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ABSTRACT

In this paper, we obtain a new characterization of the Euclidean sphere as a compact Riemannian manifold

with constant scalar curvature carrying a nontrivial conformal vector field which is also conformal Ricci

vector field.
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INTRODUCTION

In the middle of the last century many geometers tried to prove a conjecture concerning the Euclidean

sphere as the unique compact orientable Riemannian manifold (Mn,g) admitting a metric of constant scalar

curvature S and carrying a nontrivial conformal vector field X . Among them, we cite Bochner and Yano

(1953), Goldberg and Kobayashi (1962), Lichnerowicz (1955), Nagano and Yano (1959), Obata (1962),

Obata and Yano (1965, 1970) and Tashiro (1965). The attempts to prove this conjecture resulted into the

rich literature which has currently been attracting a lot of attention in the mathematical community. We

address the reader to the book of Yano (1970) for a summary of those results. Ejiri gave a counter example

to this conjecture building metrics of constant scalar curvature on the warped product S1 × f Fn−1, where

Fn−1 is a compact Riemannian manifold of constant scalar curvature, while S1 stands for the Euclidean

circle. In his example the conformal vector field is X = f (d/dt), where d/dt is a unit vector field on S1 and

f satisfies a certain ordinary differential equation, see Ejiri (1981) for details.
The primary concept involved in the study of this subject is of Lie derivatives. After all, what is the

geometric meaning of the Lie derivative of a tensor T (or of a vector field Y ) with respect to a vector field
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X? This is a method that uses the flow of X to push values of T back to p and then differentiate. The result

is called the Lie derivative LX T of T with respect to X . A vector field X on Riemannian manifold (Mn,g) is
called conformal if LX g is a multiple of g. There are important applications of Lie derivatives in the study

of how geometric objects such as Riemannian metrics, volume forms, and symplectic forms behave under

flows. For instance, it is well-known that the Lie derivative of a vector field Y with respect to X is zero if

and only if Y is invariant under the flow of X . It turns out that the Lie derivative of a tensor has exactly the

same interpretation. For more details see the book of Lee (2003).

We highlight that Nagano andYano (1959) have proved that the aforementioned conjecture is true when

(Mn,g) is an Einstein manifold, i.e., the Ricci tensor of metric g satisfies Ric = S
n g. In this case, S is constant

for dimensions n ≥ 3. Thus if X is the conformal vector field with conformal factor ρ, that is, LX g = 2ρg,
we deduce LX Ric = 2ρ Ric. With this setting we define a conformal Ricci vector field on a Riemannian

manifold (Mn,g) as a vector field X satisfying

LX Ric = 2βRic, (1)

for some smooth function β : Mn →R. In particular, on Einstein manifolds this concept is equivalent to the

classical conformal vector field. With this additional condition the aforementioned conjecture is true. More

precisely, we have the following theorem.

Theorem 1. Let (Mn,g), n ≥ 3, be a compact orientable Riemannian manifold with constant scalar curva-
ture carrying a nontrivial conformal vector field X which is also a conformal Ricci vector field. Then Mn is

isometric to a Euclidean sphere Sn(r). Moreover, up to a rescaling, the conformal factor ρ is given by

ρ = τ − hv

n

and X is the gradient of the Hodge-de Rham function which in this case, up to a constant, is the function
1
n hv, where hv is a height function on a unitary sphere Sn and τ is an appropriate constant.

We point out that Obata and Yano (1965) have obtained the same conclusion of the preceding theorem

under the hypothesis LX Ric = αg, for some smooth function α defined in Mn. Moreover, when Mn is an

Einstein compact Riemannian manifold the result of Nagano and Yano (1959) is a consequence of Theorem

1.We also observe that the compactness of Mn in our result is an essential hypothesis. In fact, let us consider

the hyperbolic space Hn as a hyperquadric of the Lorentz-Minkowski space Ln+1 and v a nonzero fixed

vector in Ln+1. After a straightforward computation, it is easy to verify that the orthogonal projection v> of

v onto the tangent bundle THn provides a nontrivial conformal vector field on Hn for an appropriate choice

of v. Consequently, since Hn is Einstein, it follows that v> is also a nontrivial conformal Ricci vector field

on Hn.

PRELIMINARIESANDAUXILIARY RESULTS

To start with, we consider the Hilbert-Schmidt norm for tensors on a Riemannian manifold (Mn,g), i.e., the
inner product 〈T,S〉 = tr

(
T S∗

)
. It is important to notice that for an orthonormal basis {e1, . . . ,en}, we can

use the natural identification of (0,2)-tensors with (1,1)-tensors, T (ei,e j) = g(Tei,e j), to write

〈T,S〉= ∑
i, j

Ti jSi j = ∑
i

g(Tei,Sei).
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We recall that the divergence of a (1,r)-tensor T on Mn is the (0,r)-tensor given by

(divT )(v1, . . . ,vr)(p) = tr
(
w 7→ (∇wT )(v1, . . . ,vr)(p)

)
,

where p ∈ Mn and (v1, . . . ,vr) ∈ TpM× . . .×TpM.

Let X be a smooth vector field on Mn, and let ϕ be its flow. For any p ∈ Mn, if t is sufficiently close to
zero, ϕt is a diffeomorphism from a neighborhood of p to a neighborhood of ϕt(p), so ϕ∗

t pulls back tensors

at ϕt(p) to ones at p.
Given a (0,r)-tensor T on Mn, the Lie derivative of T with respect to X is the (0,r)-tensor LX T given

by

(LX T )p =
d
dt

∣∣∣
t=0

(ϕ∗
t T )p = lim

t→0

1
t

[
ϕ
∗
t (Tϕ(t,p))−Tp

]
.

Fortunately, there is a simple formula for computing the Lie derivative without explicitly finding the flow.

For any (0,r)-tensor T on Mn,

(LX T )(Y1, . . . ,Yr) = X(T (Y1, . . . ,Yr))−T ([X ,Y1],Y2, . . . ,Yr)− . . .

−T (Y1, . . . ,Yr−1, [X ,Yr]),

where Y1, . . . ,Yr are any smooth vector fields on Mn, and [X ,Yi] stands for the Lie bracket of X and Yi.

In what follows we prove some lemmas and integral formulas which will be required later.

Lemma 1. For any symmetric (0,2)-tensor T on a Riemannian manifold (Mn,g) and X ∈ X(M), holds

LX |T |2 = 2〈LX T,T 〉−2〈T 2,LX g〉.

In particular, if X is a conformal vector field with conformal factor ρ, then we have LX |T |2 = 2〈LX T,T 〉−
4ρ|T |2.

Proof. Let {e1, . . . ,en} be a geodesic orthonormal frame at p ∈ Mn. Then we have

LX |T |2 = LX

(
∑
i, j

Ti jTi j

)
= 2∑

i, j
Ti jX(Ti j)

= 2∑
i, j

Ti j{(LX T )i j +T ([X ,ei],e j)+T (ei, [X ,e j])}

= 2∑
i, j

Ti j(LX T )i j −2∑
i, j

Ti j{T (∇eiX ,e j)+T (ei,∇e j X)}.

Whence, we use that T is symmetric to deduce

LX |T |2 = 2〈T,LX T 〉−2∑
i, j

Ti j{g(∇eiX ,Te j)+g(Tei,∇e j X)}

= 2〈T,LX T 〉−∑
j

2g(∇Te j X ,Te j)−∑
i

2g(Tei,∇TeiX)

= 2〈T,LX T 〉−2∑
i
(LX g)(Tei,Tei)

= 2〈T,LX T 〉−2∑
i, j

T 2
i j(LX g)i j,

which completes the proof of the lemma.
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Corollary 1. Under the assumptions of Lemma 1 we have LX |T |2 = 0, provided that LX g = 2ρg and

LX T = 2ρT.

Another useful result is given by the following lemma.

Lemma 2. Let (Mn,g) be a Riemannian manifold endowed with a symmetric (0,2)-tensor T. Then it holds

X〈T,g〉= 〈LX T,g〉−〈T,LX g〉.

In particular, if LX T = 2β T, then

2β tr(T ) = 〈∇(tr(T )),X〉+ 〈T,LX g〉.

Proof. Let {e1, . . . ,en} be a geodesic orthonormal frame at a point p ∈ Mn. By the symmetry of T , we have

〈LX T,g〉= tr(LX T ) = ∑
i

(
X(Tii)+2T (∇eiX ,ei)

)
= X〈T,g〉+2〈T,∇X〉
= X〈T,g〉+ 〈T,LX g〉,

that finishes the proof of the lemma.

Now we remind the reader that the traceless tensor of a symmetric (0,2)-tensor T on a Riemannian

manifold
(
Mn,g

)
is given by

T̊ = T − tr(T )
n

g. (2)

With this setting we prove the next corollary.

Corollary 2. Let (Mn,g) be a Riemannian manifold endowed with a symmetric (0,2)-tensor T such that

LX T = 2β T , with LX g = 2ρg. Then we have:

1. 2
(
β −ρ

)
tr(T ) = 〈∇(tr(T )),X〉.

2. If tr(T ) is a non null constant, then β = ρ and LX T̊ = 2ρT̊ .

Proof. Since LX g = 2ρg we have immediately the first item. Now, if tr(T ) is a non zero constant, then we
have β = ρ, which implies LX T̊ = LX T − tr(T )

n LX g = 2ρT̊ , finishing the proof of the corollary.
Next, we apply the previous results to the Ricci tensor. First of all, given a conformal vector field X on

a Riemannian manifold Mn such that LX g = 2ρg, we have the next well-known formulae, see e.g. Obata

and Yano (1970).

LX Ric =−(n−2)∇2
ρ − (∆ρ)g, (3)

LX S =−2(n−1)∆ρ −2Sρ, (4)

and

LX G =−(n−2)
(

∇
2
ρ − 1

n
(∆ρ)g

)
, (5)

where G = Ric− S
n g = R̊ic.

We claim that if Mn is compact with constant scalar curvature S and ρ is not constant, then equation

(4) allows us to infer that S is positive. Indeed, since ρ is not constant S
n−1 belongs to the spectrum of the

Laplacian of Mn. Therefore, we deduce the next lemma.
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Lemma 3. Let (Mn,g) be a compact Riemannian manifold with constant scalar curvature such that

LX Ric = 2β Ric and LX g = 2ρg. Then we have β = ρ and LX |G|2 = 0.

Proof. Since LX Ric = 2β Ric and S = tr(Ric) is a positive constant we get by Corollary 2 that β = ρ and

LX G = 2ρG. Therefore, applying Corollary 1 we have LX |G|2 = 0, which completes the proof of the

lemma.

Taking into account the second contracted Bianchi identity: div(Ric) = 1
2 dS and using the identity

div(S
n g) = 1

n dS we obtain the following relation

div(G) =
n−2

2n
dS.

Therefore, we can write

ρdiv(G)(∇ρ) =
n−2

4n
〈∇S,∇ρ

2〉.

The next equation is well-known. For details of a more general case see for example Lemma 1 in Barros

and Gomes (2013).

div(ρG(∇ρ)) = ρdiv(G)(∇ρ)+ρ〈∇2
ρ,G〉+G(∇ρ,∇ρ). (6)

Since 〈G,g〉= 0, from (5) we have

〈LX G,G〉=−(n−2)〈∇2
ρ,G〉.

Applying Lemma 1 to this identity we obtain

〈∇2
ρ,G〉=− 1

n−2

(1
2
LX |G|2 +2ρ|G|2

)
. (7)

Comparing (6) and (7) we infer

div(ρG(∇ρ)) =
n−2

4n
〈∇S,∇ρ

2〉− 1
n−2

(
ρ

2
LX |G|2 +2ρ

2|G|2
)
+G(∇ρ,∇ρ). (8)

In what follows we assume that (M,g) is an orientable Riemannian manifold. If M is not orientable, we

take the orientable double covering M̃ of M and induce, in the natural manner, the Riemannian metric g̃ on

M̃. Then (M,g) and (M̃, g̃) have the same local geometry.

As a direct consequence from (8) and Stokes’ Theorem we obtain the following lemma.

Lemma 4. Let (Mn,g) be a compact orientable Riemannian manifold endowed with a conformal vector

field X of conformal factor ρ , then∫
M

G(∇ρ,∇ρ)dM =
1

n−2

∫
M

(
ρ

2
LX |G|2 +2ρ

2|G|2
)

dM+
n−2

4n

∫
M

ρ
2
∆SdM.

Before stating our next result we note that |∇2ρ − ∆ρ

n g|2 = |∇2ρ|2− 1
n(∆ρ)2. Accordingly, the Bochner

formula becomes

1
2

∆|∇ρ|2 = G(∇ρ,∇ρ)+
S
n
|∇ρ|2 + |∇2

ρ − ∆ρ

n
g|2 + 1

n
(∆ρ)2

−〈∇ρ,∇
( Sρ

n−1
+

LX S
2(n−1)

)
〉,

An Acad Bras Cienc (2018) 90 (3)



2668 ABDÊNAGOA. BARROS, CÍCERO P. AQUINO and JOSÉ N.V. GOMES

where in the last term we use equation (4). Then,

1
2

∆|∇ρ|2 = G(∇ρ,∇ρ)+ |∇2
ρ − ∆ρ

n
g|2 −

S
(
|∇ρ|2 +ρ∆ρ

)
n(n−1)

− 1
2n(n−1)

(
(LX S)∆ρ +n〈∇S,∇ρ

2〉+n〈∇ρ,∇(LX S)〉
)
.

By integration, ∫
M

(
G(∇ρ,∇ρ)+ |∇2

ρ − ∆ρ

n
g|2 + 1

2n
(ρ2

∆S+(LX S)∆ρ
))

dM = 0. (9)

In the notation of (2) we have |∇̊2ρ|2 = |∇2ρ − ∆ρ

n g|2. Comparing Lemma 4 with equation (9) we get the

lemma.

Lemma 5. Let (Mn,g) be a compact orientable Riemannian manifold endowed with a conformal vector

field X of conformal factor ρ , then

1.
∫

M

(
ρ

n−2

(1
2LX |G|2 +2ρ|G|2

)
+ |∇̊2ρ|2 + S

2 div(ρ∇ρ)+ LX S
2n ∆ρ

)
dM = 0.

2.
∫

M

(
ρ

n−2〈LX G,G〉+ |∇̊2ρ|2 + S
2 div(ρ∇ρ)+ LX S

2n ∆ρ

)
dM = 0.

Proof. First assertion is a direct combination of Lemma 4 and equation (9), while the second one follows from

Lemma 1 and the first assertion. Indeed, from this latter lemma we have 1
2LX |G|2 + 2ρ|G|2 = 〈LX G,G〉,

which completes our proof.

We are in the right position to prove our main result.

PROOF OF THEOREM 1

Firstly, we observe that we are supposing that there exists a vector field X on Mn such that LX g = 2ρg and

LX Ric = 2β Ric, for some smooth functions ρ and β on Mn, where ρ is non-constant. Consequently, from

Lemma 3 we obtain β = ρ and LX |G|2 = 0. Secondly, from item (1) of Lemma 5 and equation (4) we get∫
M

( 2
n−2

ρ
2|G|2 + |∇2

ρ +
Sρ

n(n−1)
g|2

)
dM = 0.

Taking into account that ρ is non-constant the preceding identity allows us to achieve G = 0 and

∇2ρ = − S
n(n−1)ρg. Therefore, we can apply a classical result due to Obata (1962), for instance, to con-

clude that Mn is isometric to a Euclidean sphere Sn(r). Moreover, ∇2ρ = ∆ρ

n g and ∆(∆ρ)+ S
n−1 ∆ρ = 0 (see

equation (4)). Rescaling the metric we can assume that S = n(n−1). Then we conclude that ∆ρ is the first

eigenvalue of the unitary sphere Sn.Whence, there exists a fixed vector v ∈ Sn such that ∆ρ = hv =−1
n ∆hv.

Thus we have ∆(ρ + 1
n hv) = 0, which gives ρ = τ − 1

n hv. Setting u =−ρ we obtain

L∇ug = 2∇
2u =−2∇

2
ρ = 2ρg = LX g.

It is also true that L∇uRic = 2ρRic. Besides, by Hodge-de Rham decomposition theorem we can write

X =Y +∇`, for some vector fieldY with divY = 0 and ` is the Hodge-de Rham function. So, ∆u= divX =∆`

which implies u− ` is constant. Note that this is sufficient to complete our proof.
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AMORE GENERAL CASE

We notice that LX G =−(n−2)∇̊2ρ and LX G = LX Ric− 1
nLX(Sg) give

LX Ric =
1
n
LX(Sg)− (n−2)∇̊2ρ

= 2ρ
(S

n
g
)
+

1
n
(LX S)g− (n−2)∇̊2ρ

= 2ρ
(
Ric−G

)
+

1
n
(LX S)g− (n−2)∇̊2ρ

= 2ρRic+
1
n
(LX S)g+T,

where T =−2ρG− (n−2)∇̊2ρ. Therefore, we deduce

LX Ric = 2ρ Ric+
1
n
(LX S)g+T,

where tr(T ) = 0.
Let us suppose that LX Ric = 2β Ric+T and LX g = 2ρg, where T is a (0,2)-tensor on Mn. By using

(3) and (4) we deduce

tr(T ) =−2(n−1)∆ρ −2βS

and

LX S = tr(T )+2(β −ρ)S.

In particular, if S is a non null constant and ρ 6= 0, we have

tr(T ) = 0 if and only if β = ρ. (10)

On the other hand, LX G = LX Ric− 1
nLX(Sg) gives

LX G = 2βG+T − tr(T )
n

g (11)

and

LX |G|2 = 4(β −ρ)|G|2 +2〈T,G〉. (12)

Lemma 6. Let (Mn,g), n ≥ 3, be a compact orientable Riemannian manifold endowed with a conformal

vector field X whose conformal factor is ρ. If LX Ric = 2β Ric+ T , then the following integral formula

holds: ∫
M

( 1
n−2

(
2βρ|G|2 +ρ〈T,G〉

)
+ |∇2

ρ − ∆ρ

n
g|2 + S

2
div(ρ∇ρ)+

LX S
2n

∆ρ

)
dM = 0.

Proof. First we notice that from (12) we obtain

ρ

2
LX |G|2 +2ρ

2|G|2 = 2βρ|G|2 +ρ〈T,G〉. (13)

Therefore, using (13) in the first assertion of Lemma 5, we have∫
M

( 1
n−2

(
2βρ|G|2 +ρ〈T,G〉

)
+ |∇2

ρ − ∆ρ

n
g|2 + S

2
div(ρ∇ρ)+

LX S
2n

∆ρ

)
dM = 0

which completes the proof of the lemma.

Proceeding we use this lemma to obtain the following theorem.
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Theorem 2. Let (Mn,g), n ≥ 3, be a compact orientable Riemannian manifold with constant scalar cur-

vature S. Suppose that there exists a nontrivial conformal vector field X on Mn such that LX g = 2ρg and

LX Ric = 2β Ric+T . If tr(T ) = 0 and
∫

M

(
2ρ2|G|2+ρ〈G,T 〉

)
dM ≥ 0, then Mn is isometric to a Euclidean

sphere.

Moreover, up to a rescaling, the conformal factor ρ is given by ρ = τ − hv
n and X is the gradient of

the Hodge-de Rham function which in this case, up to a constant, is the function 1
n hv, where hv is a height

function on a unitary sphere Sn and τ is an appropriate constant.

Proof. It follows from (10) that β = ρ . Now we may use Lemma 6 to deduce that |∇2ρ − ∆ρ

n g|2 = 0. But,
from (4) we have ∆ρ =− S

n−1 ρ.Therefore, we deduce∇2ρ =− S
n(n−1)ρg, fromwhich wemay apply Obata’s

Theorem, consult Obata (1962), to conclude that Mn is isometric to a Euclidean sphere. Moreover, from (11)

we have that T is null tensor. So, the latter claim is proved following the same steps given in the proof of

Theorem 1.

Remark 1. Notice that if T = λρG, with (2+ λ ) ≥ 0, then the conditions of the previous theorem are

verified. In particular, for λ = −2, we have LX Ric = 2ρ
S
n g, which allows us to obtain the result due to

Obata and Yano (1965).

ACKNOWLEDGMENTS

The authors would like to thank the referees for their careful reading and useful comments which improved

the paper. José N.V. Gomes would like to thank the Department of Mathematics at Lehigh University, where

part of this work was carried out. He is grateful to Huai-Dong Cao and MaryAnn for their warm hospitality

and constant encouragement. The authors are partially supported by Conselho Nacional de Desenvolvimento

Científico e Tecnológico (CNPq), do Ministério da Ciência, Tecnologia e Inovação (MCTI) do Brasil.

REFERENCES

BARROSAAND GOMES JN. 2013. A Compact gradient generalized quasi-Einstein metric with constant scalar curvature. J Math

Anal Appl 401: 702-705.

BOCHNER S AND YANO K. 1953. Curvature and Betti Numbers. Ann Math Study. Princeton University Press, Princeton, New

Jersey, US.

EJIRI N. 1981. A negative answer to a conjecture of conformal transformations of Riemannian manifolds. J Math Soc Japan 33:

261-266.

GOLDBERG SI AND KOBAYASHI S. 1962. The conformal transformation group of a compact Riemannian manifold. Amer J

Math 84: 170-174.

LEE JM. 2003. Introduction to smooth Manifolds. Springer-Verlag, New York, US.

LICHNEROWICZA. 1955. Transformations infinitésimales conformes de certaines variétés riemannienne compacte. CRAcad Sci

Paris 241: 726-729.

NAGANO TAND YANO K. 1959. Einstein spaces admitting a one-parameter group of conformal transformations. Ann Math 69:

451-461.

OBATA M. 1962. Certain conditions for a Riemannian manifold to be isometric with a sphere. J Math Soc Japan 14: 333-340.

OBATAMANDYANOK. 1965. Sur le groupe de transformations conformes d’une variété de Riemann dont le scalaire de courbure

est constant. CR Acad Sci Paris 260: 2698-2700.

OBATA MANDYANO K. 1970. Conformal changes of Riemannian metrics. J Differential Geom 4: 53-72.

TASHIRO Y. 1965. Complete Riemannian Manifolds and some vector fields. Amer Math Soc 117: 251-275.

YANO K. 1970. Integral formulas in Riemannian geometry. New York, US.

An Acad Bras Cienc (2018) 90 (3)


