Open-access Iron Or Zinc Bioaccumulated In Mycelial Biomass Of Edible Basidiomycetes

Abstract

Iron and zinc bioaccumulation in mycelial biomass of different medicinal basidiomycetes was evaluated in order to produce metal-enriched mycelial biomass as an alternative functional food from non-animal sources and based on biotechnology processes. Pleurotus ostreatus strain U2-9, U2-11, U6-8, and U6-9, Pleurotus eryngii strain U8-11, Schizophyllum commune strain U6-7, and Lentinula edodes strain U6-11 and U6-12 were grown in malt extract agar with or without addition of 50 mg/L iron or 7.5 mg/L zinc. The mycelial biomass was separated and iron and zinc concentrations were determined in a flame atomic absorption spectrophotometer. Basidiomycete strains presented different growth rates with the presence of iron and zinc; there was no dependence between the metal bioaccumulation and the fungal growth. The fungi presented greater capacity to bioaccumulate iron than zinc. P. ostreatus (U2-9) has greater iron bioaccumulation (3197.7 mg/kg) while P. ostreatus (U6-8) greater zinc bioaccumulation (440.4 mg/kg) in mycelial biomass. P. ostreatus (U2-9), P. ostreatus (U2-11), and S. commune (U6-7) had the highest metal translocation rates from the culture medium to mycelial biomass. The mycelial biomass enriched with iron or zinc is an alternative to a new functional food from non-animal sources.

Key words
Basidiomycota; bioaccumulation; edible mushroom; mycelial biomass

location_on
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Reportar erro