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Lutzomyia longipalpis: an update 
on this sand fly vector

FELIPE D. RÊGO & RODRIGO PEDRO SOARES

Abstract: Lutzomyia longipalpis is the most important vector of Leishmania infantum, 
the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive 
vector susceptible to infection with several Leishmania species. One of the advantages 
that favors the study of this sand fly is the possibility of colonization in the laboratory. 
For this reason, several researchers around the world use this species as a model for 
different subjects including biology, insecticides testing, host-parasite interaction, 
physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, 
we published our first review (Soares & Turco 2003) on this vector covering several 
aspects of Lu. longipalpis. This current review summarizes what has been published 
between 2003-2020. During this period, modern approaches were incorporated following 
the development of more advanced and sensitive techniques to assess this sand fly.
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INTRODUCTION

Lutzomyia longipalpis sensu lato Lutz & Neiva, 
1912 is considered the main vector of Leishmania 
infantum Nicole, 1908 in the American continent 
(Lainson & Rangel 2005). This species is widely 
distributed, occurring in diverse ecological 
niches, such as dry habitats, humid forests but 
especially in urban and rural areas, where it 
has successfully established and spread itself 
(Ximenes et al. 2000, Souza et al. 2009b, Brazil 
2013, Rodrigues et al. 2014, Dvorak et al. 2018).

Several components are involved in the 
urbanization and dispersion of Lu. longipalpis 
including climatic ,  environmental and 
sociocultural factors. This topic has been deeply 
reviewed by Salomón et al. (2015). Furthermore, 
the occurrence and the likely geographical 
distribution of this sand fly in Brazil has been 
predicted and modeled using geographic 
information systems and remote sensing 
(Andrade-Filho et al. 2017).

A great deal of information about Lu. 
longipalpis has already been reviewed by 
Soares & Turco (2003), therefore, here we 
discuss updates throughout the last decades on 
this sand fly vector, focusing on the information 
generated from 2003 to early 2020.

Lutzomyia Longipalpis SPECIES 
COMPLEX AND SEX PHEROMONES

Understanding the evolutionary history of Lu. 
longipalpis, as well as how geographical barriers 
and, more recently, anthropogenic environmental 
changes and activities have contributed to the 
evolution of sibling species continues to remain 
a challenge. Combined analyses using molecular 
markers and behavioral traits such as love 
songs and pheromones strongly suggest that Lu. 
longipalpis is a complex species, with distinct 
population structures as well as reproductively 
isolated populations (Arrivillaga et al. 2003, 
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2009, Hodgkinson et al. 2003, Bottecchia et 
al. 2004, Watts et al. 2005, Balbino et al. 2006, 
Bauzer et al. 2007, Araki et al. 2009). Details 
on the current status of the Lu. longipalpis 
species complex have been reviewed by Souza 
et al. (2017), especially regarding the historical 
overview, behavioral traits, courtship song and 
genetic characteristics of the group. Therefore, 
factors involved in mating have undoubtedly 
played (and continue to play) a significant role 
in maintaining reproductive isolation among the 
different sibling species.

The most current data on genetic 
diversity using several molecular markers 
of Lu. longipalpis indicate the presence of 
two clades: the first one is composed by 
Brazilian and Argentinian haplogroups and 
the second clade includes populations from 
Central America and northern South America 
(Guatemala, Honduras, Costa Rica, Colombia and 
Venezuela) (Pech-May et al. 2018). However, even 
belonging to the same clade, Argentinian and 
Brazilian populations present distinct genetic 
polymorphisms (Araki et al. 2009), resulting in 
separated populations (sub-clades) using a 
more refined analysis. A complex population 
structure of Lu. longipalpis from Brazil has been 
presented on a geographical scale by Casaril et 
al. (2019). The presence of geographical barriers 
may also contribute to divergence and the 
speciation process that seems to be occurring 
within the species complex. Genetic studies of 
Lu. longipalpis provide information about the 
heterogeneity of vector capacity/competence 
and vector susceptibility to insecticides as will 
be discussed later.

Based on the geographical distribution 
and pheromone types, it is predicted that (S)-
9-methylgermacrene-B (9MGB) is the ancestral 
chemotype in Lu. longipalpis across South America, 
followed by subsequent speciation to either 
diterpenes (1S,3S,7R)-3-methyl-α-himachalene 

(3MαH) or cembrene (CEMB-1 or CEMB-2). To 
date, populations that produce diterpenes 
has been found only in Brazilian populations. 
All pheromone typed species in South and 
Central America, excluding Brazil, were 
9MGB (Spiegel et al. 2016). Within the sibling 
species of Lu. longipalpis complex, Lutzomyia 
pseudolongipalpis from Venezuela produces 
3MαH (Hamilton et al. 2005, Watts et al. 2005) 
and Lutzomyia cruzi from Corumbá, Mato Grosso 
do Sul state, Brazil, produces 9MGB (Vigoder 
et al. 2010). There is no information about 
the pheromone type produced by Lutzomyia 
gaminarai, a species endemic in the southern 
region of Brazil, occurring in the States of Paraná 
and Rio Grande do Sul (Galati 2018). 

Several aspects on Lu. longipalpis complex 
still remains an open field to the investigators. 
Although most studies have focused on 
the genetic structure of the sibling species, 
description of pheromones and love songs, 
the female of Lu. gaminarai has not yet been 
formally described. Moreover, until today it is 
not clear how many species or incipient species 
within the Lu. longipalpis-complex exist in Brazil, 
or even which species is the original type, since 
the specimens used to describe this sand fly 
(Lutz & Neiva 1912) no longer exist. Furthermore, 
few specimens have been collected in Benjamin 
Constant, Minas Gerais State, Brazil, the type 
locality of Lu. longipalpis (Brazil et al. 2006), 
becoming one of the biggest bottlenecks on sand 
fly study, given the difficulty to establish a new 
species-type for the complex and consequently 
the description of sibling species.

Within the Brazilian populations of Lu. 
longipalpis, Araki et al. (2009) have proposed to 
segregate the species complex into two groups: 
the first one, more homogeneous, representing 
a single species in which males produce burst-
type copulation songs and CEMB-1 pheromones; 
the other group, more heterogeneous, probably 
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represents incipient species that produce 
different combinations between pulse-
type songs (five patterns of pulse-type) and 
pheromones such as 9MGB, 3MαH, CEMB-1 and 
CEMB-2, totaling at least six sibling species 
(Vigoder et al. 2015). Genetic evidence suggests 
that introgressive hybridization has been a 
crucial phenomenon of the recent speciation 
process that occurs within the Lu. longipalpis 
complex (Araki et al. 2013). Microsatellite 
data have shown limited genetic flow and 
introgression between Lu. longipalpis and Lu. 
cruzi in which the divergence level was similar 
to that observed among Brazilian populations 
of Lu. longipalpis (Vigoder et al. 2010, Lins et 
al. 2012, Santos et al. 2013). However, data from 
12S rDNA sequencing did not differentiate Lu. 
longipalpis from Lu. cruzi (Corumbá), suggesting 
that the speciation process is recent or still 
occurring (Ribolla et al. 2016). Nevertheless, 
more genetic data is needed to confirm the 
occurrence of the recent speciation process 
between Lu. longipalpis and Lu. cruzi. Moreover, 
introgression patterns in the genome seem to 
have a relevant effect on transmission dynamics 
of Leishmania parasites. Therefore, exploring 
these aspects on Lu. longipalpis complex may be 
a good way to understand the vectorial capacity 
of the sibling species (Araki et al. 2013). Distinct 
genetic composition of populations from Espírito 
Santo, Brazil, seems to affect their susceptibility 
to Leishmania or even the capability to transmit 
the pathogen in an anthroponotic environment 
by the low adaptability of Lu. longipalpis to 
this environment (Rocha et al. 2011). Although 
a lot of papers have focused on establishing 
the genetic and pheromone variations in the Lu. 
longipalpis species complex, there is still a gap 
in how those variations affect interaction with 
Le. infantum. It would be extremely important 
to address the vectorial competence of a given 
Lu. longipalpis population. Although it is a 

permissive vector, intra-populations variability 
may result in a lack of interaction between the 
parasite and the vector. This was the case of 
allopatric populations of Nyssomyia umbratilis 
collected in the south and north of Negro River 
in the Amazon (Soares et al. 2018). In this paper, 
using the in vitro system, the authors observed 
that the south population was refractory to 
interaction with Le. guyanensis. However, we do 
not know if such a phenomenon would occur 
in Lu. longipalpis and this would be a very 
interesting direction of further molecular and 
biochemical studies.

The sympatric populations from Sobral, 
State of Ceará, Brazil, have been deeply studied, 
focusing on the genetic, evolutionary and 
epidemiologic significance of the one-pair-of-
spots (S1) and two-pairs-of-spots (S2) male 
phenotypes of Lu. longipalpis. Lins et al. (2008) 
have identified a clear difference between these 
populations using the paralytic (para) gene 
as well as an association of the para and the 
resistance to pyrethroid insecticides. Further 
studies on genetic polymorphisms in period 
gene (per) have also suggested the presence 
of two sibling species in Sobral (Costa-Júnior 
et al. 2015). This data added crucial information 
about these reproductive isolated populations, 
suggesting the importance of premating 
barriers in Lu. longipalpis sibling species 
speciation (Maingon et al. 2003). Additionally, 
genetic divergence in the cacophony gene (cac) 
showed that S2 population is more related to 
Natal population (both produce burst type and 
CEMB-1) whereas S1 (pulse type 3 and 9MGB) was 
closer to Jacobina (pulse type 1 and 3MαH) and 
Lapinha (pulse type 2 and 9MGB). The genetic 
diversity observed in S1 and S2 may also reflect 
distinct physiological and behavioral aspects 
for both populations. However, until today, 
there is a lack of information on host-parasite 
interaction comparing sympatric populations 
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as S1 and S2. The genetic divergence between 
these populations may affect the interaction 
with Le. infantum. Although few variations 
have been observed, both males and females 
from the S2 population seem to initiate their 
crepuscular activity a little earlier than S1 (Rivas 
et al. 2008). However, more studies are needed 
to confirm distinct patterns of hourly activity as 
well as other differences in biological behavior 
between these populations. Besides their 
circadian rhythms, also the pheromones and 
patches were shown to affect bionomic aspects 
of Lu. longipalpis. Populations that produce 
homosesquiterpene (C16), such as sand flies 
from Jacobina (3MαH), Lapinha and Sobral one 
spot (1S) (both 9MGB) seems to be more easily 
adapted to the colonization conditions than the 
population whose males produces diterpenes 
(CEMB-1) such as the sand flies from Natal and 
Sobral two spots (2S) (Souza et al. 2009a). Since 
colonization is an important aspect that hinders 
sand fly studies, a better knowledge of those 
pheromones could also help to choose a more 
productive colony.

Finally, although most of the studies 
focused on patches occurred in Sobral, those 
phenotypes were also detected in other states. 
For example, S2 male phenotype was found in 
Jaíba (Minas Gerais State), Estrela de Alagoas 
(Alagoas State), Raposa and Codó (Maranhão 
State) (Araki et al. 2009). Consistent with the 
studies in Sobral, Silva et al. (2011) have shown 
genetic polymorphisms between Raposa and 
Codó sympatric populations, suggesting a clear 
segregation related to spot phenotypes (Lins et 
al. 2008, Costa-Júnior et al. 2015). 

In conclusion, a large number of papers 
published before 2003 have addressed the 
pheromones and the genetic aspects of the Lu. 
longipalpis complex. Since 2003 those numbers 
have decreased, probably due to the acceptance 
of the species complex idea. How such variations 

affect the interaction with Le. infantum is an 
open field still needed to be explored by the 
investigators.

Lutzomyia Longipalpis CONTROL

Although nowadays it is still difficult to control 
the sand flies vector populations, important 
tools have been arising to improve the strategies, 
especially for VL control. The first problem is 
the difficulty to find the larval stages in the 
environment (Casanova 2001, Sangiorgi et al. 
2012). In a field evaluation using an adulticide-
larvicide mixture (100 mg of permethrin and 2 
mg/m2 of pyriproxyfen), a significant decrease 
in the number of Lu. longipalpis was reported 
for at least two weeks (Juan et al. 2016). However, 
further studies are needed to evaluate the 
persistence of the residual effect of pyriproxyfen 
in controlling Lu. longipalpis larvae. For this 
reason, most of the studies have focused on 
the adult stages. Volatile compounds based 
on male pheromones and kairomones have 
demonstrated a good efficacy if used combined 
with automatic light traps improving catch rates, 
especially for Lu. longipalpis. Furthermore, 
synthetic pheromones can feasibly improve 
the efficacy of sand fly control programs when 
used alongside insecticides. This combined 
strategy attracts and kills both sexes, preventing 
host-seeking females from transmitting 
Le. infantum and males from establishing 
alternative aggregation sites elsewhere (Bray et 
al. 2009). A decrease in the number of sand flies 
attracted usually occurs as a consequence of 
insecticide treatments, however, the application 
of synthetic pheromones into insecticide-
sprayed experimental sheds seems to prevent 
and reverse it, improving the catch rates of Lu. 
longipalpis (Bray et al. 2010). The number of 
pheromone-lures seems to have an influence 
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on the effectiveness of this strategy to attract 
sand flies. Bell et al. (2018) have shown that 
increasing the number of lures results in 
an upward trend in the number of sand flies 
that are caught in the field, especially males. 
Kairomones have been extensively used 
to attract hematophagous insects, such as 
mosquitoes and tse tse flies, however, there are 
few studies focusing on sand fly attraction. The 
compounds 1-octanol, a volatile component of 
bovine and human breath, and 1-nonanol, a 
volatile from cattle urine, elicited the highest 
attractiveness response in Lu. longipalpis adults 
in a dose-dependent manner (Magalhães-Junior 
et al. 2014). However, these alcohols have been 
identified at small levels in human breath or 
skin odors, which may justify the lack of interest 
in their potential role as an attractant for sand 
flies (Magalhães-Junior et al. 2014).

Although the chemical attraction has been 
the newest tool in this field, sand fly control 
programmes still often rely on spraying potential 
resting sites (intra or peridomiciliary sites) with 
residual insecticides, especially pyrethroids as 
lambda-cyhalothrin (Feliciangeli et al. 2003, 
Camargo-Neves et al. 2007a), deltamethrin 
(Santini et al. 2010), alpha cypermethrin (Pessoa 
et al. 2015) and permethrin (Alexander et al. 
2009), with varying effectiveness. However, 
spraying also requires training to be conducted 
effectively, in order to ensure that the correct 
concentration of insecticide is applied, 
minimizing exposure to sub-lethal amounts 
which might promote the onset of resistance 
to several compounds. Denlinger et al. (2015) 
have quantified the insecticide susceptibility 
in laboratory-reared Lu. longipalpis to ten 
insecticides, comprising four chemical classes: 
pyrethroid, organophosphate, carbamate 
and organochlorine. The organophosphate 
insecticides caused delayed mortality in the 
sand fly population, while carbamate caused 

mortality faster. Both insecticides classes 
have similar modes of action, and, despite 
the differences in killing rates for carbamates 
and organophosphates, Lu. longipalpis are 
most susceptible to bendiocarb and propoxur 
carbamates as well as to the organophosphate 
fenitrothion (Denlinger et al. 2015). Furthermore, 
the doses for each insecticide have been 
determined using the CDC bottle bioassay to 
assess Lu. longipalpis resistance, providing 
starting points to test on field populations 
(Denlinger et al. 2016).

The use of insecticide-impregnated nets 
has also been used as a complementary tool for 
sand fly control, especially Lu. longipalpis. The 
entomological efficacy of 25% deltamethrin EC 
insecticide-treated bednets has been evaluated 
by Courtenay et al. (2007), in a crossover field 
study in Amazon Brazil (Marajó Island, State 
of Pará). Compared with untreated nets, the 
insecticide ones increased the barrier effect of 
the nets by 39%, reduced human landing rates 
by 80% and increased the 24 hours mortality rate 
(Courtenay et al. 2007). The lambda-cyhalothrin 
seems to have a short residual effect, whose 
efficacy declined to 74% after six months. On 
the other hand, permethrin-impregnated nets 
maintained its effectiveness close to 100% 
lethality 24 hours post exposure for at least 
a year under laboratory conditions (Bray & 
Hamilton 2013). However, those conditions may 
not be possible in the field. Trials using a variety 
of indoor and outdoor surfaces are needed 
to confirm the effectiveness of this netting-
treatment protocol in the field, especially close 
to animal shelters. 

A distinguished feature in Lu. longipalpis 
populations is their ability to respond 
differently to the action of pyrethroids and 
organophosphates. For example, Montes Claros 
sand flies were most susceptible to malathion, 
fenithorion and deltamethrin, while those from 
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Lapinha were most susceptible to cialotrhin, 
malathion and permethrin in laboratory 
conditions (Alexander et al. 2009). Moreover, 
a significant reduction in the susceptibility 
to the insecticides reinforced the importance 
of developing tools for detecting resistance 
(Alexander et al. 2009). Since the efficacy 
of insecticides differ within Lu. longipalpis 
populations, the combined use of insecticides 
may be a better strategy for the sand fly 
control. In this context, the repellent efficacy of 
a spot-on topical combination of fipronil and 
permethrin has been evaluated in dogs (Cutolo 
et al. 2018). A significant repellent effect against 
Lu. longipalpis as soon as it was applied on 
the dogs and high protection rates for 28 days 
has been shown. However, due to the short 
anti-feeding effect, regular application in dogs 
may hinder its protective effect in VL-endemic 
areas (Cutolo et al. 2018). Likewise, the 4% 
deltamethrin-impregnated canine collar (ICC) 
has not presented a long-lasting effect compared 
with spot-on topical repellents; however, the 
ICC is currently being considered as a relevant 
tool for VL control (Albuquerque e Silva et al. 
2018). The ICC tends to reduce the prevalence 
of canine VL, in two basic ways: 1) reducing the 
blood feeding by the vector and, 2) reducing 
the vector population, mediated by repellent 
and insecticidal action of deltamethrin (Coura 
et al. 2019). The use of ICC reduced the number 
of Lu. longipalpis captured in an interventional 
area in Montes Claros, State of Minas Gerais 
(14% of reduction) and Fortaleza, State of Ceará 
(60% of reduction). Moreover, a 40% decrease 
in canine VL prevalence has been reported 
in both municipalities (Albuquerque e Silva 
et al. 2018). The anti-feeding effect of ICC has 
also been reported in Europe for Phlebotomus 
perniciosus, the vector of Le. infantum (Maroli 
et al. 2001, Manzillo et al. 2006, Ferroglio et al. 
2008). Until today, there are few studies in Brazil 

that evaluate the efficacy of this strategy in 
the field. Longer follow-up studies on how ICC 
affects vector population and its impact on VL 
cases are needed. Considering the importance 
of protecting dogs from sand fly bites, it would 
be interesting to evaluate the potential role of 
mass use of ICC as a strategy to reduce canine 
visceral leishmaniasis incidence. However, the 
short-lasting effect, the need to frequently 
replace the ICC, and local symptoms in dogs, are 
still problems to be solved.

Although insecticide-based control 
measures are available for sand flies, there is 
still an urgent need for novel and alternative 
methods that do not affect or are less harmful 
to the environment. In this context, biological 
control could represent an important initiative 
for future studies. The combined use of 
chemical insecticides and selective pathogens 
may increase the efficiency of insect control. 
In this way, a possible alternative to current 
strategies may be the biological control of 
the vector using the entomopathogenic fungi 
Beauveria bassiana. Amóra et al. (2009) report 
that Lu. longipalpis eggs infected with this 
fungus reduced the hatching to 59%, suggesting 
a pathogenic potential on both larvae and 
adults. Moreover, Metarhizium anisopliae var. 
acridum, another entomopathogenic fungal, was 
harmful to sand flies in the adult stage (Amóra 
et al. 2010). Even in the laboratory, the studies 
on entomopathogenic fungi are very scarce. This 
reinforces the need for more studies on the 
impact-cost of such organisms while applying 
them in the field for controlling sand flies.

Several studies have investigated the use 
of plants to control vector-borne diseases. 
Plants from the Meliaceae family (Azadirachta 
indica) have been deeply studied due to their 
effects against many insects, especially those 
of agricultural importance. However, few studies 
have focused on sand flies. Few ovicidal and 
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larvicidal effects have been reported even in 
high concentration of A. indica oil when Lu. 
longipalpis eggs and larvae were treated in 
laboratory conditions (Maciel et al. 2010). On the 
other hand, the triterpenoid azadirachtin seems 
to block the metamorphosis when added to 
larval food of Lu. longipalpis (Andrade-Coelho 
et al. 2006). Studies have also showed that A. 
indica and Melia azedarach fruit and leaves in 
natura significantly increased larval mortality 
in comparison to untreated insects (Andrade-
Coelho et al. 2009). Azadirachtin also seems 
to affect Lu. longipalpis oviposition and may 
increase the mortality in adults, indicating that 
azadirachtin may be a potent sterilizer that 
could be used against the development of Lu. 
longipalpis populations (Andrade-Coelho et al. 
2014).

In conclusion, there are few field studies 
that have evaluated the impact of biological 
controls against sand fly vectors. Although 
distinct classes of insecticides are available, 
sand fly resistance has been reported in Brazil 
and other endemic countries (Surendran et al. 
2005, Lins et al. 2008, Hassan et al. 2012). Thus, 
while studies on sand fly control are extremely 
relevant, other strategies than chemical control 
are necessary.

FOOD SOURCE IDENTIFICATION

During the past decades, several studies have 
been performed to identify the blood source 
of engorged females of potential and proven 
vectors such as Lu. longipalpis. Initially, the 
precipitin test was the most common technique 
to identify blood meal (Dias et al. 2003, Camargo-
Neves et al. 2007b, Missawa et al. 2008) and ELISA 
(Marassá et al. 2006, Afonso et al. 2012). However, 
those techniques have some limitations, 
such as the need to know the previous local 

fauna and consequently obtain the specific 
antisera. Further, molecular methods (PCR and 
DNA sequencing) gradually replaced those 
techniques, improving blood meal identification 
by using CytB as universal primers (Sant’Anna et 
al. 2008, Soares et al. 2014, Carvalho et al. 2017b).

Lutzomyia longipalpis has broad-range 
feeding habits due to their adaptation to 
different habitats in both intradomiciliary and 
peridomiciliary sites. Several authors have 
reported that this vector fed on dogs, cats, 
pigs, cattles, horses, chickens and synanthropic 
vertebrates (rats and opossums). With the 
exception of chicken, most of the aforementioned 
hosts are potential reservoirs of Leishmania 
(Dias et al. 2003, Marassá et al. 2006, Camargo-
Neves et al. 2007b, Missawa et al. 2008, Sant’Anna 
et al. 2008, Afonso et al. 2012, Soares et al. 2014, 
Carvalho et al. 2017b). Although chickens are 
refractory to Leishmania infection, Sant’Anna 
et al. (2010) have shown that, this vertebrate 
provides valuable blood sources to support 
the Lu. longipalpis population in peridomestic 
sites. The quality of chicken blood supports 
the development of transmissible Leishmania 
infections in Lu. longipalpis (Sant’Anna et al. 
2010).

Besides blood, both females and males 
feed on plant-derived sugar meals as a source 
of energy. Sugary solutions such as nectar 
or honeydew (secreted by plant-sucking 
homopteran insects) and phloem sap are 
ingested by sand flies by probing plant tissues 
with their mouthparts. Many studies have 
addressed Lu. longipalpis plants preference. 
DNAs from Anacardiaceae, Meliaceae and 
Fabaceae families have been detected in the 
sand flies (Lima et al. 2016). More recently, the 
source of sand fly plant meals based on next 
generation sequencing (NGS) of chloroplast DNA 
gene ribulose bisphosphate carboxylase large 
chain (rbcL) was assessed. Interestingly, the 
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predilection of several sand fly species such as 
Lu. longipalpis for feeding on Cannabis sativa, 
a presumably illegal plant in some countries, 
was found (Abbasi et al. 2018). However, there 
is still a lack of knowledge on how specific 
sugars from plants may affect Leishmania 
development in sand flies. It is already known 
that besides functioning as a source of energy, 
sugars may also be used by Leishmania during 
its establishment in the midgut.

MIDGUT PHYSIOLOGY

The sand fly gut is divided into three main 
regions: the foregut, the midgut, and the 
hindgut. The cardia separates the foregut from 
the midgut and the pyloric valve separates 
the midgut from the hindgut (Bates 2008). 
Most studies have focused on host-parasite 
interaction of suprapylarian Leishmania species 
(Assis et al. 2012). This development is restricted 
to the portion of the gut anterior to the pylorus, 
mainly in the thoracic and abdominal midgut 
(Lainson & Shaw 1987). This is different from 
Viannia species whose development occurs 
in the hindgut prior to migration to anterior 
parts. On the other hand, the mode of the 
gut development is poorly recognized by the 
subgenera Mundinia and Sauroleishmania 
(Espinosa et al. 2018). For this reason, more 
studies on how species from these subgenera 
behave in their respective vectors are needed. 
In this context, an early study (Luz et al. 1967) 
reported a suprapylarian development for Le. 
enriettii in Pintomyia monticola, the suspected 
vector. However, this species, together with 
Le. orientalis did not developed very well in 
Lu. longipalpis (Seblova et al. 2015b, Chanmol 
et al. 2019). Thus, studies with their suspected 
vectors (phlebotomine sand flies and/or 

ceratopogonids) can help to clarify this subject 
and are fertile fields for entomologists.

Molecular studies have contributed to 
understanding the events that occur during the 
establishment of Leishmania infection in sand 
flies (Ramalho-Ortigão et al. 2010). Leishmania 
molecules such as LPG (Pimenta et al. 1994, 
Svárovská et al. 2010), which binds to the sand 
fly midgut galectin receptor PpGalec (Kamhawi 
et al. 2004), sand fly digestive enzymes (Borovsky 
& Schlein 1987, Schlein & Jacobson 1998, 
Sant’Anna et al. 2009, Telleria et al. 2010) and 
the peritrophic matrix (PM) (Pimenta et al. 1997) 
contribute to the success of the infection. The 
PM is a chitinous structure that envelopes the 
bloodmeal along the entire midgut, separating 
the ingested food from the midgut epithelium. 
In most sand flies, this structure is formed 
between 12-24 h after blood ingestion and 
degraded after 72h, when digestion is completed 
(Secundino et al. 2005, Sádlová & Volf 2009). 
For more information about the Lu. longipalpis 
PM structure, composition, degradation and 
synthesis kinetics see Secundino et al. (2005). 
The authors also have described a midgut 
muscle network of Lu. longipalpis.

The PM degradation after blood digestion 
requires the activity of chitinases, which cleave 
the chitin microfibril components of the matrix. 
Although Leishmania chitinase is believed to 
take part in the escape of the parasite from the 
PM, it is likely that a sand fly-derived chitinase 
may also be involved. Ramalho-Ortigão & Traub-
Csekö (2003) have isolated and characterized a 
cDNA encoding a chitinase (Llchit1) from midgut 
of Lu. longipalpis. Messenger RNA expression 
indicates that this gene is induced upon blood 
feeding and reaches a peak at approximately 
72h post blood meal, presuming that this sand 
fly chitinase has a function in PM degradation 
(Ramalho-Ortigão et al. 2005). Besides that, 
Ortigão-Farias et al. (2018) have shown that 
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alternative splicing generates chitinases with 
different domain structures. LlChit1A is present 
in adult females post blood meal, L4 larvae and 
pre-pupae, whereas LlChit1B and LlChit1C are 
found in L4 larvae and disappear just before 
pupation.

Se r ine  p ro teases  ( t r yps ins  and 
chymotrypsins) are the most abundant digestive 
enzymes in the midgut of sand flies. In addition 
to blood digestion, those proteases have been 
implicated in Le. infantum establishment in 
their respective insect vector, appearing to 
be detrimental to parasite survival during the 
first 48 hours prior to their increase after this 
period (Freitas et al. 2012). However, the same 
detrimental effect has not occurred in sand 
flies infected with L. major and L. donovani, 
suggesting that Leishmania mortality is not 
caused directly by sand fly proteases, but 
from toxic products of blood meal digestion. 
(Pruzinova et al. 2018). More studies are needed 
to better understand the effect of proteases 
on Leishmania establishment within sand 
flies. The opposite data may indicate distinct 
effects of proteases in Leishmania species. 
Sant’Anna et al. (2009) have reported that 
Leishmania mexicana was able to downregulate 
the trypsin secretion in Lu. longipalpis to its 
own advantage, promoting their establishment 
in the midgut. Likewise, a decrease of trypsin 
enzymatic activity in Lu. longipalpis infected 
by Le. infantum has been reported (Telleria et 
al. 2010). Lutzomyia longipalpis trypsin 1 gene 
knockdown through dsRNA microinjections into 
the thorax of females, seems to enhance the 
survival of Le. mexicana in comparison with 
mock-injected controls. Altogether, those data 
reinforce the inverse relationship between 
the expression and production of trypsin and 
the establishment of Leishmania in the sand 
fly midgut (Sant’Anna et al. 2009). Telleria et 
al. (2007) have identified and characterized 

two cDNAs, Lltryp1 and Lltryp2, coding for 
trypsin-like proteins in Lu. longipalpis. Lltryp1 
expression remains undetected until blood 
feeding and reaches a peak at 12h post-blood 
meal, returning to pre-blood meal levels after 
72h. Lltryp2, on the other hand, is constitutively 
expressed at high levels in the non-blood fed 
female but is reduced upon blood feeding. At 
the end of the digestive cycle, Lltryp2 regains its 
pre-blood meal levels (Telleria et al. 2007). The 
pattern of trypsin expression in Lu. longipalpis 
differs from the results obtained for the Old-
World species Phlebotomus papatasi (Ramalho-
Ortigão & Traub-Csekö 2003). However, there is 
still lack of information on how proteases from 
Ph. perniciosus and from other natural vectors 
affect the development of Le. infantum. The 
transcriptome analysis has demonstrated that 
L. infantum infection can reduce the transcript 
abundance of trypsin PperTryp3 in the midgut of 
Ph. perniciosus (Dostálová et al. 2011). Although 
Lu. longipalpis and Ph. perniciosus may sustain 
infection with Le. infantum, the kinetics of 
proteases in those vectors in parallel are yet to 
be determined.

Studies on midgut pH as well as the 
mechanisms involved in pH control are extremely 
relevant, since Leishmania develops exclusively 
in the sand fly gut and the digestive processes 
are essentially enzymatic (Bates & Rogers 2004). 
There are three known mechanisms involved 
in the process of controlling gut pH. The first 
involves the loss of CO2 from ingested blood 
and the transport of different ions through the 
plasmatic membrane of the enterocytes (Santos 
et al. 2008). Other physiological processes related 
to the alkalinization of the abdominal midgut 
involves the presence of blood in the abdominal 
midgut composed by proteins and amino acids. 
Those components cause midgut endocrine 
cells to release alkalinizing hormones, increasing 
gut pH favoring blood digestion (Santos et al. 
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2011). The third mechanism act involves Proton-
Assisted Amino Acid Transporter (LuloPATs), 
removing H+ ions from the gut lumen into the 
cytoplasm of the enterocytes (Nepomuceno et 
al. 2020). However, alkalinization of the lumen 
may occur by the entry of some amino acids 
into the cytoplasm of enterocytes triggering a 
luminal alkalinization mechanism independent 
of LuloPATs (Nepomuceno et al. 2020). Some 
reports along the decades have shown the 
influence of Leishmania on sand fly physiology 
and such behavior most likely evolved to 
favor the development and transmission of 
the parasite. Leishmania infantum is able to 
reduce the alkalinization in the vector midgut, 
decreasing the activity of proteases like trypsin, 
resulting in a decreased supply of amino acids 
to the enterocytes favoring the development 
of the parasites during digestion (Santos et al. 
2014).

There are few studies regarding midgut 
physiology of Lu. longipalpis larvae. The anatomy 
of the digestive tube of Lu. longipalpis larvae 
as well as the pH along the midgut have been 
described in Vale et al. (2007). The carbohydrases 
α-amylase, present in the anterior midgut and 
probably involved in the digestion of glycogen; 
α-glucosidase, that completes the digestion 
of glycogen in the posterior midgut, and a 
membrane bound trehalase, that probably 
acts in the digestion of trehalose, seems to be 
the most abundant within the midgut of the 
larvae (Moraes et al. 2012, Vale et al. 2012). The 
expression pattern of glycoside hydrolase genes 
in Lu. longipalpis larvae have been described 
by Moraes et al. (2014), where the catabolism 
of microbial carbohydrates in insects generally 
involves β-1,3-glucanases, chitinases and 
digestive lysozymes. This is interesting because 
Le. infantum LPG possess terminal β-1,3-glucoses 
that could be cleaved by those enzymes and 
perhaps contribute to the sand fly midgut sugar 

milieu (Soares et al. 2002, Coelho-Finamore et 
al. 2011).

Early studies of Elnaiem have already 
focused on the effect of a second blood meal in 
the development of Lu. longipalpis (Elnaiem et 
al. 1992, 1994). Nowadays, most of the studies are 
interested in how a second bloodmeal affects 
Leishmania development. In this context, the 
effects of sequential blood meals on longevity, 
protein digestion, trypsin activity and Leishmania 
development within Lu. longipalpis midgut 
have been recently evaluated. The mortality 
of blood-fed females increases after a second 
blood meal as compared to sugar-fed females 
and the trypsin activity was lower during the 
second gonotrophic cycle (Moraes et al. 2018). 
The authors have not observed difference in the 
population size of Leishmania in the gut with 
sequential blood meals. However, Serafim et al. 
(2018) have reported that sequential blood meals 
promoted Leishmania replication and reversed 
metacyclogenesis to a leptomonad-like stage, 
the retroleptomonad promastigote, enhancing 
the Lu. longipalpis infectivity. Needless to say, 
this paper was a landmark study, bringing new 
information on parasite development after a 
second blood meal. 

Salivary proteins
In general, female sand flies, except autogenic 
species, need to ingest blood for egg 
development and sugar for energy metabolism. 
Saliva is essential in both types of feeding, 
playing different roles since it contains sets 
of enzymes for blood and sugar feeding, as 
α-amylase (Cavalcante et al. 2006). Early studies 
by Volf have shown the effect of salivary gland 
proteins in Old World sand flies, in which the 
composition of sand fly saliva depend not only 
on sex, but also on the physiological state of 
the female (Volf et al. 2000). The salivary protein 
composition of Lu. longipalpis also depends on 
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age and diet (Prates et al. 2008). The protein 
content from unfed sand flies increased 94% 
from the first to the fifth day after emergence and 
such variation can be related to the synthesis 
of important enzymes for meal ingestion and 
initial digestion (Prates et al. 2008). A kinetic 
of protein content in salivary glands seems to 
occur after the blood meal, in which a depletion 
of total protein content has been observed with 
gradual increase in subsequent days, returning 
to similar basal values (Prates et al. 2008). The 
findings of Volf for Old World sand flies and the 
further records of Prates for New World ones 
could be generalized for sand flies worldwide, 
in view of the salivary content appears to follow 
the same pattern in several sand fly species.

Blood-feeding causes tissue damage 
creating a hemorrhagic pool resulting from 
probing and destruction of small capillaries. 
In this environment Leishmania and saliva 
interact with different host cells including 
peripheral blood and resident cells in the 
skin (Vasconcelos et al. 2014). It has been well 
documented that sand fly saliva possesses an 
array of potent pharmacological components, 
such as anticoagulants,  anti-platelet , 
vasodilators, immunomodulators and anti-
inflammatory molecules. For more details about 
the inflammatory role of Lu. longipalpis saliva in 
leishmaniasis see Prates et al. (2012).

To know the effect of these molecules, 
most studies on sand fly saliva have used 
experimental animals (mice), and to a lesser 
extent human cell. Salivary gland homogenates 
(SGH) of Lu. longipalpis induce an increase of 
IL-6, IL-8 and IL-12p40 and inhibits TNF-α and 
IL-10 production by human monocytes. SGH 
have also influenced the expression of cell 
surface molecules such as MHC class II, CD80 
and CD86 on antigen-presenting cells, except on 
dendritic cells, representing a critical point for 
the development of a protective Tcell response 

(Costa et al. 2004). Moreover, SGH seem to 
increase the IL-17 expression in human peripheral 
blood mononuclear cells (Teixeira et al. 2018). 
Human volunteers exposed to laboratory-reared 
Lu. longipalpis bites developed both humoral 
and cell-mediated immune response against 
sand fly saliva, presenting increased frequency 
of CD4+CD25+ and CD8+CD25+ T cells as well as 
IFN-γ and IL-10 synthesis (Vinhas et al. 2007) 
and moreover, inducing heme oxygenase-1 
expression at bite site (Luz et al. 2018). These 
studies confirm powerful immunomodulatory 
properties of saliva and help clarify how 
Leishmania takes advantage of them during the 
bite. 

BALB/c mice exposed to repeated Lu. 
longipalpis bites have developed a diffuse 
inflammatory infiltrate characterized by 
neutrophils, eosinophils, and macrophages when 
challenged with SGH (Silva et al. 2005). Antibodies 
anti-saliva have also been detected in exposed 
mice, that presented significant increase of IgG 
and IgG1, but not IgG2a or IgG2b, suggesting a 
predominant Th2 response with a putative 
role for immune complexes in cell recruitment 
(Silva et al. 2005). Lu. longipalpis saliva is also 
capable of inducing neutrophil and macrophage 
recruitment and of modulating their function 
(Silva et al. 2005, Teixeira et al. 2005, Araújo-
Santos et al. 2010, Prates et al. 2011, Carregaro 
et al. 2013). Neutrophil and macrophage activity 
seem to be impaired in the presence of saliva 
resulting in cell apoptosis, production of PGE2 
and LTB4 promoting increased parasite survival 
(Monteiro et al. 2005, Araújo-Santos et al. 2010, 
Prates et al. 2011). Lutzomyia longipalpis saliva 
enhances Le. amazonensis infection affecting 
the macrophage function by upregulation of 
IL-10 and downregulation of NO production 
(Norsworthy et al. 2004). The same regulation 
pattern of immune response has been described 
in BALB/c mice experimentally infected with Le. 
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major, in which a considerable increase of IL-10 
and IFN-γ was detected, inducing preferentially 
type-2 cytokines and the sequential migration 
of neutrophils, eosinophils, and CD4+ CD45RBlow 
cells (Monteiro et al. 2007). However, Laurenti 
et al. (2009) have reported that SGH from wild-
caught Lu. longipalpis have determined lower 
production of IL-4 and IL-10 but higher IL-12 levels 
in C57BL/6 compared with laboratory-reared 
SGH. These findings may indicate a probable 
bias by using SGH from laboratory-colonized 
sand flies instead of wild-caught vector SGH. 
In addition, it indicates differences on immune 
response of the most used experimental models 
for studies concerning saliva effects (Laurenti et 
al 2009). However, it is important to note that 
sand flies also inject their microbiota together 
with the salivary content, and the presence of 
distinct bacteria within laboratory-colonized 
sand flies compared to wild-caught ones, can 
also influence the immune response. The 
presence of SGH from Lu. longipalpis was able 
to differentially modulate the course of the 
lesion and macrophage differentiation in Cavia 
porcellus caused by avirulent and virulent Le. 
enriettii strains (Pinheiro et al. 2018). Several 
basic studies, especially those that used needle 
models, were very important for understanding 
the Leishmania infection. However, there is an 
urgent need that from now on, transmission 
needle studies use saliva at least from a 
colonized sand fly vector. Although, for obvious 
reasons, it is not possible to use the natural 
pairs depending on the Leishmania species, 
most of the properties of the saliva of different 
sand flies share similar effects.

Most of the studies above have used SGH, but 
it seems that the search for specific molecules 
has been the target for by several groups. 
Consistent with this observation, the structure 
and function of LJM11 has been described by 
Xu et al. (2011). A protective immunity driving 

a strong Th1 type immune response was 
observed in immunized C57BL/6 mice infected 
with Le. major (Xu et al. 2011) and in BALB/c 
mice infected with Le. braziliensis (Cunha et al. 
2018). Immunization with salivary protein LJM19 
induced protection in hamsters challenged with 
Le. braziliensis (Tavares et al. 2011). The presence 
of smaller lesion sizes as well as reduced parasite 
burdens both at lesion sites and in the draining 
lymph nodes, was associated with a significant 
decrease in the expression levels of IL-10 and 
TGF-β and increased IFN-γ expression have been 
reported (Tavares et al. 2011). Both LJM17 and 
LJL143-immunized dogs have presented a mixed 
(Th1/Th2) immune response and moreover, 
increased IFN-γ production (Abbehusen et al. 
2018), providing immune responses qualitatively 
similar to those previously obtained by Collin 
et al. (2009). Although knowing specifically the 
activity of a given molecule, the use of several 
antigens that do not exhibit antagonistic 
properties could help the development of more 
potent saliva-based vaccines.

Valenzuela et al. (2004) have isolated 
and identified the most abundant secreted 
proteins from the salivary glands of Lu. 
longipalpis using massive cDNA sequencing, 
proteomics and customized computational 
biology approaches. However, several proteins 
coded by their corresponding salivary gland 
transcripts remain without a defined function 
until today (Valenzuela et al. 2004, Anderson et 
al. 2006). Likewise, some biological functions 
described in the salivary gland have not been 
associated with a specific protein. For example, 
the anticoagulant of Lu. longipalpis remained 
elusive for decades until Collin et al. (2012) 
describe Lufaxin (Lutzomyia longipalpis Factor 
Xa inhibitor). This recombinant protein has 
potent and specific anticoagulant activity toward 
FXa, impairing protease-activated receptor 2 
activation and, consequently inhibiting the 
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inflammation and thrombosis in C57BL/6 mice. 
New insights of recombinant hyaluronidase 
(LuloHya) and Lutzomyia NET destroying 
protein (Lundep), the proteins responsible for 
the hyaluronidase and endonuclease activities 
have been described (Chagas et al. 2014, Martin-
Martin et al. 2018). Lundep seems to increase 
Le. major survival, destroy neutrophil traps 
and inhibits XIIa contact activation in human 
plasma. The relationship between Leishmania 
parasites and sand flies hyaluronidase was first 
described by Volfova et al. (2008). The authors 
have shown that co-inoculation of parasites with 
hyaluronidase enhances Leishmania infection. 
Altogether, those data indicate that saliva is an 
endless subject and several factors are still to 
be defined and how to block those molecules 
is an open field for alternative tools against 
transmission. 

Lutzomyia longipalpis is able to feed on 
several mammal and bird species (Afonso et al. 
2012). For this reason, an arsenal of complement 
inhibitors is needed to protect this species. In 
this context, Lu. longipalpis saliva was able to 
inhibit the serum complement activation from a 
wide range of vertebrates, including dogs, guinea 
pigs and rats (Mendes-Sousa et al. 2013). Studies 
involving the human complement inhibition 
by Lu. longipalpis saliva have shown at least 
two inhibitors of the classical pathway in this 
species. The first is a Salivary Anti-complement 
from Lu. longipalpis (SALO) (Ferreira et al. 2016), 
considered a leishmaniasis vaccine candidate 
(Asojo et al. 2017) and the second, a soluble 
intestinal inhibitor (Saab et al. 2020).

One of the most studied salivary peptides 
is the potent vasodilator maxadilan (MAX). 
MAX also seems immuno-modulate the host 
immune response. MAX treatment reduced the 
surface expression of CD80 on CD11c+ dendritic 
cells and resulted in a concomitant increase in 
CD86 expression on a subpopulation of these 

cells. Moreover, MAX seemed to upregulate the 
cytokines associated with a type-2 response (IL-
10, IL-6, and TGF-β) and downregulated type-1 
cytokines (IL-12p70 and TNF-α), NO and CCR7. 
This enhanced parasite survival in the vertebrate 
host in the early stages of infection (Brodie et al. 
2007, Wheat et al. 2008). MAX was also able to 
drive plasma leakage via PAC1–CXCR1/2-pathway 
(Svensjö et al. 2009, 2012). A protective effect 
against Le. major infection in murine models 
has also been reported for MAX (Wheat et al. 
2017). 

Anti-saliva antibodies can be used to assess 
exposure of humans and other Leishmania hosts 
to sand fly bites (Rohousova et al. 2005, Bahia et 
al. 2007, Vinhas et al. 2007, Hostomska et al. 2008, 
Fraga et al. 2016). These anti-saliva antibodies 
seem to be species-specific as shown by Volf & 
Rohousova (2001) and Rohousova et al. (2005). 
The antibodies of hosts bitten by Old-World 
sand flies did not cross-react with Lu. longipalpis 
SGH. Therefore, this specificity of anti-saliva 
antibodies enables to measure/estimate the 
exposure to a particular species. Also, the 
protective effect of immunization by saliva have 
been species-specific as shown by Thiakaki et 
al. (2005): mice have been protected against co-
inoculation of Leishmania with Lu. longipalpis 
saliva only if they were preimmunized by SGL 
of Lu. longipalpis but not if preimmunized by 
SGL of Phlebotomus species. Nine recombinant 
salivary proteins were developed and tested for 
immunogenicity and specificity in mammalian 
hosts (Teixeira et al. 2010). The recombinant 
proteins LJM17 and LJM11, both belonging to 
the insect “yellow” family of proteins, were 
potential markers of exposure to sand fly bite 
(Souza et al. 2010). LJM17 was recognized by 
human, dog, and fox sera and LJM11 by humans 
and dogs. Notably, LJM17 and LJM11 were 
specifically recognized by humans exposed to 
Lu. longipalpis but not by individuals exposed 
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to Nyssomyia intermedia (Teixeira et al. 2010). A 
recent paper has shown that one of the salivary 
proteins of Ny. intermedia, LinB-13, could be a 
useful marker for the development of a more 
severe cutaneous leishmaniasis (Carvalho et 
al. 2017a). This study opens the possibility that 
similar mechanisms could also happen in the 
viscerotropic Leishmania species transmitted by 
Lu. longipalpis, especially in canine infection, 
that is a very susceptible host compared to 
humans.

HOST-PATHOGEN INTERACTIONS

Laboratory studies on sand fly competence to 
Leishmania parasites suggest that the sand flies 
fall into two groups. Several species are termed 
specific/restricted vectors that support the 
development of one Leishmania species. On the 
other hand, permissive vectors are susceptible 
to various Leishmania parasites (Volf & Myskova 
2007, Dostálová & Volf 2012). The presence of the 
permissive vector Lu. longipalpis in Latin America 
was crucial for the establishment of L. infantum 
from Mediterranean to this continent (Volf & 
Myskova 2007). Another factor that seems to 
affect the establishment of Leishmania in sand 
flies is the temperature. Leishmania infantum 
and Le. braziliensis have developed well in 
Lu. longipalpis at 20 and 26 degrees C, while 
Le. peruviana, a mountain species, developed 
well in sand fly females kept at 20 degrees C 
(Hlavacova et al. 2013). Previous studies have 
suggested that for ‘specific’ vectors, successful 
parasite development is mediated by parasite 
surface glycoconjugates and sand fly lectins. 
However, Myšková et al. (2007) have shown that 
interactions involving ‘permissive’ vectors, as 
Lu. longipalpis utilize other molecules of the 
midgut epithelium as a parasite ligand. The 
Helix pomatia agglutinin (HPA), a lectin specific 

for terminal N-acetyl-galactosamine (GalNAc) 
present on O-linked glycoconjugates, bound 
to midgut proteins from permissive but not 
from specific vectors (Myšková et al. 2007). The 
characterization of O-linked glycoconjugate 
of Lu. longipalpis has revealed the presence 
of mucin-like properties, GPI-anchored in the 
membrane of enterocytes and localized it on the 
luminal side of the midgut (Myšková et al. 2016).

As Leishmania undergo metacyclogenesis 
and acquire infectivity within the sand fly 
gut, they secrete a unique class of serine-
rich proteophosphoglycans (PPGs); which 
condense to form a gel in which the parasites 
are embedded (Rogers & Bates 2007). PPGs are 
synthesized by all species of Leishmania in 
vitro and the promastigote secretory gel (PSG) 
has been observed in all Leishmania-sand 
fly combinations examined to date. The Le. 
infantum PPGs regurgitated by the bite of Lu. 
longipalpis promote parasite establishment in 
mouse skin and skin-distant tissues, reinforcing 
PSG as an important part of Le. infantum 
transmission and visceral infection (Rogers et al. 
2010). The binding of Leishmania promastigotes 
to the midgut epithelium is regarded as an 
essential part of the lifecycle in the sand fly 
vector, enabling the parasites to persist beyond 
the initial blood meal phase and establish 
the infection. Wilson et al. (2010) have shown 
that Leishmania gut binding is strictly stage-
dependent and is a property of those forms 
found in the middle phase of development 
(nectomonad and leptomonad forms) but is 
absent in the early blood meal and final stages 
(procyclic and metacyclic forms). Furthermore, 
the adhesion is affected by glycoconjugates on 
Leishmania surface, especially LPG and gp63 
(Jecna et al. 2013).

Significant advances have been made 
in exploring Leishmania-vector interactions 
throughout the last two decades, especially 
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on permissiveness of Lu. longipalpis. The 
development of Le. infantum from establishment 
of infection to metacyclogenesis as well as the 
transmission dynamics by the bite to BALB/c 
mice and golden hamster have been described 
(Maia et al. 2011, Freitas et al. 2012, Secundino 
et al. 2012). For the first time Ph. perniciosus 
and Lu. longipalpis have been co-infected with 
transgenic promastigotes of Le. donovani strains 
carrying hygromycin or neomycin resistance 
genes (Sadlova et al. 2011). Seblova et al. (2015a) 
have tested the development of Le. infantum/
Leishmania donovani natural hybrid (CUK strain) 
in Lu. longipalpis and the biological behavior 
appeared similar to what has been observed 
in the natural vector Phlebotomus tobbi. The 
phenotype impact of miltefosine-resistant Le. 
infantum has been evaluated on Lu. longipalpis 
showing a significant reduction in sand fly 
infection, stomodeal valve colonization and 
differentiation into metacyclic forms compared 
to the isogenic parent susceptible strain 
(Bockstal et al. 2019). Paromomycin-resistant 
Le. infantum (MHOM/FR/96/LEM3323-cl4) has 
behaved similar to those WT, in terms of infection 
and parasite location within Lu. longipalpis, 
and are able to colonize the stomodeal valve 
with metacyclic forms (Hendrickx et al. 2020). 
However, the mechanisms underlying drug-
resistance phenotype during infection in the 
sand fly are yet to be determined.

In laboratory conditions Lu. longipalpis 
supports infection of other Leishmania species, 
besides Le. infantum. However, aflagellated 
Le. amazonensis promastigotes (Ld ARL-
3A-Q70L-overexpressing) did not survive in 
experimentally infected Lu. longipalpis, in 
contrast to untransfected or native Ld ARL-
3A overexpressing cells (Cuvillier et al. 2003). 
The role of Leishmania flagellar proteins in 
establishment of the parasite in the vector have 
been recently explored by Beneke et al. (2019). 

In mixed infections of the permissive sand fly 
Lu. longipalpis, paralyzed promastigotes and 
uncoordinated swimmers of Le. mexicana were 
severely diminished in the sand fly after the 
blood digestion. Furthermore, the parasites have 
not reached the anterior regions of the midgut, 
suggesting that L. mexicana needs directional 
motility for successful colonization of sand 
flies (Beneke et al. 2019). The relationship 
between the zinc protease gp63 and the parasite 
development in the sand fly vector has been 
evaluated (Hajmová et al. 2004). Leishmania 
amazonensis  gp63-downregulated have 
presented a weak development especially in 
the early phase of infection, indicating that gp63 
may protect promastigotes from degradation by 
the midgut digestive enzymes, favoring parasite 
survival. More recently, trying to understand the 
concomitant roles of gp63 and LPG, Soares et al. 
(2017) evaluated those two glycoconjugates using 
the midgut in vitro system (Pimenta et al. 1992) 
and LL5 cells. Both glycoconjugates were equally 
responsible for inhibiting parasite attachment 
in those models reinforcing their importance for 
interaction with the invertebrate host.

Parasites of the subgenus Leishmania 
(Mundinia) (Espinosa et al. 2018) are becoming 
increasingly important to human health, since 
some species have been reported to infect 
humans, such as Le. martiniquensis, Le. “Ghana 
strain”, and Le. orientalis (previously called “Le. 
siamensis”) (Pothirat et al. 2014, Chiewchanvit et 
al. 2015, Kwakye-Nuako et al. 2015, Jariyapan et al. 
2018). The two other known species, Le. enrietti, 
have been found in guinea pigs (Cavia porcellus), 
and Le. macropodum (previously called “Le. sp. 
AM-2004”), have been found in red kangaroos 
and other macropods (Rose et al. 2004, Dougall 
et al. 2011, Barratt et al. 2017). Some authors have 
evaluated the biological behavior of Leishmania 
(Mundinia) parasites in permissive vectors, such 
as Lu. longipalpis in view of the uncertainty 
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about the probable natural vector. Seblova et 
al. (2015b) have described that both Le. enrietti 
and Le. macropodum were able to develop late-
stage infections in Culicoides sonorensis and 
Lu. longipalpis. However, Le. orientalis was able 
to establish infection in Cu. sonorensis midges 
but not in Lu. longipalpis (Chanmol et al. 2019), 
suggesting that the biting midges might be 
natural vectors of some Leishmania (Mundinia) 
species. This is of importance, because those 
insects were once not considered as vectors of 
Leishmaniasis. However, Cu. sonorensis achieved 
5 out 6 criteria of Killick-Kendrick (1990) in the 
work of Dougall et al. (2011). Still, transmission 
is yet to be demonstrated for those Mundinia 
species (Paranaiba et al. 2017).

Insects cell lines have been used as a value 
tool to understand host-parasite interactions in 
vitro. There is two established Lu. longipalpis 
cell lines derived from embryonic tissues, LL5 
(Tesh & Modi 1983) and Lulo (Rey et al. 2000). 
When LL5 cells were transfected with double 
stranded RNA (dsRNAs), they developed a 
nonspecific antiviral response (Pitaluga et al. 
2008). Secreted molecules implicated in immune 
response in LL5 cell line have been described, 
such as phospholipid scramblase, an interferon-
inducible protein and forskolin-binding protein, 
a member of the immunophilin family (Martins-
da-Silva et al. 2018). A complex immune response 
in LL5 line cell has also been detected when 
challenged by different pathogens, as bacteria, 
yeast and Leishmania (Tinoco-Nunes et al. 
2016). The Lulo cell line can be infected by Le. 
infantum (Bello et al. 2005) and moreover, other 
Leishmania species were also able to adhere to 
Lulo cells at different rates (Côrtes et al. 2011). 
The mechanisms involved in the adhesion of 
parasites to Lulo cells remains unclear. Côrtes 
et al. (2012) have described the participation 
of heparin binding proteins from the surface 
of Le. braziliensis promastigotes to Lulo cells, 

by their glycosaminoglycans, through heparan 
sulfate participation. However, lectin-like 
activity specific for heparin has been previously 
described by (Svobodová et al. 1997). Although 
the development of those cells could help to 
understand some aspects of the interaction of 
the parasites, there are few published papers 
using those models in the past years or 
replacement for in vivo studies have decreased 
their use along the years.

Finally, the presence of naturally infected 
sand fly by non-Leishmania trypanosomatids 
and other microorganisms have been reported 
throughout the last decades, reinforcing the role 
of these insects as multi-pathogens host (Shaw 
et al. 2003). Despite this fact, there is a lack of 
information about the biological behavior and 
infectivity of these pathogens in sand flies. 
Flagellates of Endotrypanum schaudinni were 
able to infect the abdominal midgut, pylorus, 
ileum, and rectal ampulla but a scarcity of 
infection has been observed near the stomodeal 
valve in Lu. longipalpis (Barbosa et al. 2006). 
Moreover, the presence of Le. guyanensis in a 
mixed infection has inhibited the development 
of Endotrypanum, suggesting the effect of 
selective pressures that have already been 
reported previously, among co-cultivated 
trypanosomatids (Barbosa et al. 2006). Also, Lu. 
longipalpis seems to be the host for gregarines, 
fungi and nematodes (Secundino et al. 2002, 
Matos et al. 2006, Caligiuri et al. 2014), but also 
the vector of other pathogens, including viruses 
and bacteria. Carvalho et al. (2018) have detected 
and isolated a putative new Phlebovirus (Viola 
Phlebovirus) from Lu. longipalpis in Brazil. 
Phylogenetic analysis revealed proximity with 
viruses causing disease in humans, rodents 
and isolated from sand flies belonging to 
phlebotomus fever serogroup. Moreover, the 
isolation of Viola virus in mammalian cells 
indicates that this virus is not an insect-specific 
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virus and represents a novel species with 
unknown vertebrate host (Carvalho et al. 2018). 
In general, Lu. longipalpis was able to support 
the Bartonella bacilliformis infection and seems 
to be a user-friendly, live vector/host model 
system (Battisti et al. 2015). Rocha et al. (2018) 
have reported for the first time the occurrence 
of Wolbachia pipientis in a natural population 
of Lu. longipalpis from the State of Bahia, 
Brazil. Recently, the endosymbiont bacterium 
Wolbachia has been used as an alternative 
strategy to control vector-borne diseases, 
through the reduction or blocking of pathogen 
infections. However, Gonçalves et al. (2019) 
have shown that the Wolbachia introduction 
into Lu. longipalpis cell lines has not affected 
the infection with Le. infantum. Endosymbiotic 
bacteria present in sand flies, especially in the 
midgut, can affect their capacity to transmit 
Leishmania (Telleria et al. 2013). Moreover, the 
microbiota is able to differentially infect the 
larval digestive tract and regulate the immune 
response in Lu. longipalpis larvae (Heerman et 
al. 2015). Pires et al. (2017) have described the 
native microbiota of wild-caught Lu. longipalpis 
under distinct physiological conditions including 
a Leishmania-infected group. The amplicon 
oriented metagenomic profiling revealed five 
phyla (Actinobacteria, Bacteroidetes, Firmicutes, 
Proteobacteria and Spirochaetes), 64 bacterial 
genera and 46 families associated with wild-
caught Lu. longipalpis (Pires et al. 2017). The gut 
microbiome of laboratory-reared Lu. longipalpis 
was recently shown to be essential for survival of 
the parasite (Kelly et al. 2017). The authors have 
shown that an antibiotic-mediated decrease 
in midgut microbiota impaired Le. infantum 
survival in the sand fly, inhibited parasite growth, 
and decreased differentiation to the infectious 
metacyclic form was observed (Kelly et al. 2017). 
Furthermore, when Lu. longipalpis was pre-
fed with Pseudozyma, Asaia or Ochrobactrum, 

a reduced parasite survival rate has been 
observed by Sant’Anna et al. (2014). Still, more 
field-studies using such bacteria are important 
to establish their biological role as possible 
alternative control measures.

FINAL CONSIDERATIONS

The genome annotation of Lu. longipalpis 
is still underway and most of the omics 
approaches are very scarce. Dillon et al. (2006) 
analyzed expressed sequences tags (ESTs) of Lu. 
longipalpis to investigate the critical proteins 
underlying the host-parasite relationship 
and recently, an improved annotation of Lu. 
longipalpis genome has been published (Yang 
& Wu 2019). Besides that, a global approach for 
the identification of midgut ESTs via random, 
uni-directional sequencing of clones from 
cDNA libraries obtained using mRNAs extracted 
from midguts of Lu. longipalpis have been 
published (Jochim et al. 2008, Pitaluga et al. 
2009). Moreover, transcriptome analysis of 
the salivary and pheromone glands as well as 
annotation of both female and male adults have 
brought important insights into the repertoire 
of molecules expressed in the vector (Oliveira et 
al. 2009, Azevedo et al. 2012, González-Caballero 
et al. 2013, McCarthy et al. 2013). It seems likely 
that in the next decade, these approaches, 
and perhaps more advanced ones will bring 
additional information of functional aspects 
on how molecular biology of Lu. longipalpis 
affects its interactions with vertebrate host and 
parasites. The establishment of VL in urban 
areas, where until recently, the disease did 
not occur, is closely related to the adaptation 
of the natural vector Lu. longipalpis to this 
environment. Several factors are involved in the 
difficulty to control VL such as the presence of 
sibling species in the Lu. longipalpis complex, as 
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well as differences on vectorial capacity among 
populations. Moreover, the presence of another 
vector species has been reported in Brazil 
especially in absence of the main vector (de 
Carvalho et al. 2010, Dias et al. 2013, Guimarães 
et al. 2016; Rêgo et al. 2020). Studies on biological 
behavior of the vector, salivary components, gut 
physiology as well as host-parasite interaction 
represent a wide and important field to better 
understand several aspects involved in the 
transmission and establishment of Leishmania 
parasites in permissive vectors. Omics 
approaches are also added in this context, even 
in its initial phase, but providing tremendous 
opportunities for the research on sand flies and 
Leishmania species in the Americas.
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