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ABSTRACT

A flag of holomorphic foliations on a complex manifold M is an object consisting of a finite number
of singular holomorphic foliations on M of growing dimensions such that the tangent sheaf of a fixed
foliation is a subsheaf of the tangent sheaf of any of the foliations of higher dimension. We study some
basic properties of these objects and, in Pn

C, n ≥ 3, we establish some necessary conditions for a foliation
of lower dimension to leave invariant foliations of codimension one. Finally, still in Pn

C, we find bounds
involving the degrees of polar classes of foliations in a flag.

Key words: holomorphic foliations, polar varieties, invariant varieties.

INTRODUCTION

Let M be a complex manifold of dimension m with tangent bundle T M . Let us denote by 2 = O(T M)

its tangent sheaf. A singular holomorphic foliation, or shortly foliation, is a coherent analytic subsheaf

T of 2 that is involutive, which means that its stalks are invariant by the Lie bracket:

[
Tx , Tx

]
⊂ Tx ∀ x ∈ M.

The sheaf T is called the tangent sheaf of the foliation. We will denote a foliation by F or by F(T )

when a reference to its tangent sheaf is needed.

The singular set of F = F(T ) is the analytic set S = Sing(F) defined as the singular set of the sheaf

2/T , which on its turn consists of the points where the stalks are not free modules over the structural sheaf

O. The dimension of F is defined as the rank of the locally free part of T . The locally free sheaf T|M\S

is the sheaf of sections of a rank p vector bundle T , which is a subbundle of T M|M\S . The involutiveness

of T implies that the distribution of p-dimensional subspaces of T M induced by T on M \ S is integrable,

that is, there exists a regular holomorphic foliation on M \ S such that the tangent space to the leaf passing

through each point x ∈ M \ S is Tx , the fiber of T over x . This is the so-called Theorem of Frobenius.
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We say that a foliation is reduced if T is full. This means that, whenever U ⊂ M is an open subset

and v is a holomorphic section of 2|U such that vx ∈ Tx ∀ x ∈ U ∩ (M \ S), then vx ∈ Tx holds also for x

in U ∩ S. We remark that, given an involutive sheaf T , which induces a foliation with singular set S, there

is a unique sheaf T̂ that is both full and involutive, and such that T̂|M\S = T|M\S . We can therefore restrict

our attention to full involutive sheaves as a way to avoid artificial singularities (see Baum and Bott 1972,

Suwa 1998).

We can describe foliations in a dual way by means of differential forms. Let � = O(T ∗M) be the

cotangent sheaf of the m-dimensional complex manifold M . Let C be an analytic coherent subsheaf of �

of rank p, where 1 ≤ p ≤ n − 1, which satisfies the integrability condition:

dCx ⊂ (� ∧ C)x ∀ x ∈ M \ Sing(C).

The sheaf C defines a singular holomorphic foliation denoted by F = F(C). The singular set ofF , denoted

by Sing(F), is equal to Sing(�/C). On M \ S(F), the sheaf C is the sheaf of sections of a rank n − p vector

subbundle of T ∗M . The local sections of this subbundle are holomorphic 1-forms whose kernels, at each

point x , define a subspace of Tx M , which is the tangent space at x of a regular foliation of codimension

p on M \ Sing(F).

We say that F = F(C) is reduced if C is full, that is, whenever U ⊂ M is an open subset and ω is a

holomorphic section of �|U with the property that ωx ∈ Cx ∀ x ∈ U \ Sing(F), then ωx ∈ Cx for all points

x in U . The sheaf C is called the conormal sheaf of F .

Both definitions of foliation that we have just introduced are related as follows. Let T be the tangent

sheaf of a foliation F = F(T ) of dimension p. Define

T a =
{
ω ∈ � ; ivω = 0 ∀ v ∈ T

}
⊂ �,

where iv denotes the contraction by the germ of vector field v. We have that T a is the conormal sheaf of a

codimension m − p foliation Fa = F(T a). We clearly have Sing(Fa) ⊂ Sing(F). Furthermore, Fa is a

reduced foliation.

Similarly, given C the conormal sheaf of a codimension m − p foliation F = F(C) on M , we define

Ca =
{
v ∈ 2 ; ivω = 0 ∀ ω ∈ C

}
⊂ 2.

Then, Ca is the tangent sheaf of a foliation Fa = F(Ca). We have that Sing(Fa) ⊂ Sing(F) and that Fa

is a reduced foliation.

If T is the tangent sheaf of a foliation F = F(T ), then T r = (T a)a is the tangent sheaf of a reduced

foliation F r = F(T r ). As a consequence of the definitions, we have that T is a subsheaf of T r . Thus,

Sing(F r ) = Sing(2/T r ) ⊂ Sing(2/T ) = Sing(F).

Furthermore, on M \ Sing(F), the regular foliation induced by T r coincides with the one induced by T .

We also notice that reduced foliations are stable by this reduction process: if T is full, then T r = T . In a

similar way, a reduction process can be defined for a foliation defined by a conormal sheaf.

Let F = F(T ) be a foliation with tangent sheaf T . If F is reduced, then codim Sing(F) ≥ 2. The

converse holds when T is locally free. The equivalent is true for a foliation F = F(C) defined by its
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conormal sheaf C: If F is reduced, then codim Sing(F) ≥ 2, and both facts are equivalent when C is

locally free. A proof for these facts can be found in [Su1, Lemma 5.1].

DEFINITION. The foliations Fi1, . . . ,Fik on the m-dimensional holomorphic manifold M form a flag of

foliations if

(i) Fil is reduced ∀ l = 1, . . . , k.

(ii) 1 ≤ i1 < ∙ ∙ ∙ < ik < m and dimFil = il ∀ l = 1, . . . , k.

(iii) Til is a subsheaf of Til+1 ∀ l = 1, . . . , k − 1, where Ti is the tangent sheaf of Fi .

In the definition, we say that Fir leaves Fis invariant or that Fis is invariant by Fir whenever ir < is .

This terminology is due to the fact that, for x ∈ M \ (Sing(Fir ) ∪ Sing(Fis )), the inclusion relation

TxFir ⊂ TxFis holds, giving that the leaves of Fir are contained in leaves of Fis . We will use the notation

Fir ≺ Fis .

Let Fi and F j be foliations of dimensions i < j on a complex manifold M such that Fi ≺ F j . The

tangent sheaves of these foliations satisfy Ti ⊂ T j where “ ⊂ ” means subsheaf. We produce conormal

sheaves by taking annihilators: Ci = (Ti )
a and C j = (T j )

a . This gives C j ⊂ Ci . By taking annihilators

again, since our sheaves are full, we have Ti = Ca
i ⊂ Ca

j = T j . That is, Fi ≺ F j if and only if Ti ⊂ Ca
j .

In terms of local sections, this is equivalent to the following: whenever v is a local vector field tangent to

Fi and ω is a local integrable 1-form tangent to F j , then ivω = 0. As a consequence, since the singular

set of a foliation is a proper analytic set, we have

PROPOSITION 1. Let Fi and F j be reduced foliations of dimensions i < j on a complex manifold M .

Then, Fi ≺ F j if and only if TxFi ⊂ TxF j holds for every x ∈ M \ (Sing(Fi ) ∪ Sing(F j )).

We now recall some facts about the structure of the singular set of a foliation (see Yoshizaki 1998 and

Suwa 1998 as well). Let, as above, F be a reduced foliation of dimension p, with tangent sheaf T , on an

m-dimensional complex manifold M . For each x ∈ M let

T (x) =
{
v(x); v ∈ Tx

}

be the subspace of Tx M formed by the directions induced by Tx . For each integer k with 0 ≤ k ≤ p,

we define

S(k) =
{

x ∈ M; dim T (x) ≤ k
}
.

Then, S(k) is an analytic variety in M and we have a filtration

S(0) ⊂ ∙ ∙ ∙ ⊂ S(p−1) ⊂ S(p),

where S(p) = M and S(p−1) = Sing(F) is the singular set of F . It is proved in (Yoshizaki 1998) that,

for each k = 0, . . . , p, there is a Whitney stratification {Mα}α∈Ak of S(k) such that, for any α ∈ Ak and

x ∈ Mα, the inclusion T (x) ⊂ Tx Mα holds. Moreover, F induces a non-singular foliation of dimension

k on Mα \ S(k−1) whose tangent space at x ∈ Mα is T (x).
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If V is an analytic subvariety of M with singular set Sing(V ), we say that V is invariant by F if

T (x) ⊂ Tx V holds for each x ∈ V \ Sing(V ). The above discussion says, in particular, that the analytic

set Sing(F) is invariant by F . We obtain:

THEOREM 1. Let M be a complex manifold of dimension n, and let F and G be foliations of dimensions i

and j , where 1 ≤ i < j < n, such that F ≺ G. Then, Sing(G) is invariant by F .

This has the following simple consequence:

COROLLARY 1. Let M be a complex manifold of dimension n, and let F be a foliation of dimension one.

If G is a foliation of dimension i > 1 such that F ≺ G, then the isolated points of Sing(G) are contained in

Sing(F).

FLAGS OF FOLIATIONS ON Pn

In this section we consider, on the projective space Pn = Pn
C of dimension n ≥ 3, a foliationF of dimension

one and a foliation G of codimension one. Let us suppose that F leaves G invariant, that is, F ≺ G in our

notation. If T is the tangent sheaf of F , then T = O(1 − d), where d ≥ 0. This number d is the degree of

F , which is the degree of the variety of tangencies between F and a generic hyperplane H ⊂ Pn . Now, if

C is the cotangent sheaf of G, then C = O(−2 − d̃), where d̃ ≥ 0 is the degree of G and counts the number

of tangencies, considering multiplicities , between G and a generic line L ⊂ Pn .

The study of genericity properties of the set of foliations in Pn without invariant algebraic varieties

is known as the Jouanolou problem. It was considered by many authors, such as J. P. Jouanolou, A. Lins

Neto, M. Soares, X. Gomez-Mont, L. G. Mendes and M. Sebastiani, among others. We consider here the

following result by S. C. Coutinho and J. V. Pereira (see Coutinho and Pereira 2006), Theorem 1.1 and the

remark after its proof): if Foln(1, d) denotes the space of foliations on Pn of dimension one and degree d,

then, for d ≥ 2, there is a very generic set =(1, d) ⊂ Foln(1, d) such that if F ∈ =(1, d), then F does

not admit proper invariant algebraic subvarieties of non-zero dimension. Here very generic means that its

complementary set is contained in a countable union of hypersurfaces. In the case of invariant algebraic

curves, =(1, d) can be taken to be open and dense in Foln(1, d), as a consequence of a result by A. Lins

Neto and M. Soares (see Lins Neto and Soares 1996, Soares 1993).

Let now F be a foliation of dimension one and degree d ≥ 2 on Pn , n ≥ 3. Suppose that there is a

foliation G of codimension one on Pn such that F ≺ G. We recall that the singular set of a codimension

one foliation on Pn necessarily has at least one component of codimension two (see Jouanolou 1979). So,

by Theorem 1, if Sing(F) has codimension greater than two, then the components of dimension n − 2 in

Sing(G) are invariant by F . This implies that F lies outside the subset =(1, d) ⊂ Foln(1, d) above. We

recall that the foliations in Foln(1, d) with isolated singularities form a generic set. Thus, for n ≥ 3, the

set of foliations F ∈ Foln(1, d) such that codim Sing(F) > 2 contains a generic set. This allows us to

conclude the following:

THEOREM 2. The set of foliations of dimension one and degree d ≥ 2 on Pn , n ≥ 3, which do not leave

invariant a foliation of codimension one, is very generic. When n = 3, this set contains a subset that is

open and dense in Foln(1, d).
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We say that a foliation F of dimension one on Pn admits a rational first integral if there is a rational

function 8 in Pn such that the leaves of F are contained in the level surfaces of 8. In homogeneous

coordinates in Pn , by writing 8 = P/Q, where P and Q are homogeneous polynomials of the same

degree, this means that the 1-form Qd P − Pd Q induces a codimension one foliation on Pn that is invariant

by F . This gives:

COROLLARY 2. The set of foliations of dimension one and degree d ≥ 2 on Pn , n ≥ 3, which do not admit

rational first integral, is very generic. When n = 3, this set contains a subset that is open and dense in

Foln(1, d).

PENCIL OF FOLIATIONS ON Pn

Let us now consider Foln(n − 1, d), the space of foliations of codimension one and degree d on Pn . Such

foliations are given, in homogeneous coordinates X = (X0 : X1 : ∙ ∙ ∙ : Xn) ∈ Pn , by holomorphic 1-forms

of the type ω =
∑n

i=0 Ai (X)d Xi , where each Ai is a homogeneous polynomial of degree d + 1, satisfying

the following:

(i) ω ∧ dω = 0 (integrability);

(ii) irω =
∑n

i=0 Xi Ai (X) = 0, where r = X0∂/∂ X0 + ∙ ∙ ∙ Xn∂/∂ Xn is the radial vector field (Euler

condition);

(iii) codim Sing(ω) ≥ 2,

where Sing(ω) = {A0 = A1 = ∙ ∙ ∙ = An = 0} is the singular set of ω. We consider PN the projectivization

of the space of polynomial forms in Cn+1 with homogeneous coefficients of degree d + 1. Here

N = (n + 1)

(
n + d + 2

n + 1

)
− 1.

Then, in Zariski’s topology, Foln(n − 1, d) is an open set of an algebraic subvariety Foln(n − 1, d) of

PN . We remark that the elements in the border

∂Foln(n − 1, d) = Foln(n − 1, d) \ Foln(n − 1, d)

are integrable 1-forms satisfying Euler condition, but having a singular set of codimension one.

Let G1 and G2 be two distinct foliations on Pn induced, in homogeneous coordinates, by integrable

1-forms ω1 and ω2. The 2-form ω1 ∧ ω2 might be zero on a set of codimension one, which corresponds

to the set of tangencies between G1 and G2. If f = 0 denotes the homogeneous polynomial equation for

this set, we write ω1 ∧ ω2 = f θ , for some 2-form θ whose coefficients are homogeneous polynomials and

whose singular set has codimension two or greater. Since

ir(ω1 ∧ ω2) = irω1 ∧ ω2 − ω1 ∧ irω2 = 0

we have irθ = 0, so the field of (n − 1)-planes on Cn+1 defined by θ goes down to an integrable field

of n − 2-planes on Pn whose singular set has codimension two or greater. This defines a foliation F of
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codimension two on Pn , which leaves both G1 and G2 invariant. Following the terminology on (Ghys 1991),

F is called the axis of G1 and G2.

A line of the space PN , which is entirely contained in Foln(n − 1, d) and whose generic element is in

Foln(n − 1, d), is called a pencil of foliations. Remark that two foliations in Foln(n − 1, d) represented

by 1-forms ω1 and ω2 define a pencil of foliations if and only if ω = ω1 + tω2 is integrable for all t ∈ C.

This means

0 = ω ∧ dω = (ω1 + tω2) ∧ (dω1 + tdω2)

= t (ω1 ∧ dω2 + ω2 ∧ dω1),

which is equivalent to

ω1 ∧ dω2 + ω2 ∧ dω1 = 0. (1)

One value of t ∈ C \ {0} for which ω1 + tω2 is integrable is sufficient for assuring condition (1). So, if

three foliations are on a line, then they define a pencil of foliations. Of course, given a pencil of foliations

in Foln(n − 1, d), a foliation F of codimension two is intrinsically associated to it as being the axis of any

two foliations in the pencil. It leaves invariant all the foliations in the pencil.

For foliations of codimension one on P3 there is a conjecture due to M. Brunella, which asserts that, if

G is such a foliation, then one of the alternatives holds:

(a) G leaves an algebraic surface invariant;

(b) G is invariant by a holomorphic foliation F by algebraic curves.

In (b) we mean that the closure of each leaf of F is an algebraic curve. In (Cerveau 2002), the following

result is proved:

THEOREM 3. Let G be a foliation of codimension one on P3, which is an element of a pencil of foliations.

Then, G satisfies (a) or (b) above.

It is worth remarking that, in Cerveau’s proof, the foliation F that appears in alternative (b) is the

axis of the pencil and is given by two independent rational first integrals. We next prove the following

simple lemma:

LEMMA 1. Let F be a foliation of codimension two on Pn , which leaves invariant three foliations of

codimension one induced, in homogeneous coordinates, by integrable polynomial 1-forms ω1, ω2 and ω3.

Then, there are non-zero homogeneous polynomials α1, α2 and α3, relatively prime two by two, such that

α3ω3 = α1ω1 + α2ω2. (2)

PROOF. We write ω1 ∧ ω3 = f1θ , where θ is a polynomial 2-form that induces F , having singular set of

codimension at least two, and f1 is a non-zero homogeneous polynomial. Similarly, we have ω2 ∧ ω3 =

− f2θ , for some non-zero homogeneous polynomial f2. We thus have
(

1

f1
ω1 +

1

f2
ω2

)
∧ ω3 = 0.
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This implies that there is a rational function 8 such that

ω3 = 8

(
1

f1
ω1 +

1

f2
ω2

)
.

By canceling denominators, we get homogeneous polynomials α1, α2 and α3, which satisfy (2). Finally, a

common factor for two of these polynomials would be a factor of the third and, so, could be canceled. We

can thus suppose that α1, α2 and α3 relatively prime two by two. �

Before proceeding we make a simple remark: if ω is an integrable 1-form with homogeneous coeffi-

cients of the same degree d + 1 inducing a foliation in Foln(n − 1, d), and α is a homogeneous polynomial

of degree k, then ω̃ = αω is also integrable. Of course, if α is non-constant, then ω̃ has a codimension

one component in its singular set. It will be regarded as representing an element of Foln(n − 1, d + k).

Actually, it is an element in the border ∂Foln(n − 1, d + k), if k > 0.

LEMMA 2. Let ω1 and ω2 be 1-forms inCn+1 with homogeneous polynomial coefficients of the same degree,

defining different distributions of n-planes in the sense that ω1 ∧ ω2 is not identically zero. Suppose also

that the singular sets of ω1 and ω2 do not have a common component of codimension one. Then, the generic

element of the pencil of 1-forms

{t1ω1 + t2ω2; (t1 : t2) ∈ P}

has singular set of codimension two or greater.

PROOF. Let us write

ω1 =
n∑

i=0

Ai d Xi and ω2 =
n∑

i=0

Bi d Xi ,

where Ai and Bi are homogeneous polynomial of the same degree. Suppose that the result is false. Then,

for all values of t ∈ C but a finite number, the 1-form ωt = ω1 + tω2 has a component of codimension one

in its singular set. For such a t , take gt = 0 as an equation of this component, where gt is non-constant

reduced homogeneous polynomial. Fix i, j , with 0 ≤ i, j ≤ n. We have that both Ai + t Bi and A j + t B j

vanish over {gt = 0}. If gt is a factor of neither Bi nor B j , then we have that Ai/Bi = t = A j/B j over

{gt = 0}, which means that Ai B j − A j Bi vanishes over {gt = 0}. The same will be true if gt is a factor of

Bi (or B j ), since, in this case, it will also be a factor of Ai (or A j ). In any case, we have that gt is a factor of

Ai B j − A j Bi . Finally, the hypothesis on the singular sets of ω1 and ω2 implies that, by varying t , there are

infinitely many different polynomials gt . This gives that Ai B j − A j Bi = 0, that is Ai/Bi = A j/B j = 8,

where 8 is a rational function of degree zero. Doing this to all values of i and j , we get ω1 = 8ω2, which

is a contradiction with the fact that ω1 ∧ ω2 6= 0. �

It is worth mentioning the following result, which is a corollary of the above lemma:

COROLLARY 3. Let ω1 and ω2 be integrable 1-forms in Cn+1 with polynomial coefficients of the same

degree d + 1, such that ω1 ∧ ω2 6= 0. Suppose that the pencil of 1-forms

{t1ω1 + t2ω2; (t1 : t2) ∈ P}
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lies entirely in ∂Foln(n − 1, d). Then, the singular sets of the elements of this pencil have a common

component of codimension one.

We have the following result:

PROPOSITION 2. Let F be a foliation of codimension two on Pn that leaves invariant three foliations of

codimension one. Then, F leaves invariant a whole pencil of foliations.

PROOF. Suppose that the codimension one foliations are induced in homogeneous coordinates by 1-forms

ω1, ω2 and ω3. In view of the previous lemma, there are homogeneous polynomials α1, α2 and α3, such that

α3ω3 = α1ω1 + α2ω2. (3)

If ω1 and ω2 lies in a pencil of foliations, the result is done. Otherwise, we necessarily have that either α1

or α2 is non-constant. Expression (3) gives that the integrable 1-form α3ω3 lies in the pencil generated by

the integrable 1-forms α1ω1 and α2ω2. Thus, this whole pencil is composed by integrable 1-forms. Finally,

even though the generators of this pencil may lie in ∂Foln(n − 1, d), where d + 1 is the degree of αiωi ,

its generic element lies in Foln(n − 1, d). This is a consequence of Lemma 2 above. Therefore, α1ω1 and

α2ω2 generate a pencil of foliations whose axis is F . �

The above proposition together with Theorem 3 give:

COROLLARY 4. Let F be a foliation of dimension one on P3. Suppose that no hypersurface in P3 is

invariant by F . Then, the number of foliations of codimension one invariant by F is at most two.

PROPOSITION 3. Let F be a foliation of codimension two on Pn that leaves invariant a pencil of foliations

in Foln(n − 1, d). Suppose that, outside this pencil, there is another foliation G of codimension one and

degree at least d that leaves F invariant. Then, F admits a rational first integral.

PROOF. Suppose that the pencil of foliations is generated by the 1-forms ω1 and ω2, and that G is induced

by the 1-form ω3. Lemma 1 assures the existence of homogeneous polynomials α1, α2 and α3, two by two

without common factors, such that

α3ω3 = α1ω1 + α2ω2. (4)

Since G does not lie in the pencil of foliations generated by ω1 and ω2, we have that α1 and α2 are non-

constant. The integrability condition applied to α3ω3 reads

0 = α3ω3 ∧ d(α3ω3) = (α1ω1 + α2ω2) ∧ (dα1 ∧ ω1 + dα2 ∧ ω2 + α1dω1 + α2dω2),

which gives

(α2dα1 − α1dα2) ∧ ω1 ∧ ω2 = 0, (5)

where we used that ω1 ∧ dω2 + ω2 ∧ dω1 = 0. The rational function α1/α2, which is non-constant since

α1 and α2 are non-constant and without common factor, is thus a rational first integral for F . �

An Acad Bras Cienc (2011) 83 (3)



“main” — 2011/7/4 — 11:51 — page 783 — #9

FLAGS OF HOLOMORPHIC FOLIATIONS 783

POLAR CLASSES

We now consider an r -dimensional foliation F defined on a projective manifold M ⊂ Pn of dimension

m. Let T be the tangent sheaf of F . For each x ∈ M \ Sing(F), there is a unique r -dimensional plane

T Px F ⊂ Pn passing through x with direction TxF ⊂ Tx M .

Let us fix

D : Ln ⊂ Ln−1 ⊂ ∙ ∙ ∙ ⊂ L j ⊂ ∙ ∙ ∙ L1 ⊂ L0 = Pn, (∗)

a flag of codimension j linear subspaces L j ⊂ Pn .

For k = 1, . . . , r + 1, the k-th polar locus of F with respect to D is defined as

PFk = Cl{x ∈ M \ Sing(F); dim(T Px F ∩ Lr−k+2) ≥ k − 1},

where the closure Cl is taken in M . We remark that a point x ∈ M \ Sing(F) belongs to PFk if and only

if the subspaces of Cn+1 corresponding to T Px F and to Lr−k+2 do not span Cn+1. It follows straight from

the definition that

PFi ⊂ PFj if i > j.

Let Ak(M) denote the Chow group of M , where k stands for the complex dimension. In (Mol 2006,

Proposition 3.3), it is proved that, for a generic choice of a flag D and for k = 1, . . . , r + 1, the set

PFk is empty or is an analytic variety of pure codimension k whose class
[
PFk

]
∈ Am−k(M) is

independent of the flag, where Am−k(M) stands for the Chow group of M of complex dimension

m − k. We then have a well-defined class that is called polar class of F . The polar degrees of F are

the degrees of these polar classes. We denote them by ρFk = deg
[
PFk

]
, k = 1, . . . , r + 1.

EXAMPLE 1. Let F be a foliation of dimension one on Pn . We have

x ∈ PF1 ∩
(
Pn \ Sing(F)

)
⇔ dim

(
T Px F ∩ L2

)
≥ 0.

This means that the hyperplane generated by L2 and x is tangent to F at x . The tangency locus between

F and a non-invariant hyperplane H ⊂ Pn is a hypersurface in H of degree deg(F). We then conclude

that PF1 is a hypersurface in Pn of degree deg(F) + 1, since L2 ⊂ PF1 .

EXAMPLE 2. Let now G be a foliation of codimension one on Pn with Sing(G) of codimension at least

two. If X = (X0 : X1 : ∙ ∙ ∙ : Xn) is a system of homogeneous coordinates in Pn , then G is induced by a

polynomial 1-form ω =
∑n

i=0 Ai (X)d Xi with homogeneous coefficients of degree deg(G) + 1, which is

integrable and satisfies the Euler condition. We have

x ∈ PG1 ∩
(
Pn \ Sing(G)

)
⇔ dim

(
T Px G ∩ Lm

)
≥ 0,

that is, the hyperplane T Px G contains the point Lm . Writing in homogeneous coordinates Lm = (α0 : α1 :

. . . : αn), we have that PG1 has equation

α0 A0 + α1 A1 + ∙ ∙ ∙ + αn An = 0

and we see that PG1 is a hypersurface of degree deg(G) + 1.
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EXAMPLE 3. Let us now examine PG2 , where G is a foliation of codimension one on Pn . We have

x ∈ PG2 ∩
(
Pn \ Sing(G)

)
⇔ dim

(
T Px G ∩ Lm−1

)
≥ 1.

Suppose that G is given in homogeneous coordinates in Pn by the polynomial 1-form ω of the previous

example. The space Lm−1 is a line in Pn , which we suppose to be generated by points of coordinates

(α0 : α1 : ∙ ∙ ∙ : αn) and (β1 : β2 : ∙ ∙ ∙ : βn). Thus, PG2 is contained in the variety V2 given by the pair of

equations 




α0 A0 + α1 A1 + ∙ ∙ ∙ + αn An = 0

β0 A0 + β1 A1 + ∙ ∙ ∙ + βn An = 0

We assume that Lm−1 is generic, so V2 has pure codimension two and has degree (deg(G)+ 1)2. It contains

two types of points. Outside Sing(G), the points of V2 correspond to those of PG2 . On the other hand, since

Sing(G) ⊂ V2, the remaining points of V2 are contained in the component of codimension two of Sing(G),

which will be denoted by S2. We then have V2 = PG2 ∪ S2, and the two sets of this union do not have a

common component of codimension two. We conclude that

ρG2 + deg(S2) = (deg(G) + 1)2.

Let 1 ≤ i1 < ∙ ∙ ∙ < ik < m andFi1 ≺ ∙ ∙ ∙ ≺ Fik be a flag of foliations on the m-dimensional projective

manifold M ⊂ Pn . Fix a flag of linear subspaces of Pn:

D : Ln ⊂ Ln−1 ⊂ ∙ ∙ ∙ ⊂ L j ⊂ ∙ ∙ ∙ L1 ⊂ L0 = Pn

For i = i1, . . . , ik , let PFi
k be the k-th polar locus of Fi with respect to D. We have the following result:

PROPOSITION 4. Let i < j be two integers of the list i1 < ∙ ∙ ∙ < ik . For integers r and s such that

r = 1, . . . , i and r + s ≤ j , it holds

P
F j
r+s ⊂ PFi

r ∩ P
F j
s .

PROOF. We start by remarking that the inclusion P
F j
r+s ⊂ P

F j
s follows immediately from the definition of

polar locus. Thus, all we have to prove is that P
F j
r+s ⊂ PFi

r . Let x ∈ M \ (Sing(Fi ) ∪ Sing(F j )). We have

x ∈ P
F j
r+s ⇔ dim

(
T Px F j ∩ L j−(r+s)+2

)
≥ (r + s) − 1

and

x ∈ PFi
r ⇔ dim

(
T Px Fi ∩ Li−r+2

)
≥ r − 1 .

Since Fi and F j are foliations in a flag, T Px Fi is a subspace T Px F j of codimension j − i . Furthermore,

Li−r+2 has codimension

(i − r + 2) − ( j − (r + s) + 2) = i − j + s

in L j−(r+s)+2. Thus, if dim
(
T Px F j ∩ L j−(r+s)+2

)
≥ (r + s) − 1, then

dim
(
T Px Fi ∩ L j−(r+s)+2

)
≥ (r + s) − 1) − ( j − i) .

Thus,

dim
(
T Px Fi ∩ Li−r+2

)
≥

(
(r + s) − 1) − ( j − i)

)
− (i − j + s) = r − 1 ,

which finishes the proof. �
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Let us now consider a flag of foliations Fi1 ≺ ∙ ∙ ∙ ≺ Fik on Pn , where 1 ≤ i1 < ∙ ∙ ∙ < ik < n.

THEOREM 4. Let i < j be two integers of the list i1 < ∙ ∙ ∙ < ik . For integers r and s such that 1 ≤ r ≤ i

and r + s ≤ j , with j − i 6= s − r , it holds

ρ
F j
r+s ≤ ρFi

r ρ
F j
s .

PROOF. This is a consequence of Bezout’s Theorem ([Fu]). All we have to do is to prove that PFi
r and

P
F j
s can be chosen to be transverse. These polar loci are induced by Li−r+2 and L j−s+2, which are distinct

linear spaces, since j − i 6= s − r . Thus, transversality occurs for generic choices of Li−r+2 and of L j−s+2

as a consequence of Piene’s Transversality Lemma (see Piene 1978, Mol 2006). �

Taking into account the calculations made in Examples 1 and 2, Theorem 4 gives:

COROLLARY 5. LetF andG be foliations onPn , n ≥ 3, whereF has dimension one and G has codimension

one. Suppose that F ≺ G. Then, the following inequality holds:

ρG2 ≤ (deg(F) + 1)(deg(G) + 1), (6)

where deg(F) and deg(G) are the degrees of F and G, respectively.

As seen in Example 3, ρG2 + deg(S2) = (deg(G) + 1)2, where S2 corresponds to the component of

codimension two of Sing(G). Putting this in (6) gives

COROLLARY 6. Let F and G be as in Corollary 5. Then,

deg(S2) ≥ (deg(G) + 1)(deg(G) − deg(F)),

where S2 stands for the component of codimension two in Sing(G).

EXAMPLE 4. Take G̃ a foliation of degree d on P2 defined in homogeneous coordinates by an 1-form ω̃.

Let 8 : P3 → P2 be a rational projection, for instance the one defined in homogeneous coordinates by

8(X0 : X1 : X2 : X3) = (X0 : X1 : X2).

Then, ω = 8∗ω̃ defines a foliation G of codimension one and of degree d on P3. The linear fibration

given by the levels of 8 is a foliation of dimension one on Pn whose degree is zero. It leaves G invariant.

Corollary 6 gives in this case deg(S2) ≥ (d + 1)d = d2 + d. However, Sing(G) = 8−1(Sing(G̃)) is a finite

family of lines. Thus, Sing(G) = S2. In the generic situation, G̃ has d2 + d + 1 singularities (see Baum

and Bott 1972), and we find deg(S2) = d2 + d + 1, which is larger than the bound obtained.
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RESUMO

Uma bandeira de folheações holomorfas em uma variedade complexa M é um objeto que consiste de um número

finito de folheações holomorfas singulares em M de dimensões crescentes tais que o feixe tangente de uma folheação

fixa é subfeixe do feixe tangente de cada folheação de dimensão maior. Estudamos algumas propriedades básicas

destes objetos e, em Pn
C, n ≥ 3, estabelecemos condições necessárias para que uma folheação de dimensão menor

deixe invariante folheações de codimensão um. Finalmente, ainda em Pn
C, encontramos quotas envolvendo graus das

classes polares de folheações em uma bandeira.

Palavras-chave: folheações holomorfas, variedades polares, variedades invariantes.
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