2−ν

ν (1 − (y2
1 + · · · + y2

n−1)
2−ν
2ν

(1 − (y2
1 + · · · + y2

n−1))
1
2

dy

= 2
∫

Dn−1
|y1| 2−ν

2 . · · · .|yn−1| 2−ν
ν (1 − (y2

1 + · · · + y2
n−1))

1−ν
ν dy

= 2
∫ 1

0

∫
Sn−2

|y1| 2−ν
ν . · · · .|yn−1| 2−ν

ν (1 − r2)
1−ν
ν r

(2−ν)(n−1)
ν

+n−2dsdr

= 2
∫ 1

0
(1 − r2)

1−ν
ν r

2(n−1)
ν

−1dr
∫

Sn−2

n−1∏
i=1

|yi | 2−ν
ν ds .

By finite induction on n, it follows immediately that

∫
Sn−1

n∏
i=1

|yi | 2−ν
ν ds = 2n

n−1∏
i=1

∫ 1

0
(1 − r2)

1−ν
ν r

2(n−i)
ν

−1dr .

Now, using some properties of the gamma function, we find∫
Sn−1

n∏
i=1

|yi | 2−ν
ν ds = 2n�( 1

ν
)n

ν�( n
ν

+ 1)
. (9)

According to Theorem 1.2, the function

w(x) = (1 + C∗
µ(x))

− p−1
q−p = (1 + 1

p′ |x |p′
ν )

p−1
p−q

is extremal for LCµ
p,q . On the other hand, using the change of variable xi = ( 1

p′ )
1
p′ |yi | 2−ν

ν yi followed

by straightforward computations, we obtain

||Cµ(∇w)||1 = 1

p
p′ n

p′
(

2

ν

)n
ν

2

(
p − 1

q − p

)p ∫ ∞

0

t
n
p′

(1 + t)
p(q−1)

q−p

dt
∫

Sn−1

n∏
i=1

|yi | 2−ν
ν ds,

||w||qq = p′ n
p′
(

2

ν

)n
ν

2p′

∫ ∞

0

t
n
p′ −1

(1 + t)
q(p−1)

q−p

dt
∫

Sn−1

n∏
i=1

|yi | 2−ν
ν ds

and

||w||rr = p′ n
p′
(

2

ν

)n
ν

2p′

∫ ∞

0

t
n
p′ −1

(1 + t)
p(q−1)

q−p

dt
∫

Sn−1

n∏
i=1

|yi | 2−ν
ν ds .

Finally, replacing (9) in these relations and using some properties of the gamma function, we arrive

at the desired form of the constant LCµ
p,q .
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RESUMO

Provamos desigualdades ótimas euclideanas de Sobolev e de Gagliardo-Nirenberg gerais via método de

transporte de massa e resultados de análise convexa. Obtemos funções extremais explícitas e calculamos

algumas melhores constantes. Em particular, estendemos a desigualdade ótima de Gagliardo-Nirenberg

obtida por Del Pino e Dolbeault 2003 e as desigualdades ótimas obtidas por Cordero-Erausquin et al. 2004.

Palavras-chave: melhores constantes, desigualdades de Gagliardo-Nirenberg, transporte de massa, análise

convexa.
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