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ABSTRACT

In spite of accounting for 10-70% of the atmospheric aerosol mass, particulate-phase organic compounds are not well

characterised, and many aspects of aerosol formation and evolution are still unknown. The growing awareness of

the impact of particulate aerosols on climate, and the incompletely recognised but serious effects of anthropogenic

constituents on air quality and human health, have conducted to several scientific studies. These investigations have

provided information about the behaviour of atmospheric particulate matter and the description of the character of

its carbonaceous content. The compilation of such results is important as they append to the emergent global-wide

dataset of the organic composition of atmospheric aerosols. The contribution of the major emission sources to regional

particulate pollution can be diagnosed by using specific molecular markers. This overview is mainly focused on results

obtained with gas chromatography coupled with mass spectrometry, since it is the analytical method of choice in

elucidating the solvent-extractable organic compounds in atmospheric particulate matter. A synopsis of the selection of

organic tracers and the application of geochemical parameters to the analysis of organic constituents as a tool for source

apportionment is shown here. Besides the assessment of current knowledge, this paper also presents the identification

of further areas of concern.

Key words: atmospheric aerosol, gas chromatography-mass spectrometry, organic compounds, source apportionment,

tracers.

INTRODUCTION

Aerosols are mixtures of solid and liquid droplets of ma-

terial that vary in size and origin. Airborne suspended

particulate matter can be either primary or secondary in

nature. Primary particles are emitted directly into the

atmosphere both by natural or anthropogenic sources,

while secondary particles are produced in the atmosphere

from the oxidation and subsequent reactions of sulphur

dioxide, nitrogenoxides andvolatile organic compounds.

Primary biogenic aerosols are particles that are produced

by the crumbling and dispersion of plant and animal ma-

terial, and the spreading of microbes from a variety of

surfaces into the atmosphere. Industrialisation, human
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activities and the growing levels of traffic result in an

anthropogenic sources prevalence, particularly in urban

areas (Alves et al. 2007). Mass and composition tend

to be divided into two main groups: coarse particles

and fine particles. The barrier between coarse and fine

particulate matter is sometimes fixed by convention at

2.5µm in aerodynamic diameter for measurement pur-

poses. Thus, two categories of particle pollution may be

addressed: (i) fine particles (PM2.5), which are 2.5µm

in diameter and smaller; and (ii) inhalable coarse parti-

cles (PM10−2.5), which are smaller than 10µm in diame-
ter, but larger than PM2.5. The smaller particles contain

the secondarily formed aerosols (gas-to-particle conver-

sion), combustion particles and recondensed organic and

metal vapours. The larger particles generally include
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earth crust materials and fugitive dust from roads and

industries. The fine fraction encompasses most of the

acidity (hydrogen ion) and mutagenic activity of partic-

ulate matter, although in fog some coarse acid droplets

are also present. The major aerosol components include

inorganic substances such as sulphates and carbonaceous

species. The carbonaceous aerosol is formed by a com-

plexmixture of organic compounds, normally referred as

organic carbon (OC), and a mass of carbon atoms with a

graphitic-like structure that is black in colour and is nor-

mally named as soot, black carbon or elemental carbon

(BC or EC). Organic matter is an important fraction of

the atmospheric aerosols, contributing with 10-70% of

their mass (Turpin et al. 2000).

Atmospheric PM is an environmental concern,

above all because it can dramatically reduce visual range

(Hobbs 2002), and have a profound effect on climate

(Penner et al. 1998). The direct and indirect radiative

forcing of climate by anthropogenic aerosols is believed

to be similar in magnitude but opposite in sign to the

global warming caused by the emissions of greenhouse

gases (Farquhar 1997, Mahlman 1997). Fine particles

and the associated organic compounds are also of cur-

rent concern because of their putative health effects

(Abelson 1998, Pope et al. 2004, Poschl 2005). There

is a general consensus that the organic composition of

atmospheric aerosol should be understood to correctly

describe the chemical mechanisms and models concern-

ing the multiphase atmospheric system and to evaluate

its environmental and health effects. Despite the progress

made in elucidating the source types, their relative impor-

tance and contribution to certain particulate components,

the organic composition of aerosols and particle forma-

tion processes are still scarcely known. This is probably

due to analytical difficulties, complexity of phenomena

and huge number of compounds that are present (Alves

et al. 2006).

The objective of this paper is to contribute to cla-

rifying the role and importance of the carbonaceous

aerosol in the environment by answering to questions

such as: Which are the sources of the carbonaceous

aerosol? Which are the best tracers to track the con-

tributions of the main sources? Is the organic aerosol

of primary or secondary origin? How much of the or-

ganic carbon is extractable and identifiable by common

laboratory equipments used for organic speciation (e.g.

gas chromatograph/mass spectrometer)? Is it possible to

close the material balance of the organic aerosol? Which

are the organic constituents that we haven’t been able to

quantify? What problems are ripe for further investiga-

tion? The discussion of these points constitutes the main

goal of the present review study. A comparison of recent

results obtained in different researches throughout the

world and the limitations that still persist are presented.

METHODOLOGIES FOR THE DETERMINATION OF

ORGANIC AEROSOL COMPOSITION

A variety of methods have been used to typify the or-

ganic composition of atmospheric aerosols. These meth-

ods may be separated into integral methods that charac-

terise only some properties of organic particulate matter,

such as OC content, functional groups, isotope ratios,

etc., and molecular-level methods that allow the speci-

ation of individual organic compounds. Organic com-

pound speciation affords the most helpful information

about organic aerosol composition, sources, and atmo-

spheric transformation processes. At present it is not

possible to entirely resolve all OC mass into concen-

trations of specific organic compounds and no sole an-

alytical technique is proficient of analysing the whole

organic composition. The molecular level methods typi-

cally have needof extraction of a samplewith organic sol-

vents, followed by analysis by gas chromatography/mass

spectrometry (GC /MS), gas chromatography / Fourier

transform infrared spectroscopy/mass spectrometry (GC/

FTIR/MS), high performance liquid chromatography/

mass spectrometry (HPLC/MS) and other techniques.

Traditionally, chemical characterisation of particulate

OC has been performed using single or multiple solvent

extractions of samples followed by GC/MS (Facchini et

al. 1999, Gogou et al. 1998, Plewka et al. 2003, Ris-

sanen et al. 2006, Sin et al. 2002, Zappoli et al. 1999).

However, in these experimental works a significant por-

tion of polar oxygenated organic compounds remains un-

known. Identified organic compounds in aerosol typi-

cally account for 10% or less of the mass of total OC

measured by thermal analysis, although this percentage

could reach values above 60%, when more complex ex-

tractionmethodologies and detection techniques are used

(Alves et al. 2002, 2006, Carvalho et al. 2003, Dece-
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sari et al. 2000, Feng et al. 2007). This is because uni-

versal solvents for both polar and non-polar OC do not

exist, high-molecular organics (>C40) and highly po-

lar compounds (particularlymultifunctional) do not elute

through a GC column and identified compounds are em-

bedded in an unresolved complex mixture. Polar organic

compounds need derivatisation prior to analysis, to con-

vert them into less polar and more volatile derivatives

that will elute chromatographically. However, the deriv-

atisation techniques are compound-class specific and

thus several different methods may be required for a

wide-ranging analysis. On the other hand, since derivati-

sation procedures are compound-class specific, require

a priori knowledge about the particulate matter com-
position. The derivatisation reagent by-products, the

complexity of derivatisation procedures, lack of stan-

dards, and limited mass spectral libraries makes these

analyses difficult and time consuming. The combined

GC/FTIR/MS technique offers the advantage of addi-

tional information from the FTIR spectrum, complemen-

tary tomass spectrum information, and is helpful in iden-

tification of individual components, especially isomers;

often these compounds have very similar mass spectra,

but unique IR spectra (Zielinska 2002).

HPLC coupled with a mass spectrometer or a pho-

todiode array detector seems to be especially suitable for

the analysis of polar organic compounds. Aqueous so-

lutions can be injected into reverse-phase columns, and

polar compounds do not need a derivatisation step in

order to elute from most of the LC columns (Zielin-

ska 2002). However, compared with GC and GC/MS,

HPLC has infrequently been used for the study of or-

ganic aerosol (Jacobson et al. 2000). This is perhaps be-

cause LC columns present less resolving power than GC

columns and are habitually intended for restrict organic

classes. Moreover, even though that numerous commer-

cial LC/MS systems are available, they are not properly

developed for atmospheric investigation. From the two

types of interfaces available between LC and MS, elec-

trospray and particle beam, the last one seems to be more

promising (Kiss et al. 2003). Additional progress of

separation methods and mass spectral libraries is also

essential.

Sierau et al. (2003) developed a method for rapid

measurement of particle size and chemical composition.

The method uses a saturator/condenser system and an

impactor; the saturator/condenser system grows submi-

crometer particles to a size where they can be easily col-

lected by the impactor. This system was called con-

densation-growth and impaction system, or C-GIS. To

do size-segregated analysis, an optional differential mo-

bility analyser (DMA) can be added upstream of the

C-GIS to select the particle size that is introduced into

the condenser. The C-GIS converts the sampled aerosol

into a hydrosol, and provides liquid samples sufficiently

concentrated for the liquid-phase analytical instruments

used for chemical analysis without on-line pre-concen-

tration of the sample. The results indicate that the C-

GIS can be used for size-segregated particle sampling

with subsequent off-line chemical particle analysis with

a sampling time of at least 20 min under typical atmo-

spheric conditions. For atmospheric applications, how-

ever, its capability to rapidly measure size-segregated

chemical composition is limited by the particle concen-

tration present downstream of the DMA, and therefore,

such measurements typically can only be made in heav-

ily polluted areas or within the scope of source-charac-

terisation studies.

Several novel methods have lately been proposed

for a molecular-level organic aerosol speciation. Neu-

süss and co-workers (2000) employed flash evaporation

by Curie point pyrolysis coupledwith GC/MS (CPP-GC/

MS) for direct analysis of atmospheric semi-volatile or-

ganic constituents. The benefit of this method is that

only a few micrograms of sample are required, permit-

ting its utilisation with size-segregated sampling without

posterior sample preparation. The inconvenience is that

very polar organic compounds may either not elute from

a GC column, or be shattered during the flash evapo-

ration process. To overcome this difficulty, the same

investigators recommend using complementarily capil-

lary electrophoresis (CE) for analysis of dicarboxylic and

hydroxy dicarboxylic acids. The system also enables

the analysis of common inorganic ions and methanesul-

fonate. Because of their different electrophoretic mo-

bilities, in CE, ions are separated in a strong electric

field. The possibility of analysing both inorganic and

organic ions in a single run represents an advantage of

this method in comparison with ion chromatography and

GC or HPLC. In addition, the separation efficiency is
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higher than in LC and the required sample amount is

very low (Zielinska 2002). Thermal desorption parti-

cle beam mass spectrometry has been lately developed

and employed for identification of secondary organic

aerosol constituents produced in environmental cham-

bers (Tobias and Ziemann 2000). In this method, a num-

ber of particles are trapped on a cold step and gradu-

ally heated, to separate compounds depending on their

volatility. This analytical equipment presents a large ca-

pability for identification of organic compounds formed

in controlled laboratory experiments. However, its re-

solving power to identify and quantify single compounds

within a complex organic mixture, as observed in at-

mospheric aerosols, is very limited. Recently, several

researchers have developed instruments for real-time in
situ analysis of single particles, including carbon anal-
ysers and single particle instruments to fragment each

particle into ions using either a high-power laser or a

heated surface and to then use a time-of-flight mass spec-

trometer for measuring the ion fragments in a vacuum

(Guyon et al. 2004, Johnston andWexler 1995, Silva and

Prather 1997, Thompson and Murphy 1994, Turpin and

Huntzicker 1995). Direct thermal desorption – gas chro-

matography – time-of-flight mass spectrometry (DTD-

GC-TOFMS) and comprehensive two-dimensional (2D)

gas chromatography – time-of-flight mass spectrome-

try (GC×GC-TOFMS) was applied by Welthagen et al.
(2003) for characterisation of semi-volatile organic com-

pounds in PM2.5. These investigators concluded that

GC×GC-TOFMS is a suited technique to study the na-
ture of the yet unidentified compounds forming the unre-

solved complex mixtures (UCM). The considerably in-

creased chromatographic resolution in GC×GC allows
separation of many UCM compounds while the TOFMS

supplies mass spectral data of all separated compounds.

However, the data setswere considered enormously com-

plex. In the near future in situ single-particle TOFMS
analysis methods are unlikely to quantify, compound by

compound, the concentration of a large (50-100%) frac-

tion of organic material in atmospheric PM (Turpin et

al. 2000). Generally these instruments are more appro-

priate for inorganic than organic species, but the future

technical development could surmount this panorama.

One important objective of detailed chemical analy-

sis of the organic aerosol is themass closure of the aerosol

mass. Until now it has been impossible to identify and

quantify all the organic mass present in the atmospheric

aerosol. Little is known about the type and abundance

of water-soluble organic compounds (WSOC) in atmo-

spheric particulate matter. The limited results available

to date indicate that WSOC could account for 20-90%

of total carbon in aerosols (Alves et al. 2002, Dece-

sari et al. 2000, 2001, Facchini et al. 1999, Graham

et al. 2002, Saxena and Hildemann 1996). Yang et al.

(2003) compared two methods for the determination of

WSOC in ambient aerosols, one based on a total or-

ganic carbon analyser (TOC) and the other based on an

aerosol carbon analyser (ACA). Investigators concluded

that, although the sample treatment procedures and the

detection limits of these two methods are different to

some extent, both are suitable for the determination of

WSOC in aerosol samples. Recently, some studies have

attempted the most abundant WSOC in fog water and

aerosols. Decesari et al. (2000, 2001) and Fuzzi et al.

(2001) used ion exchange chromatography and proton

nuclear magnetic resonance spectroscopy (HNMR) to

characterise the WSOC in atmospheric aerosols, fog and

cloud droplets. Zappoli et al. (1999) have shown that

a substantial part of the organic aerosol is not soluble

in water and organic solvents, indicating that insoluble

compounds are of larger molecular sizes. The organic

aerosol according to current knowledge are the “Hu-

mic Like Substances” (HULIS), occurring in the aerosol

as water soluble as well as water insoluble fractions.

Different extraction procedures and detection methods

were presented in the literature. Spectroscopic meth-

ods such as ultraviolet, fluorescence, or infrared spec-

troscopy were most often used to characterise this or-

ganic mass fraction, but electrospray ionisation mass

spectroscopy and laser desorption/ionisation mass spec-

trometry (LDI/MS) were used as well (Havers et al.

1998, Kalberer et al. 2004, 2006, Kiss et al. 2003,

Krivácsy et al. 2001, Samburova et al. 2005, Varga et

al. 2001, Zappoli et al. 1999). Because of the large

number of compounds detected with mass spectromet-

ric methods (Kiss et al. 2003, Samburova et al. 2005),

and because the chemical properties of these compounds

are mostly unknown, it is difficult to determine their con-

centration or their molecular weight distribution (Kal-

berer et al. 2006).

An Acad Bras Cienc (2008) 80 (1)



SOLVENT EXTRACTABLE ORGANIC CONSTITUENTS IN ATMOSPHERIC PARTICULATE MATTER 25

GC/MS CHARACTERISATION STUDIES

GC/MS has by far been the most common means of

identifying organic compounds in atmospheric aerosol.

The motive is that GC can be used to separate a very

ample range of compounds on a single column, and the

simple on-line coupling to mass spectrometry (usually

electron-impact quadrupole) makes compound identifi-

cation rather easy. The preliminary GC/MS results on at-

mospheric organic particulatematterwere obtained at the

end of the seventies and beginning of the eighties. How-

ever, the content of these works were focused mainly on

practical details, such as the evaluation of the analyti-

cal methodologies of solvent extraction, and did not at-

tempt to present an exhaustive description of the aerosol

composition (Barkenbus et al. 1983a, b, Cautreels and

Cauwenberghe 1977, Hill et al. 1977, Karasek et al.

1978, Ketseridis et al. 1976, Wauters et al. 1979). If

chemical analysis is performed using a chromatographic

method, aerosols collected on filters or impactor plates

are subjected to an extraction procedure (ultrasonication,

Soxhlet, supercritical fluid CO2 extraction, etc.). An

example illustrating the entire procedure is provided in

Figure 1. Thermal/optical carbon analysis (TOC) is a

technique for separating and measuring the total amount

of organic and elemental carbon, commonly from quartz

filter samples. This determination is essential in any

study that involves extraction of material from filters be-

cause it permitsmeasurement of the extraction efficiency.

The filter sample is placed into a chamber and heated in

the presence of one or more purge gases through a suc-

cession of temperature steps. A catalyst converts the

evolved gases to either CO2 or CH4, which are quanti-

fied using infrared or flame ionisation detection, respec-

tively. In most of the thermal evolution techniques, the

division between organic and elemental carbon is based

on the temperature and/or the type of purge gas used for

analysis (Birch 1998, Birch and Cary 1996, Cadle and

Mulawa 1990, Carvalho et al. 2006, Chow et al. 1993,

2001, 2004, 2005, Conny et al. 2003, Venkatachari et al.

2006, Watson and Chow 2002). OC is generally defined

as the non-carbonate carbon that evolves under a heating

cycle in the presence of either He or N2, and EC is de-

fined as that which evolves in a succeeding heating step

in the presence of a gas mixture including oxygen, such

as 98%He + 2%O2 (Birch and Cary 1996, Chow et al.

1993, 2001, Schauer et al. 2003a). It should be noted

that some organic compounds pyrolyse or “char” before

they are evolved under the He/O2 part of the analysis.

The char that is produced in the analysis, if not accu-

rately accounted for, would be erroneously reported as

EC present in the original sample (Schauer et al. 2003a).

Usually, a laser absorbance procedure is used to correct

for charring in thermo-optical methods.

The knowledge gained through testing experimen-

tal procedures began to be applied to the detailed charac-

terisation of aerosols emitted by specific sources or ac-

tivities, such as volcanic eruptions (Pereira et al. 1982),

meat cooking operations (Hildemann et al. 1991, Klee-

man et al. 1999, Nolte et al. 1999, Rogge et al. 1991,

Schauer et al. 1999a), road dust and tire debris (Rogge

et al. 1993a), particulate abrasion products from leaf

surfaces of urban plants (Chen and Simoneit 1994,

Rogge et al. 1993b), home boilers (Hildemann et al.

1991, Rogge et al. 1993c, 1997a), hot asphalt roofing

tar plot plumes (Rogge et al. 1997b), biomass burn-

ing (Abas et al. 1995, 2004a, Duan et al. 2004, Elias

et al. 1997, 1998, Fang et al. 1999, Fine et al. 2001,

2002a, b, 2004a, Jayaratne and Verna 2001, Jordan et al.

2006, Kleeman et al 1999, Oros and Simoneit 2001a, b,

Rogge et al. 1998, Schauer et al. 2001, Simoneit 2002,

Simoneit and Elias 2001, Simoneit et al. 1993, 1996,

1999, 2000, Standley and Simoneit 1994), motorised ve-

hicles (Fraser et al. 1999, Hildemann et al. 1991, Rogge

et al. 1993d, Schauer et al. 1999b, Simoneit 1984),

tobacco smoke (Kavouras et al. 1998a, Kleeman et al.

1999, Morrical and Zenobi 2002, Rogge et al. 1994),

coal-fired power station (Santos et al. 2004), waste land-

fill (Yassaa et al. 2001a) and eolian transport of vegetal

detritus (Boon et al. 1998, Simoneit 1997, Simoneit et al.

1988). Some of the researches have also focused upon

the assessment of natural versus anthropogenic contribu-
tions to the carbonaceous aerosol by searchingmolecular

markers or tracers (Abas et al. 1995, 2004a, b, Alves and

Pio, in press, Cass 1998, Elias et al. 1999, Fraser et al.

1999, Gogou et al. 1996, 1998, Hawthorne et al. 1988,

Kavouras et al. 2001a, Khalil and Rasmussen 2003, Lau

et al. 2006, Li and Kamens 1993, Nolte et al. 2001,

2002, Oros et al. 1999, Oros and Simoneit 2001a, b,

Rinehart et al. 2006, Rogge et al. 2006, Rushdi et al.
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Fig. 1 – Scheme representing a common sampling, extraction and GC/MS procedure for organic speciation of atmospheric aerosols.

2003, Schauer et al. 1996, Sheesley et al. 2003, Simo-

neit 1989, 1999, 2002, Simoneit and Elias 2001, Si-

moneit and Mazurek 1989, Simoneit et al. 1990, 1993,

1996, 1999, 2003a, b, 2004a, b, Standley and Simoneit

1994, Zheng et al. 2002). Source-receptor reconcilia-

tion by chemical mass balance (CMB) has been used

to characterise the composite sources of organic com-

pounds that includes gasoline vehicle exhaust, meat

cooking, cigarette smoke, wood burning, etc. (Calhoun

et al. 2003, Chow and Watson 2002, Feng et al. 2006,

Khalil and Rasmussen 2003, Li and Kamens 1993,

Mazurek 2002, Robinson et al. 2006a, b, Schauer et

al. 2002a, Watson et al. 2002, Zheng et al. 2002, 2005).

Such as it happens with the OC and EC determi-

nations, most of the investigations to date on the char-

acterisation of organic aerosols deal almost exclusively

with urban samples. The scientific literature of the last

two decades comprehends several works which report

the particulate matter analyses for different metropo-

lis: Heraclion, Crete (Gogou et al. 1996, Stephanou

and Stratigakis 1993), Hong Kong (Zheng et al. 1997,

2000, Lee et al. 2001, Yu et al 2004), cities in the Pan-

Japan Sea countries (Kawamura and Yasui 2005, Tang

et al. 2005), Algiers city area (Yassaa et al. 2001b),
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Chinese urban areas (Bi et al. 2002, 2003, Cao et al.

2003, 2004, Duan et al. 2004, Guo et al. 2003, 2004,

Hou et al. 2006, Simoneit et al. 1991a, Yang et al. 2005a,

Wang et al. 2002, 2006a, b, 2007, Wang and Kawamura

2005, Zheng et al. 2005), Barcelone (Aceves and Gri-

malt 1992, 1993), London (Kendall et al. 2001), Hous-

ton, Texas (Fraser et al. 2002, Laurent and Allen 2004,

Yue and Fraser 2004), Miami, Florida (Lang et al. 2002),

Kuala Lumpur, Malaysia (Abas et al. 2004b, Abas and

Simoneit 1996), Toronto (Blanchard et al. 2002), Prato,

Italy (Cincinelli et al. 2003), Launceston, Australia

(Keywood et al. 2000), Santiago, Chile (Didyk et al.

2000, Kavouras et al. 1999a, 2001a, Romero et al. 2002,

Tsapakis et al. 2002), Temuco, Chile (Tsapakis et al.

2002), Oporto, Portugal (Oliveira et al. 2007a), Gent,

Belgium (Kubátová et al. 2002), Birminghan, UK (Har-

rad et al. 2003), Helsinki, Finland (Kallio et al. 2003),

Copenhagen (Oliveira et al. 2007a), the Brazilian cities

of Rio de Janeiro (Azevedo et al. 1999), Campo Grande

(Ré-Poppi and Santiago-Silva 2002), São Paulo (Vas-

concellos et al. 2003) and Campos dosGoytacazes (Aze-

vedo et al. 2002), Philadelphia (Li et al. 2006), Seat-

tle (Kim et al. 2004) and Tel Aviv, Israel (Graham et

al. 2004). However, the Los Angeles metropolitan area

represents, incontestably, the one that is favoured by a

higher number of studies on organic composition of at-

mospheric aerosols (Fine et al. 2004b, Fraser et al. 1997,

1999, Hildemann et al. 1994, 1996, Lough et al. 2006,

Manchester-Neesvig et al. 2003, Rinehart et al. 2006,

Rogge et al. 1993e, 1996, Schauer et al. 2002a, Si-

moneit 1984, Simoneit and Mazurek 1989, Zhu et al.

2004). Comparatively, few studies have investigated re-

mote, rural and semi-rural environments (Alves et al.

2000, 2001, 2007, Cheng et al. 2006, Feng et al. 2007,

Oliveira et al. 2007b, Pio et al. 2001a, b, Rissanen et

al. 2006, Shimmo et al. 2004a, Simoneit et al. 1990) or

have been performed above ocean areas. These investi-

gations include the Mediterranean (Gogou et al. 1996,

1998, Grimalt et al. 1988, Sicre et al. 1987, Simó et

al. 1991), the North Pacific (Gagosian et al. 1981, 1982,

Kawamura 1995, Kawamura et al. 2003), the South Pa-

cific (Gagosian et al. 1987, Sicre and Peltzer 2004), the

Caribbean (Mayol-Bracero et al. 2001) and the Atlantic

(Conte and Weber 2002, Simoneit and Elias 2000, Si-

moneit et al. 1977, 1991b).

SPECIATION OF ORGANIC AEROSOLS

POLYCYCLIC AROMATIC HYDROCARBONS

The polycyclic aromatic hydrocarbons (PAH) represent

an organic class more investigated than any other, be-

cause they are believed to be carcinogenic and/or mu-

tagenic (Baek et al. 1991, Brown et al. 1996, Crim-

mins and Baker 2006, Dyremark et al. 1995, Li et al.

2003). The carcinogenicity of PAH is about 1/103–1/104

of that of 2,3,7,8-TCDD. The PAH concentration in the

atmosphere is about 104–106 times higher than that of

TCDD. Therefore, the carcinogenic risk of PAH in the

atmosphere is so high that it must be monitored as we

would monitor dioxins (Okuda et al. 2006). Fossil fuel

combustion is the main anthropogenic activity respon-

sible for the introduction of PAH into the urban atmo-

spheres. Stationary sources such as domestic heating,

various industrial processes, incineration and energetic

production systems are also responsible for the imprint

of polyaromatics (Baek et al. 1991, Cincinelli et al. 2007,

Lee et al. 2002, Liu et al. 2006, Sklorz et al. 2007). The

natural sources responsible for the release of PAH com-

prise forest fires, microbiological processing of detritus

(e.g. fossil fuel) and mechanisms of biosynthesis carried

out by algae, plants and bacteria (Cincinelli et al. 2007,

Smith and Harrison 1998).

Atmospheric PAH in the air (Table I) are associ-

ated both with the vapour phase and the particulate mat-

ter, being incorporated onto aerosols via condensation

and adsorption processes (Lewis et al. 1995, Shimmo

et al. 2002). The temporal resolution of these com-

pounds in ambient air is limited by the detection lim-

its of current analytical techniques. Either collecting

more sample or increasing the analytical sensitivity is

required to increase the detectability of PAH and nitro-

PAH in ambient air. Greater sampling flow rates and

the corresponding larger pressure drops may increase

volatilisation losses from the sampling substrate. In ad-

dition, the higher sample volumes and longer sampling

times may increase the exposure of PAH and nitro-PAH

to oxidants. Increasing collection surface area to in-

crease sampler flow rates without additional pressure

drops may increase both gas ab/adsorption and the po-

tential for greater matrix contamination (Crimmins and

Baker 2006). In most cases, PAH have been collected as
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     TABLE I 

     Properties and structures of select PAH  (Sources: http://chemfinder.cambridgesoft.com/;

     http://www.europa.eu.int/comm/environment/air/pdf/annex_pah.pdf).

PAH Formula 

Molecular 

weight 

(g mol-1)

Boiling 

point

(ºC) 

Melting 

point

(ºC) 

Vapour

pressure

(at 25ºC) 

(Pa) 

Water

solubility 

(at 25ºC) 

( g L-1)

Structure 

Naphtalene C10H8 128 217.9 81 10.4 3.17E4 

Acenaphtilene C12H8 152 295 92-93 8.9E-1 3.93E3 

Acenaphthene C12H10 154 279 95 2.9E-1 3.93E3 

Fluorene C13H10 166 295 115-116 8.0E-2 1.98E3 

Phenanthrene C14H10 178 340 100.5 1.6E-2 1.29E3 

Anthracene C14H10 178 342 216.4 8.9E-4 73 

Fluoranthene C16H10 202 375 108.8 1.2E-3 260 

Pyrene C16H10 202 393 150.4 6.0E-4 135 

Benzo[a]anthracene C18H12 228 400 160.7 2.8E-5 14 

Chrysene C18H12 228 448 253.8 
8.4E-5 

(20ºC) 
2.0 

Retene C18H18 234 
390-

394 
99

< 1g L-1

(18ºC) 

Benzo[b]fluoranthene C20H12 252 481 168.3 
6.7E-5 

(20ºC) 
1.2 

Benzo[k]fluoranthene C20H12 252 480 215.7 
1.3E-8 

(20ºC) 
0.76 

Benzo[a]pyrene C20H12 252 496 178.1 
7.3E-7 

(20ºC) 
3.8 

Indeno[1,2,3-cd]pyrene C22H12 276 536 163.6 
1.3E-8 

(20ºC) 
62

Benzo[ghi]perylene C22H12 276 545 278.3 1.4E-8 0.26 

Dibenzo[a,h]anthracene C24H14 278 266.6 524 
1.3E-8 

(20ºC) 

0.5  

(27ºC) 

Coronene C24H12 300 525 >350 2E-10 0.122 

particulate compounds on glass- or quartz-fibre filters by

using air conventional high-volume samplers. However,

as pointed out in several articles, 3- to 5-ring PAH, which

have relatively high vapour pressures, are also found in

the gas phase at ambient temperatures and their reten-

tion on the filter media is not complete. Thus, it has

been recommended the simultaneous utilisation of trap-

ping materials such polyurethane foam plugs or resins

for sampling the gaseous fraction (Conde et al. 2004, Di-

mashki et al. 2000, Kavouras et al. 1999a, Knecht and

Woitowitz 1988, Ligocki and Pankow 1989, Lim et al.

1999, Shimmo et al. 2002, 2004b, Zielinska et al. 2004).
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It is known that PAH undergo chemical and photochemi-

cal degradation in the atmosphere, especially in the pres-

ence of atmospheric oxidants such as ozone, hydroxyl

radical and nitrate radical. These reactions continue dur-

ing sampling. As a result, the PAH concentration pro-

files will be changed during sampling and their potential

adverse health effects will be over- or underestimated

(Liu et al. 2006). A possible way to reduce ozonisation

reaction during sampling is the use of a denuder to re-

move ozone from the air stream prior to the collection of

aerosol particles on the filter. Recently, some researchers

have applied ozone denuders to high- and low-volume

sampling to inspect their influence on the sampling of

ambient PAH. Schauer et al. (2003b) made use of an

activated carbon denuder in a low-volume sampler. It

was found that the degradation of 5- and 6-ring PAH on

filter had a near-linear dependence on ozone volumemix-

ing ratio. According to this investigation, filter reaction

artefact can lead up to a 2-fold underestimation of real at-

mospheric PAH levels. Tsapakis and Stephanou (2003)

employed a high-volume oxidant denuder, consisting of

tubes coated with water/glycerol KNO2 solution. Most

of the gas and particulate phase PAH were vulnerable to

ozone degradation under long sampling times with high

O3 levels. Creutznacher et al. (2003) studied the ozone

cross-sensitivity of particle accumulated PAH, using a

manganese oxide ozone denuder. In disagreement with

the previous studies, the authors concluded that, for an

average ozone level of 60 µg m−3, only benzo[a]pyrene
had a perceptible degradation of approximately 15% in

the non-denuded samples by comparing their average

yearly concentrations. Liu et al. (2006) used a MnO2
ozone denuder and found that levels of 5- to 7-ring PAH

were underestimated in non-denuded samples, while the

4- to 5-ring oxygenated PAH were overestimated. The

highest losses due to reaction with atmospheric oxidants

were observed for benzo[a]pyrene and perylene.

Extraction of PAH from their sampling me-

dia has been traditionally performed using Soxhlet or

ultrasonic agitation. A more recent alternative to these

two methods is the use of supercritical fluid extraction

(SFE) [Friedrich and Kleiböhmer 1997, Hawthorne and

Miller 1987, Lewis et al. 1995, Shimmo et al. 2002,

2004b]. Quantitative analysis is generally performed by

GC or high HPLC coupled with fluorescence, UV, FID

and MS detectors (Becker et al. 1999, Brown et al.

1996, Dimashi et al. 2000, Lewis et al. 1995). Some

authors reported also direct analysis of PAH by thermal

desorption GC/MS applied mostly to urban dust refer-

ence materials (Crimmins and Baker 2006, Falkovich

and Rudich 2001, Waterman et al. 2000). Ochsenkühn-

Petropoulou et al. (2003) presented the development of

an on-line technique, the pyrolysis/GC-MS for the identi-

fication and the quantification of PAH in airborne partic-

ulate matter collected on cellulose filters. By this tech-

nique a pre-treatment of the samples is not necessary,

avoiding the time consuming and expensive extraction

step (Fabbri et al. 2002).

Since traffic, a prominent source of polynuclear hy-

drocarbons, present large emissions and have dramatic

effects on air quality, attention has been focused on ur-

ban areas, especially in busy roads, tunnels and city cen-

tres (Tables II and III). Background concentrations of

PAH reported at remote sites are 1-2 of magnitude lower

(Halsall et al. 1997). Some other studies have been de-

voted to the identification of PAH in particular com-

bustion sources or in the proximity of specific emis-

sions sources: wildfires (Masclet et al. 1995, Okuda

et al. 2002), charcoal grilling (Dyremark et al. 1995),

biomass burning (Fine et al. 2001, 2002a, b, 2004a,

Freeman and Cattell 1990, Hays et al. 2005, Keshtkar

and Ashbaugh 2007, Lee et al. 2005, Oros and Simoneit

2001a, b, Rogge et al. 1998, Santos et al. 2002, Schauer

et al. 2001, Sheesley et al. 2003), ferries (Cooper et al.

1996), diesel exhausts (Cho et al. 2004, Jiao and Lafleur

1997, McDonald et al. 2004, Reilly et al. 1998. Schauer

et al. 1999b, Zielinska et al 2004), burning of sugar

plantations (Godoi et al. 2004, Santos et al. 2002), near

power plants (Kalaitzoglou et al. 2004), vegetable oil

processing plant (Kavouras et al. 2001b), cooking with

seed oils (Schauer et al. 2002b), incinerators (Besombes

et al. 2001, Lee et al. 2002, Mao et al. 2007), burning

of foliar fuels (Hays et al. 2002), roadside (Harrison et

al. 2003) and vehicle exhausts for different fuels, lubri-

cants and engine operating conditions (Brandenberger

et al. 2005, Lim et al. 2005, 2007, Pedersen et al. 1980,

Schauer et al. 2002c,Westerholm et al. 1988, 1992, Yang

et al. 2005b, 2007, Zielinska et al. 2004).

The discovery in the 1970s of potent mutagenic

nitro-PAH in the organic extracts of atmospheric particu-
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TABLE II

Comparison of PAH concentrations obtained at road tunnels throughout the world (ng m-3).

Compound

Baltimore Santa Barbara Chicago Queensway

USA Brazil USA Birmingham, UK

Gordon et al. Miguel and Pereira Khalili et al. Smith and

(1989) (1989) (1995) Harrison (1996)

Fluorene 18.0 96.9 300 25.6

Acenaphthene 2.9 4.19 177 9.41

Anthracene 20.0 69.6 117 21.1

Fluoranthene 27.0 76.3 193 29.9

Pyrene 7.6 51.3 90.2 11.6

Benz[a]anthracene 69.5 77.9 18.5

Chrysene 88.2 43.6 5.4

Benzo[b]fluoranthene 36.7 41.2 12.7

Benzo[k]fluoranthene 5.8 90.7 62.6 35.2

Benzo[a]pyrene 8.0 162.0 17.0 35.2

Benzo[ghi]perylene 4.6 84.2 20.0 21.5

Indeno[1,2,3-cd]pyrene 4.7 11.8

Compound
Kurashiki, Japan Kurashiki, Japan

Kurashiki, Japan
Rio de Janeiro

(north entrance) (south entrance)
(centre of the

Azevedo et al.

Oda et al. (2001) Oda et al. (2001)
tunnel)

(1999)
Oda et al. (2001)

Fluorene

Acenaphthene 2.2

Anthracene

Fluoranthene 12 13 25 12.1

Pyrene 18 20 25 18.2

Benz[a]anthracene 5.4 6.6 11 2.1

Chrysene

Benzo[b]fluoranthene 5.5 7.0 11

Benzo[k]fluoranthene 2.5 2.6 4.4

Benzo[a]pyrene 4.2 6.2 11 0.6

Benzo[ghi]perylene 3.8 5.3 9.8 0.5

Indeno[1,2,3-cd]pyrene 1.5 2.2 3.1

late matter and later in the extracts of diesel exhausts has

led to a sharp increase in interest in the environmental

occurrence of these compounds and in the improvement

of analytical procedures for their quantification (Bam-

ford and Baker 2003, Bamford et al. 2003, Dimashki et

al. 2000). Nitro-PAH can be 100,000 times more muta-

genic and 10 times more carcinogenic compared to the

unsubstituted-PAH (Bamford and Baker 2003). Concen-

trations of the different compounds vary with the extent

of urbanisation (Table IV). For example, 1-nitropyrene

is normally the most abundant nitro-PAH measured in

urban/industrial cities; however, in suburban and rural

locations, the concentration of nitro-PAH produced from

gas-phase reactions, such as 2-nitrofluoranthene, are typ-

ically higher (Bamford and Baker 2003). The nitroaro-

matic constituents seem to derive from a wide range of

emitter sources, including combustion processes, vehicle

exhausts, stationary sources, kerosene heaters, cigarette

smoke and atmospheric photo-chemical reactions (Bam-

ford and Baker 2003, Ciccioli et al. 1996, Dimashki et
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TABLE III

Comparison of PAH concentrations obtained at urban areas throughout the world (ng m-3). I – Santiago of Chile

(Kavouras et al. 1999a); II – Birmingham, UK (Smith and Harrison 1996); III – Munich, Germany (Schnelle–Kreis

et al. 2001); IV – Hong Kong, China (Zheng et al. 1997); V – Pavia, Italy (Minoia et al. 1997); VI – London, UK

(Brown et al. 1996); VII – Portland, USA (Ligocki and Pankow 1989); VIII – Moe, Australia (Lyall et al. 1988); IX –

Tokyo, Japan (Okuda et al. 2000); X – Temuco, Chile (Tsapakis et al. 2002); XI – Kuala Lumpur, Malaysia (Omar et

al. 2002); XII – Fuji, Japan (Ohura et al. 2004); XIII – Shimizu, Japan (Ohura et al. 2004); XIV – Lahore, Pakistan

(Smith et al. 1996); XV – São Paulo, Brazil (Martinis et al. 2002); XVI – BravoMurillo, Las Palmas de Gran Canaria,

Spain (Cancio et al. 2004); XVI –industrial park in Taichung, Taiwan (Fang et al. 2004); XVII – roadside, Hong Kong

(Ho et al. 2002); XVIII – Seoul, Korea (Park et al. 2002); XIX – Athens, Greece (Mandalakis et al. 2002).

Phenanthr. Anthrac. Fluoranth. Pyrene MPhen. B[a]ant. Crysene B[b]fl.

I 0.00-1.54 0.00-0.04 0.00-0.23 0.00-0.07 0.01-0.14 0.03-0.50 0.06-1.73

II 1.08/0.25 0.39/0.16 1.17/0.55 2.36/0.55 1.48/0.13 2.21/0.21 1.87/0.34

III 0.02-2.12 0.02-2.16 0.01-2.01

IV 1.06 0.23 0.58 1.00

V 0.19/0.08 0.38/0.25

VI 24.0/19.5 2.0/1.8 8.0/19.8 12.0/17.5 6.4/4.5

VII 0.28 0.16-0.19 1.2

VIII 0.072

IX 27.0* 27.0* 5.2 3.1 13.3

X 50.6 6.7 18.9 15.5 12.3 115.7 163.2 98.5**

XI 0.32 <0.03 0.18 0.06 0.06 0.09 0.05

XII 26.27/12.57 0.42/0.93 9.84/12.57 3.00/2.86 2.22/1.35 0.12/0.98 0.41/1.60 0.06/0.15

XIII 17.25/10.10 0.32/0.34 5.56/4.74 1.51/1.19 0.81/1.69 0.04/0.39 0.11/0.93 0.02/0.06

XIV 0.97 4.99 2.81 2.93 5.39 8.64 9.87

XV 10.9 1.8 6.9 12.2 3.2 3.5

XVI 145.7 184.7 86.6 124.7 16.9 37.3 9.1

XVII 30.9 7.1 6.7

XVIII 16.46 2.7 8.1 12.56 2.62 3.62 4.89#

XIX 0.46 0.14 0.15 0.19 0.43 0.11 0.45 0.86

B[j+k]fl. B[e]pyr. B[a]pyr. I[1,2,3-cd]P B[ghi])Per D[a,h]A Coron.

I 0.07-1.34 0.03-0.86 0.03-0.68 0.01-0.32 0.10-1.32 0.05-0.66

II 1.12/0.14 0.73/0.23 1.95/0.42 1.91/0.76 0.78/0.07 1.03/0.27

III 0.06-4.51 0.02-1.66 0.02-2.75

IV 0.65 0.08 0.32 0.33 0.28

V 0.18/0.02 0.370.03 0.13/b.d.l. 0.09

VI 6.1/2.5 7.0/3.2 2.7/1.1 3.6/1.8 4.1/2.0 0.2/0.1 2.0/1.1

VII 3.6

VIII 0.104 0.26 0.2 0.46 0.17

IX 1.0 0.4 0.1 0.4 0.4 0.20

X 98.5** 73 98.5 68.8 75.8

XI 0.05 0.03 0.05 0.18 0.47 0.05 0.41

XII 0.38/1.69 0.32/1.18 0.18/1.08 0.18/1.14 0.29/1.29 0.04/0.11 0.07/0.46

XIII 0.12/0.90 0.26/0.70 0.07/0.53 0.10/0.61 1.22/0.63 0.01/0.06 0.05/0.27

XIV 4.61 9.32 12.31 14.64 3.85 5.40

XV 0.4 0.7 0.1 0.2

XVI 12.6 29.1 9.7 5.2 6.5 5.6 22.2

XVII 0.5 0.5 0.7 0.1

XVIII 4.89# 2.55 3.59 3.21 0.55

XIX ** 0.35 0.17 0.45 0.44 0.08 4.94

Note: MPhen = Methylphenanthrenes; B[a]ant. = Benzo[a]anthracene; B[b]fl. = Benzo[b]fluoranthene;

B[j+k]fl. = Benzo[j+k]fluoranthene; B[e]pyr. = B[e]pyrene; B[a]pyr. = B[a]pyrene; I[1,2,3-cd)P = Indeno[1,2,3-

cd)pyrene; B[ghi])Per. = Benzo[ghi])perylene; D[a,h]A = Dibenzo[a,h]anthracene, Coron. = Coronene; cells

in white represent concentrations not determined; / = summer/winter concentrations; b.d.l. = bellow detection

limit; *Phenanthrene+Anthracene; **Benzo[b+j+k]fluoranthene; # Benzo[b+k]fluoranthene.
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al. 2000, Korfmacker et al. 1987, Perrini et al. 2005).

The specific isomers of the nitro-PAH observed in am-

bient air suggest that they are formed in the atmosphere

through the gas-phase reactions of the 2- to 4-ring PAH

(Schneider et al. 1990). Thus, ambient air contains nitro-

PAH isomers distinct from the PAH electrophilic nitra-

tion products reported in direct emissions. The nitro-

PAH isomers not formed from electrophilic nitrations

were observed, however, in laboratory simulations of the

atmospheric reactions of the PAH, providing strong evi-

dence for atmospheric formation of nitro-PAH (Atkinson

and Arey 1994). The apprehension committed to mono-

and dinitro-derivates of PAH is due to their ability to pro-

voke direct mutagenic activity and to contribute for 10%

to the total mutagenicity of inhalable suspended particles

in polluted areas (Atkinson and Arey 1994, Marino et al.

2000). Though numerous nitro-PAH have been detected

in atmospheric as well as emission particulates, nitrated

pyrenes and fluoranthenes seem to be responsible of the

main effect on health of humans (Marino et al. 2000).

The occurrence of 2-nitrofluoranthene and 2-nitro-

pyrene in particulate matter collected in urban, subur-

ban, forest and remote areas located in Europe, Amer-

ica, Asia and Antarctica was investigated by Ciccioli

et al. (1996). The results that were obtained confirm

the photochemical origin of these components by gas-

phase reactions with OH radicals and their ubiquitous

occurrence in the troposphere. In addition, it was ver-

ified that to disperse photochemically produced nitro-

PAH in areas where their occurrence is somehow pre-

vented, carbon particles can contribute to their forma-

tion by providing a suitable surface for converting NO2
into nitrous and nitric acid by reaction with water. Bam-

ford and Baker (2003) measured 26 nitro-PAH in an ur-

ban and suburban area of Baltimore. Concentrations of

nitrated compounds produced from gas-phase reactions

were significantly correlated with levels of NOx . The

only nitro-PAH negatively correlated with NOx and cor-

related with O3 were 3-nitro- and 4-nitrophenanthrenes,

suggesting a different formation mechanism. The rel-

ative contribution of gas-phase reactions and primary

emission sources of nitrated aromatics were evaluated

using source specific concentration ratios of nitrofluo-

ranthene and nitropyrene: 2-NF/1-NP and 2-NF/2-NP.

It was concluded that the daytime OH-initiated reaction

was the dominant gas-phase formation pathway of 2-

nitrofluoranthene, especially in the summer. Laser des-

orption ionisation time-of-flight (LDI-TOF) mass spec-

trometry has been used by Bezabeh et al. (1999) for

the selective screening of PAH and nitro-PAH in trapped

airborne particles. In addition to PAH, the investiga-

tors selectively detected nitro-PAH, which are known to

be 1–2 orders of magnitude less abundant than their anal-

ogous PAH, in a complex environmental matrix by em-

ploying low laser powers and negative ion detection. The

three detected nitro-PAH, at estimated concentration of

<100 pg m−3 of air (<300 ng g−1 of particulate mat-
ter), were tentatively identified as nitropyrene, nitropery-

lene, and nitrodibenz[a,h]anthracene. PAH with molec-

ular masses of 300–450 Da were observed in positive ion

spectra, illustrating the capability of the LDI mass spec-

trometry technique to examine a mass range beyond that

accessible by GC/MS. The ability to examine aerosols

from small air volumes (0.32–0.98 m3) is essential to

the understanding of factors that affect aerosol composi-

tion andmay be useful for identifying individual vehicles

that emit greater quantities of mutagenic combustion by-

products. LDI-TOFmass spectrometry has proven tobe a

powerful analytical method for the screening of PAH and

nitro-PAH from aerosol particulate matter and promises

to support more extensive studies of toxic constituents

of combustion aerosols. Hayakawa et al. (2002) mea-

sured four nitro-PAH, pyrene and benzo[a]pyrene in the

downtown and in a suburban area of Kanazawa, Japan,

in each season for seven years. Concentrations of these

PAH and nitro-PAH were higher at the downtown sites

than at the suburban site, suggesting the dilution of these

compounds during the transportation from the downtown

to the suburban area. The concentration ratios of nitro-

PAH to PAH were larger at the downtown sites than at

the suburban site. Studies using UV light and sunlight

showed that degradation of nitro-PAHwas faster than that

of PAH. Thus, the lower concentrations of nitro-PAH in

the suburban sites may be due to their being photode-

graded faster than PAH during the atmospheric trans-

portation from the downtown area to the suburban area.

The partitioning of the PAH between the gaseous

and particulate phase is an important factor in estimating

the rate of removal processes. PAH are removed from

the atmosphere by transformation, wet and dry depo-
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TABLE IV

Comparison of atmospheric concentrations of selected nitro-PAH (pg m-3) measured in several locations around the world.

1-NNap (1-nitronaphthalene); 9-NAnth (9-nitroanthracene); 2-NFluor (2-nitrofluoranthene); 3-NFluor (3-nitrofluoranthene);

1-Npy (1-nitropyrene); 2-Npy (2-nitropyrene); 7-NB[a]A (7-nitrobenzo[a]anthracene); 6-NCh (6-nitrochrysene).

Location Reference 1-NNap 9-NAnth 2-NFluor 3-NFluor 1-Npy 2-Npy 7-NB[a]A 6-NCh

Baltimore, MD Bamford and Baker (2003)

Winter 59 64 60 0.5 27 6.5 23 0.4

Summer 53 99 0.3 8.1 2.7 3.4 0.1

Fort Meade, MD Bamford and Baker (2003)

Winter 23 46 49 0.3 21 4.0 12 0.4

Summer 15 28 0.3 1.4 0.8 0.7 0.3

Birmingham, UK (a) Dimashki et al. (2000) 89 187 221 90 33

Copenhagen, Denmark (b) Feilberg et al. (2001) 63 91 39 127 20

Riso, Denmark (c) Feilberg et al. (2001) 30 60 32 30 8

Torrance, CA (d) Arey et al. (1987)

Night-time 2300 100 400 30 30

Day-time 3000 50 300 40 40

Houston, TX (e) Wilson et al. (1995) 354 29 39 9.3 2.3

Columbus, OH (f) Chuang et al. (1991) 50 60 20

Claremont, CA (g) Zielinska et al. (1989) 400 1.0 16 3

Athens, Greece (h) Marino et al. (2000) 90 60 40

Rome, Italy (i) Ciccioli et al. (1996) 470 70 70

Madrid, Spain (j) Ciccioli et al. (1996) 70 10 20

Montelibretti, Italy (k) Ciccioli et al. (1996) 91 13 16

(a) Mean of 25 samples, Nov. 1995-Feb. 1996; (b) Mean of 20 winter-spring samples, 1996; (c) Mean of 14 samples, Feb. 1998-1999; (d) Mean of

6 samples collected 20 km south of Los Angeles, Jan.-Feb. 1985; (e) Mean of 19 samples measured between Aug. 1990-1991; (f) winter 1986/97;

(g) Mean of 6 samples collected 30 km northeast of central Los Angeles; Sept. 1995; (h) Mean of 32 samples, Jan.-Dec. 1996; (i) Mean of 10

samples, Sept. 1991; (j) Mean of 14 samples, Oct. 1990; (k) Mean of 22 samples, Feb. 1988-Dec. 1994.

sition, and air–water exchange. The concentration and

deposition levels of a PAH compound are influenced by

the composition and strength of the emissions, the tur-

bulence and the removal process type. There are two

main removal mechanisms, including dry and wet de-

position, in the atmosphere. Dry deposition refers to

the transfer of both gaseous and particulate to a surface

including soil, water, and vegetation when there is no

precipitation (Tasdemir and Esen 2007). Wet deposition

of airborne PAH occurs with the scavenging of particles

by, and partitioning of organic vapour into, rain and snow

(Sahu et al. 2004). A comparison of different methods

for measuring deposition fluxes of particulate matter

and PAH in the ambient air can be found in Shannigrahi

et al. (2005). Besides the atmospheric loss/removal pro-

cesses, the PAH air concentrations are controlled by a

complex array of variables, some of which may also in-

fluence the seasonality in ambient levels. These vari-

ables include secondary sources of PAH into the atmo-

sphere (i.e. possible volatilisation from soil, water, veg-

etation or/and urban surfaces), photochemical reactions,

scavenging by vegetation, dilution/advection factors that

are influenced by wind speed and direction, and mixed

boundary layer height. Finally, seasonal temperature

changes drive the gas to particle distribution and atmo-

spheric reaction rates of PAH (Prevedouros et al. 2004).

The particulate phase PAH tend to distribute in

combustion aerosols (such as soot particles) that dom-

inantly distribute in the fine particle size range. On the

other hand, considerable amounts of PAHs are also

found in coarser particles, which consist mostly of geo-

logicmaterials such asmineral particles. Thus, a sizeable

amount of the PAH in the atmosphere is apparently as-

sociated with mineral particles. (Tamamura et al. 2007).

PAH may be sorbed on dust particles, and transported

over long distances (Fang et al. 2005). Long-range

transport of PAH over hundreds to thousands of km has

also been of concern in various locations in the world
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(Hou et al. 2006, Hung et al. 2005, Tamamura et al.

2007).

HOMOLOGOUS COMPOUND SERIES

Aliphatic hydrocarbons, particularly normal alkanes,

represent ubiquitous organics which are released into

the atmosphere by many sources, rendering difficult the

association between the levels of different compounds

and their origin. Selected mass fragmentograms for n-
alkanes can be obtained by searching m/z 85 or 99.
Usually, the homologous compound distributions of n-
alkanes in atmospheric aerosols range from C12 to C40.

The higher molecular weights with an odd carbon num-

ber represent typical n-alkanes attributable to natural
plant waxes (Abas and Simoneit 1996, 1997). It should

be referred that the layer of the plant cuticles comprises

long-chain, usually saturated aliphatic molecules with

even-carbon called epicuticular waxes. The wax layer

could be composed of up to 100 normal saturated hydro-

carbons, grouped into at least 12 substituent classes hav-

ing different functional groups (Günthardt-Goerg 1994).

Epicuticular waxes form a bloom on the surface con-

sisting of wax protrusions that are characteristic of each

plant species (Rogge et al. 1993e). The epicuticular wax

layer ranges from only a few nanometres to a few mi-

crons in thickness. Due to its position at the leaf surface,

composition can certainly be altered by environmental

factors, such as rain, wind, high temperatures and air

pollutants, such as ozone (Percy et al. 1994). Plant wax

lipids could be released, for example, by both a dust

blasting effect on plant surfaces and wind abrasion caus-

ing sloughing of wax directly (Percy et al. 1994). The

dominance of the n-C27, n-C29 and n-C31 homologs gen-
erally observed during summer shifted towards lower

carbon numbers in the range n-C21-n-C25 during the
colder season. Changes in the modal chain-length of n-
alkane distributions have been attributed to differences in

growing-season temperatures of the source regions (Si-

moneit et al. 1991a). However, Schefuß et al. (2003)

suggest a large influence of the regional precipitation

regime on the chain-length distributions of leaf-wax

lipids, in agreement with their biologic functionality as

regulators of the plant moisture balance.

Linear alkanones and alkanals are a group of oxy-

genated compounds identified in aerosols. The distri-

bution diagrams are given by the m/z 58 and 82 of the
GC/MSanalysis, respectively. The n-alkan-2-ones<C20
may in part be derived from anthropogenic activity (Se-

infield and Pandis 1998, Simoneit et al. 1988) or from

atmospheric oxidative processes (Simoneit et al. 1988).

In some cases, the possible absence of alkanals of higher

masses (>C20) may reflect their reactivity to oxidation

yielding alkanoic acids. Long chain n-alkan-2-ones are
typically found in the waxy portion of the plant materi-

als. The homologous series may range from C8 to C38.

The n-alkanals with odd carbon number higher than 20
are of biogenic origin, whereas the lower compounds in-

dicate oxidationof alkanes as possible precursors (Gogou

et al. 1996). Aldehydes may occur in the epicuticular

waxes as a result of the reaction of O3 on unsaturated

hydrocarbons (Garrec 1994).

Typical distributions of n-alkanols range from
C10 to C36. The selected mass fragmentograms for the

corresponding trimethylsilyl ethers that result from the

derivatisation process is plotted by searching the m/z
75. Even-to-odd carbon number predominance is found

in aerosols with a major biogenic contribution. The ho-

mologs<C20 are not found in fresh vascular plant waxes

and may have a microbial origin. The homologs >C20
may derive from epicuticular vegetation (Abas and Si-

moneit 1996, 1997).

Fatty acids constitute another chief group of solv-

ent-extractable compounds present in aerosol samples.

They are majorly represented by n-alkanoic, n-alkenoic,
dicarboxylic and oxo-carboxylic acids. The distribution

patterns of then-alkanoic acids, which present m/z 74
and 87 key fragments (as methyl esters), range usually

from n-C7 to n-C35. A pattern where the n-C22-n-C28
mode is predominant is characteristic of contributions

from higher plant waxes. The homologs < n-C20 are
probably derived frommicrobial sources, although these

acids are ubiquitous in biota (Abas and Simoneit 1996,

Simoneit et al. 1990). Other sources are cooking, grilling

and food preparation, where these compounds are di-

rectly volatilised into the fumes (Rogge et al. 1991).

These substances could also be attributed to microbial

reworking during storage of vials that can occur even

when sample conservation is done at –20◦C (Aceves
and Grimalt 1993). In addition, the microbial lipids

could also arise by the remobilisation of soil (Simoneit
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et al. 1988). Other biogenic contributors are fungi,

bacteria, spores, pollen and algae (Rogge et al. 1993e).

Lower molecular weights for n-alkanoic acids (<C18)
were found in emissions from petroleum-based sources

such as gasoline- and diesel-powered vehicle exhaust or

from distillate fuel oil, tire wear debris and road dust

(Rogge et al. 1993a). The synthesis of n-fatty acids
in plant leaves is practically identical to the synthesis

of n-alkanes. These compounds proceed via elongation
and descarboxylation reactions involving C16 and C18
n-fatty acids (Rogge et al. 1993e). Contrary to plant
epicuticular wax, seeds (and seed oils, e.g. cooking

oil), plant organelles, leaf cells, chloroplast and pollen

contain predominantly n-C16, n-C18, mono-unsaturated
(Cn:1), di-unsaturated (Cn:2) and poly-unsaturated fatty
acids (Rogge et al. 1993b). It should be noted that the

unsaturated fatty acids are indicators of recent biogene-

sis (Simoneit et al. 1988, Abas and Simoneit 1996).

Unsaturated n-fatty acids (alkenoic acids) are emit-
ted to the atmosphere from microbial sources and from

the processing, degradation and combustion of plant and

animal constituents (Rogge et al. 1993e). Meat cooking

is an important source of n-alkenoic acids, mainly oleic
(C18:1) and palmitoleic acid (C16:1) (Rogge et al. 1991).
Phytoplankton and bacteria also contain a number of

unsaturated fatty acids (Rogge et al. 1993e, Simoneit

et al. 2004a). Biomass burning presents, in general, as

primary components palmitic (C16:0) and stearic (C18:0)
acids (e.g. Oros and Simoneit 1999). Once emitted into

the atmosphere, unsaturated fatty acids, which are indi-

cators of recent biogenesis (Simoneit et al. 1991a), are

likely to be attacked by free radicals, ozone and other

oxidants, producing aldehydes, lower weight carboxylic

acids and dicarboxylic acids (Rogge et al. 1993e). One

method that has been used to gauge the age of aerosol

is to take the ratio between the concentrations of the

saturated C18 alkanoic acid (C18:0) and the mono-un-
saturatedC18 acid (C18:1). This ratio is used as an aerosol
age indicator since the mono-unsaturated acid breaks

down much faster by atmospheric oxidation than the sat-

urated analogue. The abundance of the saturated acid

compared to the mono-unsaturated homologue can,

therefore, indicate a relative decomposition rate (Brown

et al. 2002). Values between 5 and 11, with an average

of 6.6, for the C18:0/C18:1 ratio were reported for rural

samples collected in remote Big Bend National Park,

Texas. These high, rural-like ratios were ascribed to a

combination of local rural biogenic emissions and aged

aerosol advected from urban areas (Brown et al. 2002).

While stearic and palmitic acids are, as individual com-

pounds, not source specific, the C18:0/C16:0 fatty acid
ratio is unique and can be used in source apportionment

studies. The major contributors for particulate matter

have C18:0/C16:0 ratios ranging from 0.17 to 0.71, de-
pending on source type. In countries where dried cattle

dung is used for cooking purposes, fine particulate smoke

presents the characteristically elevated ratio around 2,

whereas for foliar vegetation or wood smoke and car ex-

haust, values below 0.5 are typical. The surface soil

and dusts from feedlots and open lot dairy farms showed

an average C18:0/C16:0 ratio of 3.0. Values between 0.5
and 1 were also found in agricultural fields, dust from

paved and unpaved roads and in PM2.5 of rural and ur-

ban sources, such as hamburger charbroiling (Rogge et

al. 2006 and references therein).

A series of alkanedioic acids is frequently pres-

ent in atmospheric aerosol samples. These compounds

could be oxidation products from biopolymers or other

lipid components (e.g. hydroxyalkanoic acids), or

incomplete combustion products (Abas and Simoneit

1996). Thus, they could represent secondary organic

compounds formed by photochemical reactions. Oxo-

carboxylic acids are likely photo-oxidation products

from cyclic olefins and unsaturated fatty acids also de-

tected in aerosol samples. As examples, we have the

C5 and C6 homologs, produced by oxidation of anthro-

pogenic cyclic olefins, and the C8 and C9 compounds

which are formed by photo-oxidation of unsaturated car-

boxylic acids such as the oleic (C18:1) and linoleic (C18:2)
acids (Gogou et al. 1996). Products like 9-oxononanoic

acid and nonanoic acid, both detected in the aerosol

samples, form the final reaction products of the oleic

acid with ozone (Rogge et al. 1993e). Aliphatic dicar-

boxylic, acids found in the particulate matter are an im-

portant compound class due to their possible formation

by chemical reaction in the atmosphere (Grosjean and

Seinfeld 1989, Rogge et al. 1993e). Kawamura and Ka-

plan (1987) found that butenedioic related acids (methyl

maleic, succinic, and malic acid) are the most frequent

particulate dicarboxylic acids with origin in combus-
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tion engines. Rogge et al. (1991) reported meat cook-

ing as an emission source of C4-C8 dicarboxylic acids,

pointing out the importance of adipic acid (hexanedioic).

Pereira et al. (1982) identified dicarboxylic acids ranging

from C4 to C9 in airborne ash resulting from pyrolysis

of organic soil constituents, plants and trees. Acids in

the range C10-C24 have been stressed by Simoneit and

Mazurek (1982) as possible oxidation products of hy-

droxy acids from vegetation.

Table V presents the levels of the homologous com-

pound series in atmospheric aerosols from different en-

vironments all over the world. Fatty acids and n-alkanes,
followed by n-, are the dominant organic classes. The
homologous compounds associated with fossil fuel and

biomass burning may be up to 30 times more abundant

in winter that in summer due to stronger emissions dur-

ing the cold season (Wang et al. 2006b). The increase

in concentrations during winter could also be related to

the fact that lower winter temperatures promote the de-

crease of mixing heights and the existence of inversion

layers, leading to poorer dispersion and diminishing the

dilution factors and, therefore, conducting to an increase

of atmospheric pollutant concentrations. On the other

hand, as some compounds have a highly temperature

dependent gas/particle partitioning coefficient, the high

summer temperature could promote their displacement

from particulate to gas phase, decreasing their aerosol

phase concentrations (Oliveira et al. 2007a). In China,

concentrations of the homologous organic classes are

generally 1-3 orders of magnitude higher than in devel-

oped countries (Wang et al. 2006b). The levels mea-

sured in the background marine atmosphere over the

north Atlantic are lower than those measured in the

Mediterranean and of the same order as those reported

for the remote Chichi-Jima Island in the western Pa-

cific. In contrast, the concentrations are higher than

those registered in the aerosol of Enewetak Atoll, north

Pacific. Hydrocarbon concentrations ranging from 30 to

2800 ngm−3 were found by Simoneit et al. (1991b) over
the south Atlantic. The highest values were observed

when approaching part of Tierra del Fuego, where exten-

sive petroleum production occurred. The high n-alkane
concentrations (0.3–680 ng m−3) found by Simoneit and
Elias (2000) in samples of particulate matter from the at-

mosphere over the Atlantic along the South American

and African continents were associated to epicuticular

wax components of continental vegetation, which are in-

troduced into the aerosols mainly by direct emission due

to abrasive and related processes. However, long-range

transport of smoke from biomass burning off the conti-

nents was also found an important factor influencing the

composition of marine aerosols (Alves et al. 2007).

MOLECULAR MARKERS

The assessment of natural versus anthropogenic contri-
butions to the carbonaceous aerosol is often done by

searching molecular markers or tracers, which include

organic compounds that are source specific, react slowly

in the atmosphere and do not change to gas-phase dur-

ing the transport. Numerous compounds were identi-

fied and quantified in the atmospheric samples, includ-

ing cigarette smoke components, vehicle exhaust mark-

ers, meat smoke tracers, combustion products of plastics,

coal burning emissions, phytosterols of higher photosyn-

thetic plants and wood smoke constituents (Table VI).

Tobacco smoke
It has been pointed out that the major tracers for to-

bacco smoke in the urban atmosphere are 2-methyl- (iso-)
and 3-methylalkanes (anteiso-alkanes) ranging fromC29
toC34 (Kavouras et al. 1998a,Morrical andZenobi 2002,

Rogge et al. 1994). Their mass spectra contain the typ-

ical fragmentation pattern (M•+ – [C3H•
7], m/z 393) for

the branched alkanes. Results from the analysis of en-

vironmental tobacco smoke showed that several unique

peaks are present in the mass spectrum when compared

to other combustion sources, such as automobiles and

diesel trucks (Table VII). In particular, ions at m/z 118,
132, 146, and 160 are consistently present and are not

found in other combustion sources (Morrical and Zenobi

2002). Other researchers have chosen compounds such

as nicotine (LaKind et al. 1999, Leaderer and Hammond

1991) and solanesol (LaKind et al. 1999, Tang et al. 1990)

asmarkers for tobacco smoke. Nicotine and solanesol are

both specific to environmental tobacco smoke and may

be appropriate for the indoor environment where their

reactivity may be slower, but have been shown not to be

very suitable for the outdoor environment due to a high

rate of reaction (Morrical and Zenobi 2002). Using iso-
and anteiso-alkanes, with nicotine as a confirming tracer,
ambient fine cigarette smoke particles were estimated
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TABLE VI

Specific tracers for organic components in atmospheric aerosols.

Compounds Major source Emission process

n-Alkanes, C15-C20 (odd/even) Microbial Direct/resuspension

C20-C37 (odd/even) Plant waxes Direct/biomass burning

C15-C37 (CPI=1) Vehicles Exhaust

C16-C40+ (even predomin.) Plastics Directly volatilised during open burning

n-Alkenes, C15-C37 Biomass/coal Combustion

Isoprenoid hydrocarbons Ubiquitous/
Exhaust

(pristane, phytane) not in gasoline

Triterpenoid hydrocarbons Ubiquitous/
Lubricants of vehicular engines

(steranes and diasteranes), not in gasoline and
exhaust

C27-C35 diesel fuels

Alkylcyclohexanes, C16-C29 Urban aerosols Auto exhaust

n-Alkanones, C15-C35 Biomass/coal Biodegradation/combustion

n-Alkanals, C15-C35 Biomass/coal Biodegration/combustion

n-Alkanoic acids, C15-C37 Microbial/biomass Direct/resuspension/combustion

C20-C36 Higher plants Direct/combustion

n-Alkanoic acid salts, C15-C20 Marine biomass Sea slick resuspension

n-Alkanols, C14-C36 Biomass Direct

n-Alkanedioic acids, C6-C28 Various Photo-oxidation/combustion

Wax esters Plant waxes Biomass combustion/direct

Triterpenyl alkanoates Vegetation Biomass combustion

Triacylglycerides Flora/fauna Biomass combustion/cooking

Methoxyphenols Biomass with lignins Combustion

Levoglucosan Biomass with cellulose Combustion

Galactosan Biomass with cellulose Combustion

Mannosan Biomass with cellulose Combustion

Cholesterol Meat/algae Cooking/direct

Mono- and diglycerides Meat Cooking/direct

Phytosterols Higher plants Combustion/direct

Triterpenoids Higher plants Combustion/direct

Diterpenoids (resin acids) Higher plants (gymnosperms) Combustion/direct

Hopanes/steranes Petroleum Vehicle exhaust and others

UCM Petroleum Vehicle exhaust and others

Alkylpicenes/alkylchrysenes Coal Combustion/heating

Plasticisers/Antioxidants Plastics
Volatilised by steam stripping

during open burning

to be present at a concentration of 0.28–0.36µg m−3 in
the Los Angeles outdoor air, accounting for 1.0-1.3% of

the fine particle mass concentration (Rogge et al. 1994).

Vehicle emission markers

Petroleum molecular markers are specific indicator

compounds mainly present in the hydrocarbon fractions.

These kind of tracers may include the 17α(H), 21β(H)-

hopane series, the 5α(H), 14α(H), 17α(H) and 5α(H),-

14β(H), 17β(H)-sterane series, alkylcycloalkanes, the

isoprenoids pristane and phytane, as well as the chro-

matographic unresolved complex mixture (Gogou et al.

1996, Simoneit 1984, 1999, Simoneit et al. 1991a).

The presence of steranes (m/z 217), diasteranes
(m/z 218) and hopane triterpenoids (m/z 191) indicates
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TABLE VII

Cigarette specif tracers.

Mass/Charge
Possible identities of ions at given m/z

(m/z)
118 indazole, benzimidazole, myosmine M-C2H

+
4 fragment, indane

132 C1-alkylindazole, C1-alkylbenzimidazole,

mysomine M-CH+
2 fragment, C1-alkylindane

146 C2-alkylindazole, C2-alkylbenzimidazole,

mysomine, C2-alkylindane

160 C3-alkylindazole, C3-alkylbenzimidazole, C3-alkylindane

petroleum residue contamination (Simoneit 1984, Si-

moneit et al. 1991a). Generally, the distribution patterns

of petroleum biomarkers show that the 17α(H),21β(H)-

hopane series is the predominant group, ranging from

C27 to C35 with the homologs >C29 present as the typi-

cally mature C-22 R/S pairs (Simoneit et al. 1990). Dis-

tributions showing concentrations of the 22S hopanes

higher than those for the corresponding 22R pairs are

commonly found in aerosols emitted by gasoline and

diesel engines. Biogenic precursors contain only the 22R

configuration (Zheng et al. 1997). Steranes are intro-

duced into the atmosphere from lubricants of vehicular

engines, but they are not found in gasoline or diesel fuel

(Abas and Simoneit 1996).

Paraffinic components of petroleum, alkylcyclo-

alkanes, could be identified in the particulate matter, by

searchingm/z 82 andm/z 68-69 typical masses, respec-
tively, for alkylcyclohexanes and alkylcyclopentanes.

Vehicular traffic with the associated fuels and lubricants

emit these compounds into the ambient atmosphere. The

presence of unsaturated hydrocarbons like pristane

(2,6,10,14-tetramethylpentadecane) and phytane (2,6,-

10,14-tetramethylhexadecane) is consistent with fossil

fuel sources of carbon in the range of C16-C20, which is

approximately the distillation range of diesel fuels (Abas

and Simoneit 1996, Aceves and Grimalt 1992, Azevedo

et al. 2002, Fraser et al. 1997, Rogge et al. 1997a, Zheng

et al. 1997). Pristane and phytane result from the dia-

genesis of phytol and are not primary components of the

majority of terrestrial living organisms (Simoneit 1984).

Biogenic inputs are often dominated by a predominance

of the odd carbon alkanes and the C17 isoprenoid (pris-

tane). Since phytane is rarely found in biological ma-

terial (except some bacteria), most biological hydrocar-

bons have a Pr/Ph ratio >>1.0. Low Pr/Ph ratios indi-

cate a hydrocarbon signature derived frompetrochemical

use. It should be noted, however, that the identification of

compounds such as pristane and phytane in atmospheric

samples are dependent on the sampling period. Simoneit

et al. (2004a) referred to the volatile compound blow-off

from the filters over a 1–2-day acquisition time and the

consequent depletion of aliphatics <C21, and therefore

of the petroleum tracers.

Generally, chromatograms from the aliphatic frac-

tion show a hump that is constituted by branched and

cyclic unresolved hydrocarbons, expressing the exist-

ence of microbial or petroleum derived contaminants,

especially naphthenes (Bi et al. 2002, Simoneit 1984).

This UCM (unresolved complex mixture) may be plot-

ted by searching the m/z 95 fragmentogram. In general,
samples show a bimodal pattern, with a minor maximum

at <C20 and a major one at the C26 or C28 naphthene.

The first mode may indicate a source input typical of

biodegraded detritus from algae and other microorgan-

isms, which could arise by remobilisation of soil dust or

from a recycled component of hydrocarbons eroded from

sedimentary outcrops (Simoneit et al. 1991a). The hump

observed in contaminated aerosols correlate with vehic-

ular emissions. Auto exhaust exhibits a narrow hump

maximising at C26 or at the neighbour naphthenic hy-

drocarbons (Simoneit 1984). The ratio of unresolved to

resolved hydrocarbon components (U:R) is a parame-

ter used to assess the magnitude of petroleum contribu-

tions to atmospheric aerosols (Tang et al. 2006). The

hump: n-alkane ratios are determined from the gas chro-
matogram by the area of unresolved material above the

background (measured by planimetry or integration) di-

vided by the sum of the GC area of resolved n-alkanes
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and other major components (Azevedo et al. 1999). U:R

values for rural, mixed and urban samples are 0.2–4,

1.4–3.4 and 0.9–25, respectively (Azevedo et al. 2002).

An U:R value >>1 indicates considerable contributions

from petroleum combustion sources; pure hydrocarbon

mixtures fromplant waxes haveU:R< 0.1, i.e. they have

no UCM. Generally, urban aerosols contain the largest

component of petroleum-derived compounds, while ru-

ral and mixed rural/urban environments show variable

contributions of anthropogenic pollutants. The average

U:R ratio for conifer smoke (1.0) suggests that the UCM

of rural aerosol particles from the western United States

consists mainly of recent (immature) organic matter de-

rived from conifer and perhaps other biomass combus-

tion source emissions, such as grass smoke released from

agricultural field burning, and less pronounced fossil

fuel combustion emissions (Oros and Simoneit 2001a).

Several U:R ratios have been determined from more

mature fossil fuel derived combustion emission sources

which include the following: lignite coal = 3.2 and bi-

tuminous coal = 3.3 (Oros and Simoneit 2000); catalyst-

equipped automobile engine exhaust = 5.5 and heavy-

duty diesel truck engine exhaust = 9.3 (Rogge et al.

1993d). Thus, the lower U:R ratio of conifer smoke

shows that this parameter is useful for distinguishing be-

tween conifer biomass burning and fossil fuel derived

combustion source emissions. Ultimately, the U:R ratio

may be used as an indicator for identifying atmospheric

transport trajectories from regional biomass burning and

fossil fuel combustion emission containing air parcels.

This is especially useful for determining the contribu-

tions of organic matter derived from rural versus urban
emission sources (Oros and Simoneit 2001a).

Meat smoke

During the cooking process, triglycerides from the fat

can be hydrolysed or thermally oxidised, producing free

glycerol, mono- and diglycerides and free fatty acids

(Nolte et al. 1999). The emission rates of these com-

pounds can be found in Schauer et al. (1999a) and

Nolte et al. (1999). Meat cooking operations were con-

sidered to be a major source of organic aerosol emis-

sions to the urban atmosphere, comprising up to 21%

of the primary fine organic carbon particle emissions

in the Los Angeles area (Rogge et al. 1991). Promi-

nent among the compounds emitted are n-hexadecanoic
acid (i.e., palmitic acid), n-octadecanoic acid (i.e., stearic
acid), cis-9-octadecenoic acid (i.e., oleic acid), nonanal,
2-octadecanal, 2-octadecanol, saturated monoglycerides

and cholesterol. However, the majority of these com-

pounds, and especially fatty acids, are emitted from so

many sources in addition to meat smoke that data on

their concentration alone is insufficient to determine the

quantity ofmeat smoke aerosol in ambient air (Nolte et al.

1999). The presence of cholesterol in oceanic aerosols

more likely indicates an input from marine sources such

as algae, which also can contribute to continental choles-

terol sources in environments downwind from lacustrine

areas (Simoneit and Elias 2001). The presence of choles-

terol in particles has been associated with sea spray de-

riving from secretions of aquatic organisms (Alves et

al. 2007, Fine et al. 2004b). The sea spray explanation

is supported by the occurrence of cholesterol predomi-

nantly in the larger particles (Fine et al. 2004b).

The C16 monoglycerides, 1-palmitin and 2-palmi-

tin, dominate in meat smoke aerosols, but there are also

significant emissions of C18 (1-stearin) and C18:1 (1-
olein) monoglycerides (Nolte et al. 1999). Although

cholesterol can be emitted from other sources, concen-

trations measured in the West Los Angeles atmospheric

aerosol were consistent with the cholesterol mass emis-

sion rates calculated from meat cooking source tests.

Thus, a group of compounds (Fig. 2), instead a single

tracer, was considered to be more useful as an indicator

of the quantity of meat smoke in the atmosphere. Of this

assemblage, cholesterol seems to be most suitable, com-

plemented by monoglycerides and perhaps oleic acid in

the exact proportionalities (Nolte et al. 1999, Robinson

et al. 2006b).

Tracers for the open burning of plastics

One way in which waste plastics impact the environ-

ment is through combustion, whether on purpose or not.

Some discarding practices comprise intentional burning

of waste, including plastics and plastic bags. In other

occasions, wind-blown plastic litter collects in clumps

and is burnt in wildfires. Anyway, smoke particles and

combustion products, some of which are noxious to hu-

mans, are released into the atmosphere. In a recent in-

vestigation specific tracer compounds generated during
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Fig. 2 – Chemical structures of constituents detected in meat smoke.

the open-fire combustion of plastics that can be used to

detect episodes of plastic refuse burning were studied

(Simoneit et al. 2005). Plastics consisting above all,

but not entirely, of polyethylene plastic bags, were hand-

picked from the roadside and landfills, and analysed in

two ways. The amounts of extractable compounds in

the hexane extracts and smoke particles were 29-43 and

5.4-17.5 mg g−1 of plastic, respectively. The most im-
portant compounds extracted from the plastics were plas-

ticisers, antioxidants and n-alkanes with an even carbon
number (C16-C40), derived from the polymerisation of

ethylene. Dialkyl esters of benzene-dicarboxylic acids

(phthalates) are representative of plasticisers, which are

widespread in the environment. The principal plasti-

ciserwas bis(2-ethylhexyl) phthalate (DEHP), a probable

human carcinogen, with minor amounts of other phtha-

lates, which are also suspected health risks (Fig. 3). In

the smoke particles, the main compounds found were

terephthalic acid, 4-hydroxybenzoic acid, and the ph-

thalates. n-Alkanes were found once more, but with
no carbon number predominance, indicating incomplete

combustion and thermal cracking of polyethylene. The

researchers proposed the minor components 1,3,5-tri-

phenylbenzene (TPB) and tris(2,4-di-tert-butylphenyl)
phosphate (TDPP) as candidate marker compounds be-

cause it was considered that they are not usually detected

in the atmosphere. This hypothesis was confirmed by

matching up to aerosol particulate matter from regions

where plastic and refuse are burnt in open fires (Santi-

ago, Chile; Saporo, Japan; Gosan Island, Korea) with

that from areas supposed to be clean (Los Angeles, CA;

Corvallis, OR). Both TPB and TDPP were found in the

locations where open-fire burning of plastics is frequent,

but were lacking from the areas apparently uncontam-

inated. Santiago presented the highest plastic marker

content (613-6920 ng m−3 of DEHP; 7-132 ng m−3 of
Irganox 1076), which is in agreement with the greater

occurrence of garbage, litter and plastic-related combus-

tion compared with the other cities. The plastic tracers

were undetectable or present at much lower levels than

those of Chile in the particulate matter from the other

places.

Very high levels of phthalates (up to 2200 ng m−3)
dominated by DEHP, dibutyl and diisobutyl phthalates

were also detected in the aerosol from 15 Chinese cities,

especially in summer, possibly due to an enhanced evap-
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O

O

O

O

Diethylhexyl phthalate (C24H38O4)

M + 390 (0.5), m/z 279 (17), 167 (39), 150 (12), 149 (100), 113 (9), 71 (17), 57 (24)

O

O

Octadecyl 3-(3 ,5 -di-tert-butyl-4 -hydroxyphenyl)propionate

Irganox 1076 (C35H62O3)

M + 530, m/z 515, 219, 57

O
P

O

O

tris(2,4-di-tert-butylphenyl)phosphite

Irgafos 168 (C42H63O3P)

M + 646, m/z 441, 308, 191, 147, 57

O
P

O

O

O

tris(2,4-di-tert-butylphenyl)phosphate (C42H63O4P)

M + 662, m/z 647, 308, 316, 191, 57

1,3,5-Triphenylbenzene (C24H18)

M + 306, m/z 289

1,2,4-Triphenylbenzene (C24H18)

M + 306, m/z 289

Fig. 3 – Chemical structures of organic tracers in smoke from burning plastics and characteristic mass spectra. For the dominant plasticiser, ions

are listed as m/z with relative intensities following in parentheses.

orative realise from plastics, followed by adsorptive de-

position on pre-existing particles (Wang et al. 2006b).

Phthalate levels in China are 1-3 orders of magnitude

higher than those in the Swedish (Thuren and Larsson

1990), Belgian (Kubátová et al. 2002) and French (Teil et

al. 2006) atmospheres. Taking into account their ubiqui-

tous and abundant occurrences, aswell their carcinogenic

and endocrine-disrupting characteristics, the determina-

tion of plasticiser markers in atmospheric environments

will be helpful in measuring the degree of plastic burn-

ing and will assist in establishing air pollution control

programs.

Tracers in coal smoke

The burning of coal to produce electricity contributes

significantly to the emission of fine particulate matter

into the atmosphere. The sort and loads of organic com-

ponents in coal smoke particulate matter depend on com-

bustion temperature, aeration, burn time and geologic

maturity, i.e. coal rank (Oros and Simoneit 2000). The

maturity of the fuel may be evaluated indirectly by de-

termining some indicators in smoke. It is registered a

decrease in carbon preference index values (see section

6) of n-alkanoic acids, UCM and phenolic compounds
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and an increase in the homohopane index [S/(S+R)] with

increasing rank. In general, the U/R and the 17α(H),-

21β(H)-hopane to 22R-17α(H),21β(H)-homohopane ra-

tios characteristic of coal smoke are in the range 2.9–

3.3 and 0.05–0.35, respectively. The generic markers

for coal smoke emissions comprise a series of C27 to

C31 hopanes (no C28), phenolics, C2-picenes and C2-

hydropicenes (Oros and Simoneit 2000). The source

specific markers are listed in Table VIII.

Tracers for wood burning, vegetation and
other natural inputs

Most of the tracer molecules from vegetation are phytos-

terols and terpenoids, including sesquiterpenoids, diter-

penoids and triterpenoids with 3, 4 and 5 isoprene units,

respectively. Phytosterols are sterols of higher photo-

synthetic plants originated by a biosynthetic pathway of

cyclisation, where squalene is the precursor (Kozlowski

and Pallardy 1997, Simoneit et al. 1991a), which can be

selected by searching m/z 129. Besides the precursor,
the most common phytosterols that have been found in

the solvent-extractable fraction of organic aerosols, de-

rived from vegetation waxes and plant lipid membranes

(Oros and Simoneit 2001a, b), consist of ergosterol

(C27), campesterol (C28), sitosterol (C29) and stigmas-

terol (C29). Whereas sitosterol and stigmasterol are in-

dicators for vegetation in general, campesterol has been

pointed out as a specific molecular tracer for gramineae

(Simoneit 2002). Different carbon number distributions

have been obtained in distinct experiments, suggesting

that the phytosterol patterns may be related to geograph-

ical characteristics, particularly, the specific plant com-

munities and the climatic conditions. For example, aero-

sol samples from both rural and urban western United

States compare with C27 >C29 >C28 distribution of

the wax from the Sierra Nevada vegetation or Oregon

coastal forest (Simoneit 1989). For aerosol samples from

Nigeria, an inverted ordering was encountered, where

the pattern C29 >C27 >C28 was evident. This distri-

bution correlated with the predominance of wax compo-

nents from the Nigerian and desert vegetation and also

from grass (Simoneit et al. 1988). The Nigerian phy-

tosterol pattern coincides with that of aerosol samples

and composites from the Amazon region (Simoneit et al.

1990). In aerosols from a Portuguese semi-rural area and

from a Greek Abies forest, the C28 phytosterol was not
present at detectable levels and a C27 >C29 distribution

was observed (Alves and Pio, in press).

Sesquiterpenoid compounds possess in their struc-

tures the cadinane skeleton, an important constituent of

resin plants (Simoneit andMazurek 1982). Some sesqui-

terpenoids of lower volatility have been detected in aero-

sols from rural locations, including bicyclic (e.g. caryo-

phyllene, cadalene and calamenene) and tricyclic (e.g.

longifolene, copaene and patchoulol) constituents (Alves

and Pio, in press, Pio et al. 2001b).

Diterpenoid components derive from the steroid

skeletons of abietane and pimarane, which are the ma-

jor constituents produced by higher plants, especially

conifers (Standley and Simoneit 1994). Oxidation, poly-

merisation, disproportionation and aromatisation reac-

tions of these unstable diterpenoids produce secondary

compounds, such as resin acids (Pio et al. 2001a, Simo-

neit and Mazurek 1982). Retene (1-methyl-7-isopropyl-

phenanthrene), a completely dehydrogenated resin diter-

penoid, is a pyrolysis end product from diterpenoids that

have the abietane or pimarane skeletons and has been

proposed as molecular tracer for coniferous wood com-

bustion (Ré-Poppi and Santiago-Silva 2002, Rogge et

al. 1998, Simoneit and Mazurek 1982, Standley and Si-

moneit 1994).

Resin acids are protectants and wood preservatives

that are produced by parenchymatous epithelial cells that

surround the resin ducts in trees from temperate conif-

erous forests. The resin acids are formed when two-

and three-carbon molecules couple with isoprene build-

ing units to form mono-, sesqui-, and diterpene struc-

tures. Resin acids have two functional groups, carboxyl

group and double bonds. Nearly all have the same ba-

sic skeleton: a 3-ring fused system with the empirical

formula C19H29COOH. Resin acids, which are biosyn-

thesised mainly by gymnosperms (e.g. pine and spruce)

in temperate regions (Oros and Simoneit 1999, Rogge

et al. 1998, Simoneit et al. 1993), are generally found

in aerosols in significant concentrations. They include

unaltered (levopimaric, pimaric, isopimaric and sanda-

racopimaric acids) and thermal degradation products

(neoabietic, palustric, dehydroabietic and7-oxodehydro-

abietic acids). Dehydroabietic acid has been used as a

biogenic source indicator for conifer resin, either directly
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TABLE VIII

Dominant source-specific molecular markers for smoke from each coal type.

Coal type Markers

Lignite
Dominant C31-hopanes, divanillyl and 1,2-divanillylethane lignans,

diterpenoids and dehydrogenated and 3-oxo triterpenoid derivatives

Brown coal
Allobetul-2-ene, 3,4,7-trimethyl-1,2,3,4-tetrahydrochrysene and

1,2-(5’-isopropylcyclopenteno)-7-methylchrysene

Sub-bituminous coal
17β(H),21β(H)-hopane, C28 triterpenoids and

2,2-dimethyl-1,2,3,4-tetrahydropicene

Bituminous coal Picene and methylpicenes

to the aerosol, or from combustion of wood (Graham et

al. 2004, Standley and Simoneit 1994). This compound

was not identified in aerosols from Nigeria and Amazo-

nia, in accordance with the absence of conifer vegetation

in those regions (Simoneit et al. 1988, 1999). In cities

where wood is used for heating, ambient dehydroabi-

etic acid concentrations ranged from 48 to 440 ng m−3
(Standley and Simoneit 1994). The compound was also

detectable in oceanic samples at concentrations ranging

from 0.0001 to 0.4 ng m−3, whereas in terrestrial aerosol
particulate matter, it was present at much higher levels

(0.23-440 ng m−3). The presence of this tracer in atmo-
spheric matter over the ocean confirmed the long-range

transport of smoke from biomass burning of the conti-

nents (Simoneit and Elias 2001).

In smoke samples from biomass combustion (Table

IX), triterpenoids are used as organic tracers for the con-

tribution of directly volatilised natural constituents from

vegetation (Elias et al. 1997). The most encountered

triterpenoids in plants are α-amyrin, β-amyrin and their

derivatives. These pentacyclic triterpenes have been con-

sidered tracers for angiosperm waxes, especially in their

gums andmucilages (Oros andSimoneit 2001a, b). Their

biosynthesis proceeds from squalene-2,3-epoxide to the

basic ursane and oleanane skeletons and further oxida-

tive steps lead to triterpenic acids and other pentacyclic

oxygenated compounds (Simoneit 1989). Simoneit et

al. (1991c) found various triterpenoids in aerosols from

mountainous regions and from the southeast coast of

Australia. Global yields ranged from 0.4 to 6 ng m−3.
The same investigators detected amyrinols, at trace lev-

els, in aerosol samples taken from Amazonia (Simoneit

et al. 1990). Alves and Pio (in press) detected triterpenic

oxygenated compounds such as amyrinol and deriva-

tives in aerosols from Portuguese and Greek rural ar-

eas. In smoke aerosol from Amazonia, high molecu-

lar weight components consisting of a series of wax es-

ters (long chain alcohols esterified with long chain fatty

acids) with up to 58 carbon numbers, triglycerides and

triterpenyl esters (e.g. α- and β-amyryl stearate) were

detected (Elias et al. 1997, 1998). Some of the struc-

tures are represented in Figure 4.

Lignin is a biopolymer that represents a substantial

portion of wood, deriving primarily from p-coumaryl,
coniferyl and sinapyl alcohols. Breakdown products are

emitted upon combustion of wood, including aromatic

phenols, aldehydes, ketonic acids and alcohols. In the

smoke emissions, some volatilised thermal combustion

products condense on pre-existing smoke particles. Be-

cause the monomers in the lignin are linked via the sub-

stituent para to the –OH group to the polymer, the lignin
breakdown products disagree only in that substituent

(Rogge et al. 1998). Both hard and softwoods produce

guaiacol (2-methoxyphenol) derivatives in the smoke,

whereas hardwood originates high levels of syringeol

(1,3-dimethoxy-phenol) derivatives in addition (Haw-

thorne et al. 1988, Simoneit 2002). Vanillin and vanillic

acid are detected in pine wood smoke. Minor amounts

of syringaldehyde, syringic acid and p-anisic acid are
also present. Hardwood smoke (e.g. oak) is enriched

in syringaldehyde and syringic acid, showing minor

amounts of other sinapyl- and vanillyl-type constituents.

Grass smoke consists of p-anisaldehyde, p-anisic acid
and, in less extent, p-coumaryl, vanillyl- and syringyl-
type lignin pyrolysis products (Simoneit 2002). Other

lignin products such as veratrol (dimethoxy-benzene)

and veratric acid (3,4-dimethoxy-benzoic acid) are ex-

amples of compounds that have been detected in the par-
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TABLE IX 

Molecular tracers for biomass burning aerosols. 

Chemical group Molecular markers Molecular structures MS key ions and M+ Source 

Levuglocosan O

HO HO
OH

O

73, 204, 217, 333, 378 (as TMS) Biomass with cellulose 

Galactosan O

HO
HO

OH

O

73, 204, 217, 333, 378 (as TMS) Biomass with cellulose 
Monosaccharide 

derivatives 

Mannosan O

HO
HO

OH

O

73, 204, 217, 333, 378 (as TMS) Biomass with cellulose 

Vanillin 

HO

OH3C

O

H

123, 137, 151 Conifers 

Vanillic acid 

HO

OH3C

O

OH 73, 267, 297, 312 (as TMS) Conifers 

Syringaldehyde 

HO

OH3C

O

H

OCH3

182 Angiosperms 

Syringic acid 

HO

OH3C

O

OH

OCH3

73, 312, 327, 342 (as TMS) Angiosperms 

Methoxyphenols 

p-Hydroxybenzoic 

acid

OH

HO O

77, 82, 105, 111, 136, 142 

(as methyl ester) 

Gramineae 

Abietic acid 

COOH

73, 241, 256, 359, 374 (as TMS) Conifers 

Pimaric acid 

COOH

73, 121, 257, 359, 374 (as TMS) Conifers 

Iso-pimaric acid 

COOH

73, 241, 256, 359, 374 (as TMS) Conifers 

Diterpenoids 

Sandaracopimaric 

acid

COOH

73, 121, 241, 257, 359 (as TMS) Conifers 

ticulate matter (Alves and Pio, in press). Furan deriva-

tives (e.g. 2-acetylfuran, 2-furanmethanol) have been de-

scribed as minor constituents of smoke and attributed to

cellulose combustion/decomposition process (Edye and

Richards 1991, Simoneit 2002). Lignans are present

as noteworthy components in the smoke from softwood
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TABLE IX (Continuation) 

Chemical group Molecular markers Molecular structures MS key ions and M+ Source 

Dehydroabietic acid 

COOH

73, 239, 357, 372, (as TMS) Conifers 

Pimanthrene 191, 206 Conifers 
Diterpenoids 

Retene 219, 239 Conifers 

–Amyrin

HO

73, 189, 203, 218, 393, 483, 488 

(as TMS) 

Angiosperms 

–Amyrin

HO

73, 189, 203, 218, 393, 483, 498 

(as TMS) 

Angiosperms Triterpenoids 

Lupeol CH3CH3

HO

H3C
CH3

H

H

CH3

CH3

H

C

CH3

H2C

189, 203, 218, 231, 279, 369, 

408, 483, 498 (as TMS) 

Angiosperms 

–Sitosterol

HO

CH2CH3

137, 151, 167, 181, 402 All biomass 

sources

Stigmasterol 

HO

83, 129, 255, 394, 469, 484 
All biomass 

sources
Phytosterols 

Campesterol 

HO

73, 129, 343, 367, 382, 457, 472 

(as TMS) 

Gramineae 
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TRITERPENYL ALKANOATES 

o

o

amyryl palmitate

o

o

Taraxasteryl palmitate 

TRIGLYCERIDES 

C15H31

O

O
O

O

O

O

C15H31

C17H33

Dipalmitoylolein 

C15H31

O

O
O

O

O

O

C17H33

C17H35

1-Palmitoyl-2-oleoyl-3-stearin 

C17H33

O

O
O

O

O

O

C17H33

C17H33

Triolein

Fig. 4 – Structures of some compounds representative of the homologous series of triterpenols esterified to long chain fatty acids and of triglycerides

in smoke extract from Amazonia.

(e.g. pine), are less significant in the hardwood smoke

(e.g. oak) and are not measurable in grass smoke (Si-

moneit et al. 1993). The leading lignans of softwood

smoke are matairesinol and shonanin (tetrahydro-3,4-

divanillyfuran). Minor quantities of methylated deriva-

tive are detectable. The hardwood smoke encompasses

a variety of highly oxygenated isomers of dihydrovanil-

lylsyringyl-2(3H)-furanone, dihydro-3(2’, 3’, 4’-trime-

thoxybenzyl) - 4 - veratryl - 2(3H) - furanone and tetra-

hydro-3-vanillyl-4-veratrylfuran, which are released un-

altered from the combustion sources and may be consid-

ered tracers of biomass burning. In addition, softwood

smoke includes derivatives from coniferyl-type precur-

sors, such as divanillyl, divanillylmethane, bis(3,4-

dimethoxyphenyl)methane and diveratryl. Hardwood

smoke comprises components originated from sinapyl-

type precursors, including bisguaiacylsyringyl, disy-

ringyl and bis(3,4,5-trimethoxyphenyl)ethane. Dianisyl,

a derivative from a p-coumaryl-type precursor, is the
only tracer in the grass smoke (Simoneit 2002).

The pyrolysis derivatives from the thermal break-

down of cellulose and hemicellulose during burning are

the dominant smoke tracers in continental air sheds.

The major tracer compound is levoglucosan, with lesser

amounts of galactosan andmannosan. These are the trac-

ers utilised for the assessment of particulate matter from

biomass burning in the atmosphere because they can-

not be generated by non-combustive processes. They

are characterised by the base peak at m/z 204 and by
m/z 217 and 333 in mass fragmentograms. The mass
spectrum of levoglucosan tritrimethylsilyl ether exhibits

only a small molecular ion (m/z 378) with fragments due
to loss of CH3 (m/z 363), CH5Si (m/z 333), C6H17OSi2
(m/z 217) and C7H18OSi2 (m/z 204, base peak). The
mass spectra of the other monosaccharide dehydration

derivatives (galactosan and mannosan) are similar (Abas

et al. 2004a, Pashynska et al. 2002). Levoglucosan is

emitted in relatively high concentrations, 40 mg kg−1
to 1200 mg kg−1 of wood burned, and shows no de-
cay over an eight-hour exposure to ambient atmospheric

conditions (Larsen et al. 2006). Potential acid-catalysed

hydrolysis of levoglucosan in atmospheric droplets was
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TABLE X

Elemental carbon, organic carbon and levoglucosan in fine particulate matter from different categories of
biomass burning measured recently in different investigatios (adapted from Puxbaum et al. 2007).

Sampling site Fuel category
EC mg/g OC mg/g Levoglucosan Factor

Reference
of PM2.5 of PM2.5 (mg/g OC) OC/Levogl.

Fireplace Hardwood 866 129 6.7
Fine et al. 2001

NE-US Softwood 911 76.4 11.9

Fireplace Hardwood 787 136 5.8
Fine et al. 2002a, b

South-US Softwood 1000 42.6 23.5

Fireplace Mid-W Hardwood 20 767 183 4.2
Fine et al. 2004c

and W-US Softwood 890 123 7.2

Wood stove US
Hardwood 553 164 3.4

Fine et al. 2004a
Softwood 620 353 1.8

Asian biomass Leaves, straw,
32.4 525 79 6.6 Sheesley et al. 2003

fuel dung, etc.

Rhondonia
1.4 29.2 2.46 11.9

Graham et al. 2003
Pasture Site

Rhondonia
0.7 14.5 1.18 12.3

Forest Site

Southern Fresno
32.7 7.6 4.3

Schauer and Cass

United States Rural-urban 2000

Southeast Kuala Lumpur
115 40.24 2.9 Abas et al. 2004a

Asia Urban-haze

Recommended
7.35 Fine et al. 2002a, b

average US

Recommended

for small 7.1* Schmidl 2005

stoves Austria

investigated as one potential loss mechanism. Results

using simulated rainwater indicate no degradation over a

10-day period (Fraser and Lakshmanan 2000). Thus, it is

a good candidate for tracing biomass burning emissions.

Levoglucosan has been detected in atmospheric aerosols

from U.S. urban areas, e.g. Seattle, 13-750 ng m−3

(Simpson et al. 2004), Fresno and Bakersfield, 23-

7590 ng m−3 (Schauer and Cass 2000), and about
120 ng m−3 in Los Angeles (Fine et al. 2004b). In a
Portuguese semi-rural coastal area, during the 2003 sum-

mer intense forest fire period, levoglucosan presented

levels between a minimum of 17 ng m−3 and an up-
per limit of 105 ng m−3 (Pio et al. 2007), which was
achieved during a vast wildfire period. Much higher av-

erage levels of 1200 and 2500 ngm−3 have been reported
for forest and pasture sites, respectively, in 1999, during

the burning season in Rhondonia, southwest Amazonia

(Graham et al. 2002). However, these values are far

lower than concentrations that have been reported dur-

ing severe episodes of biomass smoke in Southeast Asia,

1400-40240ngm−3 (Abas et al. 2004a). TableXpresents
the contribution of levoglucosan to OC in fine particles

from different fuel types and distict burning conditions.

Basedon the averagevalue between theOC/levoglucosan

ratio of 12.3 measured for the fine dry season aerosol in

Rhondonia (Graham et al. 2002) and the ratio of 10.5

obtained for a pine forest fire in southeast USA (Lee et

al. 2005), it was found a smaller than expected contribu-

tion (11-36%) of wood combustion to the amount of OC

throughout the summer of 2003, whichwas characterised

by an intense heat wave and forest fires in Portugal (Pio et

al. 2007). Thus, unrealistically, its seems that the major

fraction of OCmeasured in both fine and coarse aerosols

during the Portuguese study was chiefly related to other

primary anthropogenic and biogenic sources, aswell sec-

ondary formation processes. In spite of a noteworthy
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raise in OC levels during the two weeks with strongest

impact from the forest fire smoke plumes, the levoglu-

cosan concentrations and the estimated contribution of

wood burning to OC did not increase as expected. How-

ever, if the average levels of OC and levoglucosan mea-

sured during the 3 weeks less affected by wildfires were

taken as baseline values and if these values were sub-

tracted from the corresponding concentrations during the

intense forest fire periods, then an OC/levoglucosan ratio

of 80was obtained. The investigation of Pio et al. (2007)

made evident that theOC/levoglucosan relationships pro-

posed in the literature for deriving the amount ofOC from

wood or biomass combustion in ambient aerosols should

be taken with precaution. Since the ratios are quite vari-

able for different burning conditions and wood types, it

has yet to be estimated more specific factors with ap-

plication to wildfires under extreme weather conditions

(dryness and high temperatures), such as those in the

Mediterranean countries. This conclusion was consis-

tent with the results presented by Jordan et al. (2006),

who obtained a smaller than expected levoglucosanmass

fraction in aerosols generated by bushfires after using

factors determined for wood burning. The different fuel

and combustion conditions encountered during bushfires

gave rise to lower mass fractions.

Besides anhydrosugars, recent studies indicate that

sugar polyols and sugars are relatively abundant water-

soluble organic constituents of atmospheric aerosols

(Table XI). Saccharide alcohols (reduced sugars) are

known components of bacteria, fungi, lichens, inverte-

brates and lower plants, acting as osmoregulators, stress

inhibitors or carbohydrate suppliers (Graham et al. 2003,

Medeiros et al. 2006). There are several sources of

monosaccharides including microorganisms, vascular

plants and animals (Medeiros et al. 2006). Simoneit

et al. (2004b) suggested soil and associated microbiota

as the main source of sugars to the atmosphere. Ac-

cording to these researchers, all these compounds de-

rive mainly from soil resuspension into the atmosphere,

though emissions of considerable amounts may occur by

thermal stripping during biomass burning events. The

dominant primary saccharides in aerosols include α- and

β-glucose, sucrose and mycose (trehalose) with various

minor constituents.

OXIDATION PRODUCTS OF VOC

The fraction of particulate organics resulting from the
conversion of volatile compounds is of particular inter-
est for the understanding of the chemistry of rural atmo-
spheres, because of the large VOC emissions from veg-
etation in these areas. These compounds have an excep-
tional ability to produce condensable products as result
of rapid oxidation into less volatile oxygenated organ-
ics. Among biogenic emissions from vegetation, 50 Tg
of α-pinene are emitted per year, which is almost 45%
of the estimated global annual emission of monoterpenes
(Bhat and Fraser 2007). Terpene and isoprene oxidation
products have been observed in aerosols in smog cham-
ber studies and in the ambient atmosphere (Alves and
Pio 2005, Alves et al. 2000, 2001, 2002, 2006, Bhat
and Fraser 2007, Böge et al. 2006, Cahill et al. 2006,
Claeys et al. 2004a, b, 2007, Clements and Seinfeld
2007, Edney et al. 2003, 2005, Engling et al. 2006,
Herckes et al. 2006, Jaoui and Kamens 2003, Jaoui et
al. 2005, Kavouras et al. 1998b, 1999b, c, Kavouras and
Stephanou 2002a, b, Lewandowski et al. 2007, Oliveira
et al. 2007b, Pio et al. 2001a, b, Sheesley et al. 2004,
Spanke et al. 2001, Yu et al. 1999).

Pinic acid, pinonic, pinonaldehyde and nopinone
are common pinene oxidation products detected both in
smog chamber and field experiments (Table XII). The
ozonolysis of α-pinene is a known source of pinic acid
(e.g. Christoffersen et al. 1998). Another pathway for
the formation of this compound is the reaction of β-
pinene with O3/NOx (Jaoui and Kamens 2003). In lab-
oratory experiments with α-pinene and OH radicals or
ozone, the formation of pinonaldehyde and pinonic acid
was observed (Hakola et al. 1994, Kamens and Jaoui
2001, Larsen et al. 2001). Pinonaldehyde may also
take place in the particulate phase by oxidation of α-
pinene through reactionwith other oxidising species such
as NO3 and N2O5 (Wängberg et al. 1997). The major
product from β-pinene oxidation identified in the par-
ticulate matter is nopinone. This compound has been
detected in laboratory studies as a product of the precur-
sor through reaction with O3 or OH (e.g. Hakola et al.
1994, Jaoui and Kamens 2003, Larsen et al. 2001). The
formation of nopinone may also take place after oxida-
tion of β-pinene by NOx (Grosjean et al. 1992, Paulson
et al. 1990), O3/NOx (Palen et al. 1992) or NOx /SO2
(Kotzias et al. 1990).
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TABLE XII 

Concentrations (ng m
-3) of some terpene photo-oxidation products detected in aerosols from field experiments. 

Sampling site Reference 

Pinonic acid 

COOH

O
Pinic acid 

COOH

COOH

Nopinone
O

Pinonaldehyde

O

O

Two Japanese mountains Satsumabayashi et al. (1990)    30-100 

Near Ispra, Italy Calogirou et al. (1997)    90 

Kejimkujik National Park (Nova Scotia) 

and San Bernardino National Forest 

(California) 

Yu et al. (1999) 0.1-0.8 0.5-0.6  0.2-1.0 

Eucalyptus forest, Portugal Kavouras et al. (1998b) 
7.1-60.1 (isomer cis);
1.5-42.9 (isomer trans) 0.0-13.2 0.2-32.1 

Boreal forest Spanke et al. (2001) 0.8-4.0 (pinonic+pinic acids)    

Greek conifer forest  
Kavouras et al. (1999b) 

Pio et al. (2001a) 
< 25.7 < 4.4 < 0.6 < 1.2 

Giesta, rural, Portugal Pio et al. (2001b)  6.8 1.4  

Aveiro, coastal city, Portugal  Alves et al. (2002) 25.3 15.8 2.4 13.7 

Lisbon, Portugal  Alves et al. (2002) 1.0 < 0.5 < 0.1 < 0.5 

Lower Fraser Valley, Vancouver Cheng et al. (2004) 5.9    

Sierra Nevada Mountain, CA Cahill et al. (2006) 2.6-37 1.7-10 1.5-5.1 16-320 

Yosemite National Park, CA Engling et al. (2006) 21 12 0.9 21 

Hyytiälä, boreal forest, Finland Alves et al. (2006) 2.6 5.0 0.2 5.5 

Melpitz, German meadow Alves et al. (2006) 7.8 7.2 0.1 14 

Coniferous forest, Germany Plewka et al. (2006) 2.5 (night); 3.5 (day) 3.2 (night); 9.5 (day)  13.7 (night); 2.7 (day) 

Duke Forest (pine), North Carolina Bhat and Fraser (2007) 0.11-20.8 1.5-25.1   

Oporto, Portugal Oliveira et al. (2007a) 
2.9-3.6 (winter);  

2.9-5.2 (summer) 

   

Copenhagen, Denmark Oliveira et al. (2007a) 
2.0-3.8 (winter);  

2.8-3.6 (summer) 

   

Although monoterpenes are an important source of

biogenic organic aerosols (Kavouras et al. 1999c, Hop-

pel et al. 2001), we still have missing sources that con-

tributes to secondary organic aerosols of biological ori-

gin. Matsunaga et al. (2003) measured, in both gas

and particle phases, glycolaldehyde and hydroxyacetone

which are known as the oxidation products of isoprene

(Atkinson 1990), together with biogenic semi-volatile

aldehydes (n-nonanal and n-decanal; Kesselmeier and
Staudt 1999). These investigators discovered a strong

diurnal variation of these carbonyls with their particu-

late concentrations being comparative to the oxidation

product of monoterpenes (pinonic acid). They are most

likely produced in and/or emitted to the atmosphere as

gases, and later converted to the particles. This study

demonstrated that the semi-volatile carbonyls largely

contribute to the formation and growth of aerosols in the

forest and potentially play a significant role in the global

budget of organic aerosols. Matsunaga et al. (2004)

measured particulate concentrations of 4-oxopentanal (4-

OPA) up to 207 ng m−3 in a Japonese forest, which was
found to be comparable to those of pinonic acid, indicat-

ing that 4-OPA is also an important constituent of organic

aerosols in the forestal atmosphere. This carbonyl is

produced by the oxidation of 6-methyl-5-hepten-2-one,

which is heterogeneous oxidation product of squalene

and similar terpenoids present on the surface of plant

leaves and other parts.

The organic analysis of PM2.5 rural aerosol col-

lected during summer at K-puszta, Hungary, from a

mixed deciduous/coniferous forest showed the presence

of polar oxygenated compounds that are also formed in

laboratory irradiated α-pinene/NOx /air mixtures (Claeys

et al. 2007). The unknown photo-oxidation products

were structurally identified as 3-hydroxyglutaric acid,

3-hydroxy-4,4-dimethylglutaric acid and 2-hydroxy-4-

isopropyladipic acid. The detection of 3-hydroxyglutaric

acid and 2-hydroxy-4-isopropyladipic acid at apprecia-

ble levels during daytime (avg. 16.8 and 14.9 ng m−3,
respectively), provided an explanation for the relatively

low atmospheric concentrations of pinic acid in forest

environments, since these two acids correspond to a fur-

ther reaction product of pinic acid involving addition of a

molecule of water and opening of the dimethylcyclobu-

tane ring. The same three oxygenated products were de-

tected in samples collected fromResearch Triangle Park,

NC, USA, during the summer of 2003 (Lewandowski et

al. 2007). Methyltetrols, along with 2-methylglyceric

acid, were also observed. It has been suggested that

these compounds may be the products of isoprene oxi-

dation (Böge et al. 2006, Claeys et al. 2004b, Edney

et al. 2005). The concentrations of 2-methylthreitol

An Acad Bras Cienc (2008) 80 (1)



SOLVENT EXTRACTABLE ORGANIC CONSTITUENTS IN ATMOSPHERIC PARTICULATE MATTER 53

and 2-methylerythritol ranged from 18 to 365 ng m−3

(0.9% of the total organic matter), suggesting that iso-

prene SOA may be a significant component of ambi-

ent PM2.5 in the southeastern US during the summer

(Lewandowski et al. 2007). Other studies have reported

methyltetrol levels of up to 29.4 ng m−3 in the Southeast
during June of 2004 (Clements and Seinfeld 2007) and

131 ng m−3 in the northeastern US during the summer
of 2005 (Xia and Hopke 2006). The discrepancies in

the reported concentrations are due, in part, to the ab-

sence of authentic standards for the methyltetrols and,

consequently, to variations in the quantification methods

employed. However, a more important aspect contribut-

ing to the high methyltetrol levels detected in aerosols

from the Research Triangle Park may be the deliberate

choice of stagnant, highly polluted days for sample col-

lection (Lewandowski et al. 2007). During the July 2001

LBA-CLAIRE wet season campaign in the Amazonian

rainforest in Balbina, Brazil, Claeys et al. (2004a) de-

tected 2-methylthreitol and 2-methylerythritol, in ambi-

ent PM2.5 samples, at total concentrations of 49 ng m−3

during the day and 65 ng m−3 at night. These two tetrols
were also observed in ambient PM2.5 in a mixed de-

ciduous/coniferous forest at K-puszta, Hungary, ranging

from 1 to 34 ng m−3 and from 1 to 85 ng m−3, respec-
tively, during the summer of 2003 (Ion et al. 2005). In

the Hungarian study, the polar oxygenated compound

2-methylglyceric acid was observed at ambient levels

ranging between 2 ng m−3 and 18 ng m−3. Two di-
astereoisomeric 2-methyltetrols were detected in aerosol

samples collected in the Sierra Nevada Mountains of

California (Cahill et al. 2006), with 2-methylthreitol

(32 ± 9.6 ng m−3) being about 2.5 fold more abun-
dant than 2-methylthreitol (13 ± 3.8 ng m−3), which
is a similar ratio as determined for the Amazon (Claeys

et al. 2004a), and boreal Finnish forests (Kourtchev et

al. 2005). The concentrations (05–1.7 ng m−3) mea-
sured at Melpitz, Germany (Böge et al. 2006) are by

far lower than in the other places, especially in Amazo-

nia. However, the isoprene mixing ratio in the Ama-

zonian rainforest was between 4 and 10 ppb (Claeys

et al. 2004a, b), whereas those in Melpitz were usu-

ally between 10 and 200 ppt. According to Cahill et

al. (2006) this substantiates the ubiquitous nature of the

2-methyltetrols in SOA from very much different ge-

ographic regions. Althought the 2-methyltetrols have

been considered photochemical products, their concen-

trations in ambient samples do not always show a clear

diurnal cycle, like some of the monoterpene oxidation

products (e.g. pinonic acid and pinonaldehyde). An

unclear pattern was observed by Cahill et al. (2006),

which contrasts with the concentration maxima occur-

ring during the day measured by Ion et al. (2005). These

disagreements were attributable to differential meteoro-

logical conditions at the sites. Due to the fact that 2-

methyltetrols may be linearly correlated with glucose

and fructose, it has been suggested that the polyols may

derive from a similar biological source as the sugars,

in addition to the well accepted photochemical pathway

(Cahill et al. 2006).

One of the predominant ketones found in the atmo-

spheric aerosol samples is phytone (6,10,14-trimethyl-

pentadecan-2-one). It is produced by thermal alteration

and oxidation of phytol emitted from plants, or has a

marine origin, and has been proposed as a marker for

secondary biogenic aerosol (Abas et al. 1995, Brown

et al. 2002, Gogou et al. 1996, Simoneit et al. 1988).

This isoprenoid compound has been previously detected

in an Abies forest of central Greece (Pio et al. 2001a),
rural aerosols from Crete (Gogou et al. 1996), forest

and rural locations of Portugal (Alves et al. 2001, 2007;

Pio et al. 2001b), a German urban/industrial influenced

grassland location (Alves et al. 2006), a coniferous for-

est in Germany (Plewka et al. 2006), a Finnish boreal

forest (Alves et al. 2006, Shimmo et al. 2004a), west-

ern United States (Simoneit andMazurek 1982), Canada

(Brown et al. 2002, Cheng et al. 2006), Amazonia (Abas

et al. 1995), Nigeria (Simoneit et al. 1988) andYosemite

National Park (Engling et al. 2006) at levels of dozens

of ng m−3.
In addition to previously reported biogenic oxida-

tion products (pinic acid, pinonic acid, norpinic acid,

nopinone, and pinonaldehyde), seven multifunctional

organic compounds were found by Jaoui et al. (2005) in

both field and laboratory samples. These compounds,

which were proposed as possible atmospheric tracers

for secondary organic aerosol from monoterpenes, were

consistentwith the following identifications: 3-isopropyl

pentanedioic acid, 3-acetyl pentanedioic acid, 3-carboxy

heptanedioic acid, 3-acetyl hexanedioic acid, 2-isopro-
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pyl-1 , 2-dihydroxybutanol, 4-isopropyl-2 , 4-dihydroxy-

hexanol and 3-(2-hydroxy-ethyl)-2,2-dimethyl-cyclo-

butane carboxylic acid. The occurrence of these com-

pounds suggests that SOA originating from biogenic hy-

drocarbons are contributing to the regional aerosol bur-

den in the southeastern United States. Several of these

compounds also appear to contribute to the global aerosol

burden in that they have also been identified in Europe

and Brazil (Jaoui et al. 2005).

Kubátová et al. (2000) employed GC/MS after var-

ious types of derivatisations for the quantification of di-

chloromethane extractable compounds in aerosols sam-

ples collected in the Amazon basin. Four unkowns were

identified: two derivatives of glutaric acid (3-isopropyl

pentanedioic acid and 3-acetyl pentanedioic acid), 3-

acetyl hexanedioic acid and 3-carboxy heptanedioic acid.

The biogenic precursors of the novel identified com-

pounds could not be pinpointed, but most likely include

monoterpenes and fatty acids. In addition, two tricar-

boxylic acids (propane-1,2,3-tricarboxylic acid and 3-

carboxy heptanedioic acid) could be characterised. The

oxidative degradation products represented 0.5% of OC.

Aliphatic diacids and aromatic di-, tri-, and tetra-

acids have also been reported as indicators of SOA in

urban atmospheres, as they can be quantified readily

using standard GC/MS techniques (Fine et al. 2004d,

Schauer et al. 2002a, Zheng et al. 2002). Nevertheless,

in aerosol samples enclosing a mixture of both SOA

and primary source emissions, the origins of these com-

pounds have not yet been definitively identified (Sheesley

et al. 2004). Aromatic acids, particularly phthalic acid,

have been thought to be secondary products of the oxi-

dation of PAH, including naphthalene (Fraser et al. 2003,

Jang and McDow 1997), while origins proposed for

aliphatic dicarboxylic acids comprise the formation by

photochemical oxidation of anthropogenic hydrocarbons

and biogenic compounds, direct emission from combus-

tion engines, or biomass combustion (Kubátová et al.

2000 and references therein). Although dicarboxylic

acids can be of primary or secondary origin, several stud-

ies have revealed contributions to SOA by dicarboxylic

acids formed in situ during atmospheric aerosol pro-
cessing (Glassius et al. 2000, Kavouras et al. 1998b,

1999c, Kawamura et al. 1996). The dicarboxylic acids

measured by Engling et al. (2006) during the summer

of 2002 in Yosemite National Park (CA, USA) showed

a relatively large variability in concentrations through-

out the study based on the weekly composite samples

(1.3–11 ng m−3 for the sum of C4 through C14 dicar-
boxylic acids). It has been verified that they accumulate

in aerosols and account for 1–15% of the total aerosol

carbon and display their highest concentrations during

periods of increased solar radiation. In addition to ω-

dicarboxylic acids, keto mono- and dicarboxylic acids

and α-dicarbonyls have also been reported to be atmo-

spheric oxidation products (Kubátová et al. 2000 and

references therein).

Jang et al. (2002) showed that some of the highly

volatile carbonylic oxidation products can significantly

contribute to the increase of SOA mass if mixed with

acidic inorganic seed particles. A possible explanation

for this is that condensation and polimerisation reac-

tions of carbonyls in the acidic particles contribute to

SOAmass increase. Reaction chamber experiments have

showed that about 50% of SOA from aromatic oxida-

tion is composed of polymers with a molecular mass up

to 1000 daltons. The formation and ageing processes

of these polymeric subtances take more than 20 hours

(Kalberer et al. 2004). Because aromatics are the main

anthropogenic SOA precursors, these polymers are sup-

posed to be found at appreciable concentrations in ur-

ban environments. On the other hand, aldehydes are

abundant products of biogenic terpenic compounds and,

probably, acetal polymers are formed in large quanti-

ties in rural atmospheres. It can be expected that all

these polymerisation reactions influence aerosol proper-

ties (e.g. optical parameters, hygroscopic growth and

cloud condensation nuclei potential) affecting the role in

the global climate system (Kalberer et al. 2004, Tolocka

et al. 2004). The parametrisation of these reactions is

an important and novel issue, which should be addressed

in modern aerosol models.

The measurement of SOA comprises inumerous

difficulties. They not only are polar but their levels seem

to be only a few nanograms per cubicmeter. Another dif-

ficulty is the partitioning of these compounds between

the gas and particulate phases. As most of them are

semi-volatile their aerosol fingerprint alters constantly.

In addition, some of the most volatile ones (e.g. pinon-

aldehyde and nopinone) have been shown to have atmo-
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spheric lifetimes of the order of a few hours and their

reactivity has not been investigated in any detail. Fur-

ther research of the stability of these compounds will

be needed to better assess their capability as tracers

for SOA. Although quantitative collection of both semi-

volatile and particulate-phase constituents is wanted for

tracing SOA, it should be noted that the existing sam-

pling networks are not prepared for the challenge. Thus,

it will be necessary to exploit advanced sampling and

analytical techniques in order to take advantage of both

non-volatile and semi-volatile tracers in source appor-

tionment studies.

MATERIAL BALANCE

Material balances describing the chemical composition

of aerosols collected at a forest site and in cities that face

some air pollution problems are shown in Figure 5. The

unexpected high levels of particulate matter observed in

the Greek wood were attributable to dust contamination

from the passage of trucks in nearby unpaved forest roads

(Pio et al. 2001a). Background annual average concen-

trations for continental Europe are 7.0 ± 4.1 µg m−3
and 4.8± 2.4 µg m−3 for PM10 and PM2.5, respectively
(Dingenen et al. 2004). Querol et al. (2004) reported

PM10 levels varying from 28 to 42 µg m−3 at urban
background and from 37 to 53 µg m−3 at kerbside sites
in seven selected cities throughout Europe. Annual av-

erage levels of 24, 52, 157 and 54 µg m−3 were mea-
sured in New York, São Paulo, Tegucigalpa and Hong

Kong, respectively (Baldasano et al. 2003). In San-

tiago, the average concentrations of OC (52 µg m−3)
and EC (31 µg m−3) represent 21% and 13% of the

PM10 particulate matter. These levels are notably higher

(factor of 4–10 times) than those described for Los An-

geles, New York or the average for 46 USA urban ar-

eas (Didyk et al. 2000 and references therein). In the

case of the forest samples, the total extractable mate-

rial contained approximately 2 times more mass than the

corresponding OC fraction. Two possible explanations

were considered for this difference. Either the solvent ex-

tract contained other compounds besides organic matter,

and/or the organic matter had an important contribution

of other atomic species, such as oxygen, nitrogen and

sulphur. The expression “Non C organics?” represents

solvent extractablematter, such as oxygen, nitrogen, etc.,

that is not determined on the black/organic carbon anal-

ysis by the thermal/optical method (Pio et al. 2001a).

It should be referred that a significant portion of the

more polar oxygenated organic compounds are not ex-

tractable by common solvents, such as dichoromethane.

The organic matter that is extractable and that elutes

from the chromatographic columns represents a small

fraction (usually less than 10%) of the total organic ex-

tract. The mass of chromatographically elutable organ-

ics can be subdivided into resolved (identifiable peaks)

and unresolved complex mixture, consisting above all

of cyclic and branched chain hydrocarbons from the in-

complete combustion of fossil fuels (Tang et al. 2006).

The extractable organic fractions able to separate chro-

matographically into identifiable compounds are limited

to molecules with carbon atoms, in general, less than

40. Thus, macromolecular and other complex compo-

nents, resulting from oligomerisation and polimerisa-

tion processes, which are expected to exist in the aged

aerosol particles as result of either direct emission or

from secondary atmospheric particulate transformation

processes, constitute an analytically non-accessible frac-

tion. The bulk of organic carbon representing more

hydrophilic compounds (e.g. dicarboxylic acids, sugar

polyols, anhydrosugars, cellulose and humic like sub-

stances) are not quantifiable by classic solvent extraction

followed by GC/MS. The chromatographically identifi-

able organic material consists mainly of fatty acids and

aliphatic constituents, with minor amounts of alcohols,

aldehydes, ketones and aromatic compounds. This char-

acterisation of organic aerosol samples shows that in ru-

ral and forested areas oxygenated species and products

from terpenes emitted by vegetation constitute the major

particulate fraction. Petroleum residues and pyrogenic

constituents predominate in urban samples, standing out

the aliphatic hydrocarbons and cyclic components de-

rived from vehicular emissions.

GEOCHEMICAL PARAMETERS, DIAGNOSTIC RATIOS

AND LIPID SOURCE ASSIGNMENT

The identification and quantification of homologous
compound series (e.g. n-alkanes, n-alkanols and n-alka-
noic acids) present in the lipid extract, associated with
the application of diagnostic parameters, provides sup-
portive data that can be used in the characterisation of
emission sources. The carbon preference index (CPI)
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Fig. 5 – Material balances with the chemical composition of aerosols from different atmospheric environments.
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has been suggested as a qualitative tool to assess the in-
fluence of biogenic and anthropogenic inputs (Simoneit
1989). For n-alkanes, n-alkanals and n-alkanones this
empirical parameter is expressed as a sum of the odd
carbon number homologs, over a range, divided by a
sum of even carbon homologs, over the same range. For
n-alkanols and n-alkanoic acids CPI is calculated in a
similar way, only inverting the ratio to have even-to-
odd homologs. Splitting the CPI range we can distin-
guish microbial contributions (n-C10–n-C24) and higher
plant wax inputs (n-C22–n-C34). Thus, for n-alkanes,
n-alkanals and n-alkanones:

CPI whole range (petroleum) =
∑
C13 − C35∑
C12 − C34

CPI split range (bacterial, algal) =
∑
C11 − C25∑
C10 − C24

CPI split range (higher plant wax) =
∑
C27 − C35∑
C26 − C34

For n-alkanols and n-alkanoic acids, CPI is calculated
as follows:

CPI whole range (biogenic, also pyrogenic) =
∑
C12 − C34∑
C13 − C35

CPI split range (bacterial, some algal) =
∑
C13 − C35∑
C12 − C34

CPI split range (higher plant wax) =
∑
C13 − C35∑
C12 − C34

For biologically synthesised n-alkanes, an odd-to-even
carbon number predominance is observed over a given

carbon number range, while for n-alkanoic acids and n-
alkanols an even-to-odd bias is evident. CPI values close

to unity express a significant input of compounds with

anthropogenic origin. A high value (CPI>3) indicates a

major incorporation of recent biological components into

the aerosol sample. Table XIII presents some results of

the application of this parameter obtained for different

atmospheric environments.

Since it is known that petroleum-derived n-alkanes
have CPI≈1, it is possible to subtract this contribution
to determine the residual plant wax alkanes (Simoneit et

al. 1991a). The concentrations of the wax n-alkanes are
calculated by subtraction of the average of the next higher

and lower even carbon numbered homologs, taking as

zero the negative values of Cn :

Wax Cn = [Cn] −
[
Cn+1 + Cn−1

2

]

As stated before, Cmax can also give an indication

of relative source inputs. It represents the carbon num-

ber of the compound with maximum concentration in the

homologous series (Abas and Simoneit 1996, Simoneit

1989). The average chain length (ACL) is another pa-

rameter that may be used as an additional indicator of

source composition, particularly for the lipid compo-

nents present in the plant waxes. It is calculated as an

average number of carbon atoms per molecule based on

the abundance of the odd or even high homologs (Oros

et al. 1999):

ACL (n-alkanes)

= 23× [
C23

] + 25× [
C25

] + 27× [
C27

] + · · · + 35× [
C35

]
[
C23

] + [
C25

] + [
C27

] + · · · + [
C35

]

ACL (n-alkanols; n-carboxylic acids)

= 22× [
C22

] + 24× [
C24

] + 26× [
C26

] + · · · + 34× [
C34

]
[
C22

] + [
C24

] + [
C26

] + · · · + [
C32

]

It has been assumed that in warmer tropical climates

longer-chain compounds are biosynthesised as wax

lipids, whereas in cooler temperate regions predomin-

antly shorter chain compounds are produced. However,

certain environmental conditions, such as fog exposure,

precipitation regime, aridity and growing-season tem-

perature, may influence the plant or microbial enzymatic

mechanisms, shifting the wax composition and, conse-

quently, the aerosol constitution (Schefuß et al. 2003).

The induced changes may include the cleavage and loss

of one or two carbons of the long chain homologues. On

the other hand, transport of air masses influenced by in-

puts of different taxonomic species may also play an im-

portant role (Alves et al. 2007). ACL values from 22 and

29 were found in aerosols from rural Portuguese areas,

showing a significant augment by two carbon numbers

with increased distance away from the coast (Alves et

al. 2001). This observation may be due to taxonomic

and aging differences among the emitter vegetation from

place to place.

Further assessment of processes affecting the com-

position of hydrocarbons, such as type of vehicular emis-

sions, wood burning, coal combustion, etc., can be ob-

tained from concentration ratios between PAH (Bi et

al. 2002, Gogou et al. 1996, Tsapakis et al. 2002). Ta-

ble XIV gathers bibliographic information on distintict
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TABLE XIII

Carbon Preference Index of n-alkanes for various aerosol sources.
Aerosol type/location CPI Reference

Rural Western US 1.6–8.4 Simoneit (1989)

Urban Western US 1.2–2.8 Simoneit (1989)

Oceanic aerosol: Pacific 2–4 Simoneit (1989)

Vascular Plant Wax 6–10 Simoneit (1989)

Oceanic aerosol: Atlantic 5–10 Simoneit (1989)

Natural fire smoke 1.2–10 Simoneit (1989)

Vehicular exhaust: cars 0.93 Simoneit (1989)

Vehicular exhaust: diesel 1.02 Simoneit (1989)

Biomass combustion, Amazonia 3.6 Abas et al. (1995)

Santiago, Chile 1.11–1.28 Didyk et al. (2000)

Hong Kong 1.2–1.9 Zheng et al. (2000)

Eastern Mediterranean, urban 1.3–1.6 Gogou et al. (1996)

Eastern Mediterranean, rural 1.6–3.3 Gogou et al. (1996)

Big Bend Nacional Park, Texas 1.2–4 Brown et al (2002)

Miami, Florida, urban 1.9± 0.3 Lang et al. (2002)

Guangzhou, China, urban 1.03–1.16 Bi et al. (2003)

Qinddao, China, coastal city 1.17–5.20 Guo et al. (2003)

Athens, urban 2.70± 0.30 Mandalakis et al. (2002)

Campos de Goytacares, Brazil

(downtown, suburbs and lagoon 0.94–3.74 Azevedo et al. (2002)

28 km from downtown)

Birmingham, UK, urban 1.05–1.48 Harrad et al. (2003)

Prato, Italy, urban under influence

of a sewage plant and textile 1.20± 0.21 Cincinelli et al. (2003)

industrial activity

Shanghai, urban 1.0–1.6 Feng et al. (2006)

Shanghai, rural 1.0–2.8 Feng et al. (2006)

14 Chinese cities
1.17± 0.14 (winter)

Wang et al. (2006a)
1.16± 0.12 (summer)

Petrana, rural site, western Greece 2.41± 0.58 Kalaitzoglou et al. (2004)

Central California 1.7± 0.3 Rinehart et al. (2006)

Hyytiälä, Finland, boreal forest 2.69± 1.05 Alves et al. (2006)

Melpitz, Germany, grassland 3.09± 1.38 Alves et al. (2006)

Lower Fraser Valley, Canada, forest 2.39± 0.47 Cheng et al. (2006)

Island of Terceira, north-eastern Atlantic 1.61–11.34 Alves et al. (2007)

diagnostic ratios between PAH, typical values and their

interpretation.

The apportionment of various solvent extractable

compounds to sources may be roughly estimated by tak-

ing into consideration different contributions (Alves and

Pio, in press, Simoneit et al. 1988, Tsapakis et al. 2002):

(a) Plant wax – sum of the Wax Cn concentrations for

n-alkanes; n-alkanoic acids, C22–C34; n-alkanols,
C22–C34; n-alkan-2-ones, C22–C35; n-alkanals,
C22–C35; and biogenic molecular markers such as

phytosterols.

(b) Microbial components – sum of the concentrations
of n-alkanoic acids, C10–C18 with CPI>2; n-alkan-
2-ones, C15–C21; and n-alkanols C12–C20.
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TABLE XIV

Diagnostic ratios between PAH reported in the literature.

Ratio or Index Value Interpretation/Emission source Reference

0.18 Emissions from cars Grimmer et al. (1983)

IcdP/(BghiP+IcdP) 0.37 Diesel emissions Grimmer et al. (1983)

0.56 Coal emissions Grimmer et al. (1983)

BaA/(BaA+CT)

0.16± 0.12 Crude oil emission Sicre et al. (1987)

0.38–0.64 Diesel cars Sicre et al. (1987)

0.22–0.55 Gasoline cars Simcik et al. (1999)

0.43 Wood combustion Li and Kamens (1993)

0.28 Cement plant Yang et al. (1998)

0.08 Vehicle construction Manoli et al. (2004)

0.50

Freshy emitted PAH. This ratio is affected by

Grimmer et al. (1983)

the strong reactivity in the atmosphere since BaP is

easily decomposed by light and oxidants. Most of the

fresh exhausts have similar contents of BeP and BaP,

thus the increasing of the ratio can be regarded as

an index of the aging of particles.

BeP/(BeP+BaP) 0.70 Diesel cars Rogge et al. (1993d)

0.60–0.80 Gasoline cars Rogge et al. (1993d)

0.34 Wood Li and Kamens (1993)

0.54 Road dust Rogge et al. (1993a)

0.45 Roadway soil Oda et al. (2001)

0.85–0.94 Vehicle construction Manoli et al. (2004)

0.90–0.99 Fertilizer production Manoli et al. (2004)

0.44 Catalytic automobiles Rogge et al. (1993d)

< 0.40 Car emissions and used motor or lubricating oils Azevedo et al. (1999)

0.60–0.70 Diesel cars Sicre et al. (1987)

0.40 Gasoline cars Rogge et al. (1993d)

Flu/(Flu+Pyr) 0.42 Road dust Rogge et al. (1993a)

0.54 Roadway soil Oda et al. (2001)

0.21–0.26 Industrial Yang et al. (1998)

0.25 Cement plant Yang et al. (1998)

0.45 Metal scrap burn Tsai et al. (1995)

0.21-0.22 Gasoline cars Khalili et al. (1995)

0.35–0.70 Diesel emissions Rogge et al. (1993d)

0.56 Coal emissions Grimmer et al. 1983

0.62 Wood burning
Gogou et al. (1996),

IcdP/(BghiP+IcdP) Sicre et al. (1987)

0.36 Road dust Rogge et al. (1993a)

0.42 Roadway soil Oda et al. (2001)

0.36–0.57 Industrial Yang et al. (1998)

0.65 Cement plant Yang et al. (1998)

BghiP/BeP
Indicator for traffic, with higher ratios indicating

Nielson et al. (1996)
a higher traffic contribution

BghiP/BaP

1.2-2.2 Diesel cars Rogge et al. (1993d)

2.5–3.3 Gasoline cars Rogge et al. (1993d)

< 0.5 Oil burning Simcik et al. (1999)

0.91 Road dust Rogge et al. (1993a)

0.86 Roadway soil Oda et al. (2001)

0.02–0.06 Industrial Yang et al (1998)

0.06 Cement plant Yang et al (1998)

0.09 Metal scrap burn Tsai et al. (1995)
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TABLE XIV (continuation)

Ratio or Index Value Interpretation/Emission source Reference

CPAH/�PAH

0.41 Emissions from non-catalyst-equipped automobiles Rogge et al. (1993d)

0.51 Emissions from catalyst-equipped automobiles Rogge et al. (1993d)

0.30 Emissions from heavy-duty diesel trucks Rogge et al. (1993d)

> 0.50
Ferrous metal electroplating, steel manufacture,

Monoli et al. (2004)
fertilizer production, and asphalt emissions

0.48 Metal scrap burn Tsai et al. (1995)

1–8
Represent evidence for enhanced mobile sources or

Gogou et al. (1996)
unburned fossil organic material contribution

< 1
Typical of emissions from stationary sources where

Gogou et al. (1996)
fuel is burning at higher temperatures

MPh/Ph 0.5 Atmospheric fallout Takada et al. (1991)

0.5–1.0 Combustion sources Prahl and Carpenter (1983)

1.0 Street and urban dusts Takada et al. (1990, 1991)

2.0–6.0 Fossil fuel Prahl and Carpenter (1983)

4.0 Crankcase oil Pruel and Quinn (1988)

BFs/BghiP

1.60 Diesel cars Li and Kamens (1993)

0.33 Gasoline cars Li and Kamens (1993)

2.18 Wood Li and Kamens (1993)

4.7 Road dust Rogge et al. (1993a)

1.8 Roadway soil Oda et al. (2001)

7.1–11.2 Industrial Yang et al. (1998)

7.8 Cement plant Yang et al. (1998)

4.0 Metal scrap burn Tsai et al. (1995)

α 3× 10−4–40× 10−4 Common emission sources for PAH and BC Blanchard et al. (1994)

Index that has been introduced instead of the sole

BaP since the later is easily decomposed in reactive

air. It tries to parameterise the health risk for Cecinato et al. (1998),

BaPE humans related to ambient PAH exposition and is Marino et al. (2000),

calculated by multiplying the concentrations of Yassaa et al. (2001b)

each carcinogenic congener. Exposition to a

significant cancer risk if values exceed 1.0 ng m−3.

BaA – Benzo[a]anthracene; CT – Crysene and Tryphenylene; BeP – Benzo[e]pyrene; BaP – Benzo[a]pyrene; Flu – Fluoran-

thene; Pyr – Pyrene; IcdP – Indeno[1,2,3-cd]pyrene; BghiP – Benzo[ghi]perylene; CPAH – nine combustion PAH (Fluoran-

thene, Pyrene, Benzo[a]anthracene, Crysene, Benzofluoranthenes, Benzo[e]pyrene, Benzo[a]pyrene, Indeno[1,2,3-cd]pyrene] and

Benzo[ghi]perylene); �PAH – total concentration of PAH; MPh – Methylphenanthrenes; Ph- Phenanthrene; BFs = Benzofluoran-

thenes; α = �PAH/BC; BaPE – Benzo[a]pyrene-equivalent carcinogenic power = BaPE = BaA×0.06 + BFs×0.07 + BaP + DBA ×
0.6 + IcdP×0.08; DBA = Dibenzo[a,h]anthracene.

(c) Thermally maturated and pyrogenic components –
sum of the concentrations of anthropogenic n-al-
kanes (Total Cn – Wax Cn) and the correspond-

ing unresolved complex mixture; n-alkanoic acids,
C10–C18, with CPI<1.5; alkylcyclohexanes; alkyl-

cylopentanes; hopanes; steranes; diasteranes; pris-

tane; phytane; ketones and aldehydes with CPI

< 1.5; biomass burning tracers and PAH.

To exemplify the application of this methodology,

the different source groups contributing to the aerosol

constitution in different locations are plotted in Figure

6. Surprisingly, high relative concentrations of biomass

smoke andpetrogenic constituents in organicmatterwere

observed for wintry conditions at European continental

low level sites (Moitinhos and K-Puszta). This indicates

the transport from urban emissions in the vicinities and a

sizable impact of domestic biomass burning on air qual-

ity. The contribution of petroleum residues and other

thermally produced constituents at these non-urban Eu-

ropean sites is comparable to those reported for Asiatic

urban and suburban aerosols. The lipid wax components
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ranged from a minimum of 17% in Hong Kong to a max-

imum of 83% in rural Nigeria of the apportioned organic

mass. The fractions of microbial components for Euro-

pean sites are of the same order than those of theNigerian

rural aerosol, but one-half lower than the one estimated

for the Amazon particulate matter.

CONCLUSIONS AND RECOMMENDATIONS

Various studies on the composition of atmospheric par-

ticulate matter revealed that a significant fraction of the

total mass could be attributed to organic constituents.

Despite its abundance, the role of the organic aerosol as

a substrate for chemical reactions is not well understood.

Due to the large variety of organic functional groups at

the particle surface they are possible reactants for many

chemical processes with gaseous molecules in the tropo-

sphere. The difficulties in characterising the large vari-

ety of compounds present are still aggravated, because

this study represents a complicated, time-consuming and

expensive process. Much of the research to date has fo-

cused upon urban areas, where organic emissions are

large and have dramatic effects on air quality and partic-

ulate mass concentrations. More pristine environments,

especially forestswhereVOCemissions are large and po-

tential contributors to SOA, remain poorly characterised.

Assessment of natural versus anthropogenic and of pri-
mary versus secondaryorganic contributions to aerosol in
non-urban regions represents an important research area,

since very little is known about these environments.

Usually, n-alkanes and aliphatic acids constitute
the dominant solvent-extractable components of the

atmospheric particulate matter. Smaller quantities of

alcohols, aldehydes, ketones, terpenoids and PAH are

also observed. These constituents are emitted directly

from biogenic sources (vascular plant wax, microorgan-

isms, pollen, etc.) or derive from anthropogenic activi-

ties (vehicular emissions, wood combustion, etc.). The

aerosol compounds that are formed by direct oxidation

from volatile organic precursors are also detected in the

particulate matter, representing a fraction of the total

chromatographycally resolved organic mass. Molecu-

lar marker techniques can be used to identify contribu-

tions of sources such as combustion and biogenic emis-

sions. However, source apportionment strategies will

still need the challenge of truthfully determining the

concentration of SOA in the particulate phase. Addi-

tional field studies are required in locations that are im-

pacted by SOA deriving from both biogenic and anthro-

pogenic sources. Although quantitative collection of

both semi-volatile and particulate phase organic com-

pounds is enviable, the existing sampling equipment is

not capable of efficiently collect compounds with lower

vapour pressures. Also, further smog chamber experi-

ments will be usefull in providing information on sta-

bility of potential tracers for SOA and atmospheric re-

actions. Moreover, these experiments will constitute an

opportunity to test more advanced analytical techniques,

to model the fate of the secondary aerosol from precur-

sor to sink, and to perform an integration of experimental

procedures among field campaigns, primary source mea-

surements and laboratory studies. It seems important

to evaluate the methods in use for measuring secondary

aerosol components.

One of the most important goals associated with the

detailed chemical analysis of organic aerosols consists of

mass balances relating gravimetric measures, carbona-

ceous content and organic compound classes. Until now

the scientific investigation did not allow to close these

mass balances because of the difficulties in extracting

andmeasure some complex constituents by conventional

methods. Recent results on water-soluble organic car-

bon supplement data of previous studies, but the overall

understanding of the organic aerosol remains relatively

obscure. New approaches for the chemical analysis of

the organic aerosol based on a combination of solvent

and water extractions, preparatory separations into dif-

ferent functional groups and efficient instrumental de-

termination will give a more clear insight into the ori-

gin and formation processes of primary and secondary

carbonaceous particles. Once more, it should be recog-

nised the necessity of future work to assess the overall

organic composition of atmospheric aerosols, including

their hydrophilic constituents, and to develop more effi-

cient analytical equipments able to discriminate the car-

bonaceous content.

Accurate quantification of the amounts of trace

gases and particulate matter emitted from forest fires

and other sources of biomass burning on a regional and

global basis is required by a number of users, includ-

ing scientists studying a wide range of atmospheric pro-
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K-Puszta (winter), Hungarian 

plains 

H

A
E

293 ng m-3

(Oliveira et al. 2007c) 

Moitinhos (winter), Portuguese 

semi-rural, coastal area 

H

A E

237 ng m-3

(Oliveira et al. 2007c) 

Schauinsland (summer), 

Germany, forested highlands 

H

A E

HAP

72 ng m-3

(Oliveira et al. 2007c)

Sonnblick (summer), Alpine site, 

Austria 

HAP

E

A

H

45 ng m-3

(Oliveira et al. 2007c) 

Pertouli, Greece, forest

HAP

HE

1359 ng m-3

 (Alves and Pio, in press) 

Giesta, Portugal, summer, rural

HAP

E

A

H

1356 ng m-3

(Alves and Pio, in press) 

Azores (summer), Atlantic 

HAP

E
A

H

15 ng m-3

(Oliveira et al. 2007c) 

Nigeria, rural

E

A

H

0.7-2.4 µg m-3

(Simoneit et al. 1988) 

Hong Kong (Kwai Chung), urban

468 ng m-3

(Zheng et al. 1997) 

Amazonia

E

A

H

1.3-3.8 µg m-3

(Simoneit et al. 1990) 

China (Beijing), suburban

E

A

H

1.2 µg m-3

(Simoneit et al. 1991a) 

H

E

A

Hydrocarbons

Esters, ketones and aldehydes

Alcohols

PLANT

WAXES

Polycyclic aromatic hydrocarbons

Thermally matured components

(petroleum residues and smoke constituents)

Microbial components

H

E

A

Hydrocarbons

Esters, ketones and aldehydes

Alcohols

H

E

A

Hydrocarbons

Esters, ketones and aldehydes

Alcohols

PLANT

WAXES

Polycyclic aromatic hydrocarbons

Thermally matured components

(petroleum residues and smoke constituents)

Microbial components

Fig. 6 – Pie diagrams showing the apportionment of various lipid fractions to sources in various regions of the word.

cesses, national governments who are required to report

greenhouse gas emissions, and those interested quantify-

ing the sources of air pollution that affect human health

at regional scales. In Europe and other parts of the world,

data on detailed emission factors from biomass burning

are rather inexistent. Emission inventories and source ap-

portionment, photochemistry and climate changemodels

use default values obtained for US biofuels, uncommon
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in other countries. Thus, it is desirable to use more spe-

cific locally available data.

In spite of comparisons between sites being difficult

due to the lack of harmonisation in sampling and analyt-

ical techniques, it would be advantageous the compila-

tion of existing results in a freely accessible scientific

database. The assessment of the variability of aerosol

in space and time would permit a better understanding

of their sources, properties, atmospheric behaviour and

effects. Also, it would help evaluate the representation

of aerosols in chemical transport and climate models.
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RESUMO

Apesar de constituirem 10-70% da massa do aerosol atmos-

férico, a caracterização dos compostos orgânicos particulados

permanece ainda deficitária e vários aspectos relativos à for-

mação e evolução do aerossol são ainda desconhecidos. A cres-

cente preocupação com o impacto do aerosol particulado no

clima e os reconhecidos efeitos dos constituintes antropogê-

nicos na qualidade do ar e na saúde humana têm motivado

a realização de numerosos estudos. Estas investigações têm

fornecido informações relevantes sobre o comportamento da

matéria particulada na atmosfera e sobre o seu conteúdo car-

bonáceo. A compilação de tais resultados reveste-se da maior

importância, dadoquepossibilitará coligí-los numaainda emer-

gente base de dados global sobre a composição orgânica dos

aerossóis. A contribuição das principais fontes de emissão

para a poluição particulada a nível regional pode ser diag-

nosticada através da utilização de marcadores moleculares es-

pecíficos. Esta revisão foca sobretudo os resultados obtidos

por cromatografia gasosa acoplada a espectrometria de massa,

dado que é o método analítico de eleição para a clarificação

dos compostos orgânicos extratíveis por solventes presentes na

matéria particulada atmosférica. Uma sinópse da selecção de

compostos traçadores e da aplicação de parâmetros geoquími-

cos à análise dos constituintes orgânicos como ferramenta para

estimar a contribuição das diversas fontes é aqui apresentada.

Além de uma avaliação do conhecimento atual, o artigo iden-

tifica também as necessidades de investigações futuras.

Palavras-chave: aerossol atmosférico, cromatografia gasosa-

espectrometria de massa, compostos orgânicos, fontes con-

tributivas, traçadores.
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