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ABSTRACT

In this paper, we give an elementary proof of the result that the minimal volumes of R3 and R4 are zero.
The approach is to construct a sequence of explicit complete metrics on them such that the sectional
curvatures are bounded in absolute value by 1 and the volumes tend to zero. As a direct consequence, we
get that MinVol (Rn) = 0 for n ≥ 3.
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1 INTRODUCTION

The definition of minimal volume of a C∞ manifold M (without boundary) was first introduced by Gromov

(Gromov 1982). Denote G(M) the set of all complete smooth Riemannian metrics on M such that the

corresponding sectional curvatures are bounded in absolute value by 1. We say that (M, g) has bounded

geometry (Cheeger and Gromov 1985) if its metric belongs to G(M). The minimal volume of M is a

geometric invariant which is defined as

MinVol(M) := inf
{
Vol(M, g) | g ∈ G(M)

}
. (1)

For closed surfaces M , by Gauss-Bonnet formula, it’s easy to see that

MinVol(M) = 2π |χ(M)| .

Thus the minimal volume of a closed surface is actually a topological invariant. For the two dimensional

plane, Gromov (Gromov 1982) obtained the following estimate

MinVol(R2) ≤ (2 + 2
√

2)π.
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Bavard and Pansu proved that this is an equality (Bavard and Pansu 1986). B.H. Bowditch (Bowditch 1993)

gave a different proof by using spherical isoperimetric inequality. Gromov had shown that MinVol(Rn) = 0

without going into details in (Gromov 1982, Appendix 2). Cheeger and Gromov (Cheeger and Gromov

1985, Example 1.6) showed that Rn(n ≥ 4) has a similar solid torus decomposition as R3. Thus Rn admits

a family of metrics such that the sectional curvatures are bounded and the volumes tend to zero. In this

paper, we give a detailed proof of the result in another direct way by constructing the explicit metrics

which are different from those in (Cheeger and Gromov 1985, Example 1.6) on the higher dimensional

Euclidean spaces.

We state a few results about minimal volume. As stated in (Paternain and Petean 2003), the minimal

volume does depend on the smooth structure of the manifold (also see (Bessières 1998)). J. Cheeger and

M. Gromov introduced in (Cheeger and Gromov 1986, Gromov 1982) the concepts of F-structure and T -

structure and obtained some results about F-structure and minimal volume. They proved that if M admits a

polarized F-structure then the minimal volume of M vanishes. Notice that there is a little difference between

the original definition of T -structure given in (Gromov 1982) and the later definition given in (Cheeger and

Gromov 1986, Paternain and Petean 2003). The graph manifold is a 3-manifold which admit a polarized

T -structure. So graph manifold is a special T -manifold. Thus the minimal volume of graph manifold

is zero. Furthermore, T. Soma proved in (Soma 1981) that the connected sum of two graph manifold is

still a graph manifold. In (Gromov 1982) Gromov pointed out that this result holds for odd dimensional

manifolds with T -structures. Paternain and Petean proved in (Paternain and Petean 2003) that the result also

holds for the family of manifolds which admit general T -structures and for any dimension greater than 2.

The minimal volume is closely related to the collapsing theory in Riemannian geometry. Cheeger, Fukaya

and Gromov have developed collapsing theory, and they obtained many important results (Cheeger and

Gromov 1986, 1990, Fukaya 1990).

The organization of this paper is as follows: In Section 2, we discuss how to realize smooth gluing of

metrics on 2-dimensional surfaces and to construct metrics on Y-pieces (Buser 1992) by a simple method.

This method is intuitive even without using uniformization theorem. The “Y-piece” (also called “pair of

pants”) means a compact topological surface obtained from a 2 dimensional sphere by cutting away the

interior of 3 disjoint closed topological disks. In Section 3, we give an explicit construction of a sequence

of complete metrics on R3 with bounded curvatures such that the corresponding volumes tend to zero.

We just take product metric on Y-piece×S1 and equip the metric on each piece. So we didn’t change

the topology of R3. We also apply the similar construction to R4. As an immediate corollary, we have

MinVol(Rn) = 0, for n ≥ 3.

2 CONSTRUCTION OF METRICS ON Y-PIECES

Our goal is going to construct metrics on Y-piece with uniformly bounded curvatures which are independent

of the lengthes of the boundary. In order to realize smooth gluing of metrics, we simply require that the

metrics on a small tubular neighborhood of the boundary of such Y-piece are product metrics.

To do this, it is sufficient to construct metrics on a disk. A simple way is to glue S2 \ D2 with a

cylinder S1 × I along the circle (boundary). By viewing S2 \ D2 and cylinder as surfaces of revolu-

tion, what remains to do is to consider smooth gluing of the images of functions and calculate the Gauss
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curvature of surface of revolution. But here the radius of S1 must be very small (e.g. ε) for our purpose.

Hence, to maintain the curvatures of the surface in [−1,+1], we must insert a good surface. Here we

choose a part of pseudosphere. Then, we prove that the surface after gluing is still smooth, the curvature is

uniformly bounded (i.e. independent of ε), and the volume changes a little.

We first use the mollifier to construct a cut-off function (Lemma 2.1). Using this lemma, we can glue

smoothly two functions which are tangent at a point (Lemma 2.2). By a result of Dan Henry, we construct

a better cut-off function (see Lemma 2.5).

These results are used to construct metrics on disk D2 such that the metrics have bounded curvatures

and the metrics when restricted in a small neighborhood of ∂D2 are product metrics. See Lemma 2.6

and 2.8.

LEMMA 2.1. There is a smooth function φ(x) ∈ [0, b], b > 0 on R, such that

φ(x) =

{
b, x ≤ 0,

0, x ≥ a.
(2)

and
∣
∣φ′(x)

∣
∣ ≤

2b

a
. (3)

PROOF. Let

φ̃δ(x) =






b, x ≤ δ,

−
b

a − 2δ
x +

b(a − δ)

a − 2δ
, δ < x < a − δ,

0, x ≥ a − δ,

where 0 < δ ≤ a
4 . Set

φδ(x) =
∫

R
jδ(x − t)φ̃δ(t)dt =

∫

R

1

δ
j
(

x − t

δ

)
φ̃δ(t)dt,

where j (x) is the mollifier function defined on R by

j (x) =






1

A
e

1
x2−1 , |x | < 1,

0, |x | ≥ 1,

and A is equal to
∫ 1
−1 e

1
x2−1 dx , so that

∫
R j (x)dx = 1. For any δ > 0, let

jδ(x) =
1

δ
j
( x

δ

)
.

Then by calculation, we get
∣
∣φ′
δ(x)

∣
∣ ≤

b

a − 2δ
≤

2b

a
.

Hence, φδ(x) (simply denoted by φ(x)) is the required function.

Moreover, we have
∣
∣φ′′
δ (x)

∣
∣ ≤

b

A(a − 2δ)δe
≤

b

(a − 2δ)δ
≤

2b

aδ
. (4)

since Ae > 1. �

An Acad Bras Cienc (2008) 80 (4)



“main” — 2008/9/19 — 17:17 — page 600 — #4

600 JIAQIANG MEI, HONGYU WANG and HAIFENG XU

LEMMA 2.2. Suppose f (x), g(x) are two smooth functions defined on R and satisfy

f (c) = g(c) and f ′(c) = g′(c)

at some point x = c ∈ R. Given any δ > 0, there is a smooth function hδ(x) on R such that

hδ|(−∞, c−2δ] = f, hδ|[c+2δ, +∞) = g.

PROOF. By the proof of Lemma 2.1, there is a smooth function ϕδ(x) ∈ [0, 1] such that

ϕδ(x) =

{
1, x ∈ (−∞, c − 2δ],

0, x ∈ [c + 2δ,+∞).

Let

hδ(x) = f (x)ϕδ(x)+ g(x)(1 − ϕδ(x)). (5)

Then hδ is the required function. �

Still consider functions as in the above lemma. Denote

h̃(x) =

{
f (x), x ≤ c,

g(x), x > c.

Let 6hδ , 6h̃ be the surfaces in R3 generated by the rotation around the x-axis of the graphs of the

functions hδ and h̃ respectively.

Assume that f (x), g(x) ≥ σ > 0 for all x ∈ [c − 1, c + 1], and let δ ∈ (0, 1/2) be small enough.

σ is independent of δ. Let

M2 = sup
x∈[c−1, c+1]

| f ′′(x)|, N2 = sup
x∈[c−1, c+1]

|g′′(x)|.

Then we have the following lemma.

LEMMA 2.3. There is a constant C(σ,M2, N2) > 0, such that
∣
∣
∣K6hδ

∣
∣
∣ ≤ C(σ,M2, N2), (6)

where K6hδ
is the Gauss curvature of the surface 6hδ . Moreover, we have

∣
∣Vol(6hδ )− Vol(6h̃)

∣
∣ → 0, as δ → 0, (7)

PROOF. By equation (5),

hδ(x) ≥ σ.

For x ∈ [c − 2δ, c + 2δ], by Taylor expansion formula and equations (3)–(4) in Lemma 2.1, we have

|hδ
′′| = | f ′′ϕδ + g′′(1 − ϕδ)+ 2( f ′ − g′)ϕ′

δ + ( f − g)ϕ′′
δ |

≤ | f ′′| + |g′′| + 2| f ′′(ξ1)− g′′(ξ2)|2δ ∙
1

2δ
+

1

2
| f ′′(ξ3)− g′′(ξ4)|(2δ)

2 ∙
1

2δ2

≤ 4(M2 + N2),
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where ξi ∈ (c − 2δ, c + 2δ), i = 1, 2, 3, 4. Hence,

∣
∣
∣K6hδ

∣
∣
∣ ≤

|hδ ′′|

hδ
≤

4(M + N )

σ
= C(σ,M2, N2).

By assumption, C(σ,M, N ) is independent of δ.

Since hδ → h̃ as δ → 0, we have

∣
∣Vol(6hδ )− Vol(6h̃)

∣
∣ → 0, as δ → 0.

In fact, if x ≤ b,

|hδ − f | = |(g − f )ψ | → 0, as δ → 0;

and if x ≥ b,

|hδ − f | = |( f − g)ϕ| → 0, as δ → 0. �

REMARK 2.4. In Lemma 2.2, if we suppose f ′′(c) = g′′(c) additionally, and we set

M3 = sup
x∈[c−1, c+1]

∣
∣ f ′′′(x)

∣
∣ , N3 = sup

x∈[c−1, c+1]

∣
∣g′′′(x)

∣
∣ ,

by a similar argument as in the proof of Lemma 2.3, we get
∣
∣h′′′
δ

∣
∣ ≤ 14(M3 + N3).

LEMMA 2.5. There is a smooth function φ(x)(0 ≤ φ(x) ≤ b) defined on R, such that the following

conditions are satisfied.

1. φ(x) = b, for x ≤ 0, φ(x) = 0 for x ≥ a;

2. φ(k)(0) = φ(k)(a) = 0, for any k ∈ Z+;

3. max
i=1,2,3

[
max

x∈[a,b]

∣
∣φ(i)(x)

∣
∣
]

≤ 15
(
23(3!)2b + max

{
23(3!)2b, 3b/a

})
.

PROOF. Let

φ1(x) =






b, x ≤ 0,

b
(

1 − e− 1
x

)
, 0 < x ≤ ηa;

(8)

φ2(x) =

{
be

1
x−a , a − ηa ≤ x < a,

0, x ≥ a.
(9)

Here we select 0 < η < 1 such that φ1(ηa) > φ2(a − ηa).

By a result of Dan Henry (Henry 1994) (which is available on the net at the address:

http://www.ime.usp.br/map/dhenry/danhenry/main.htm) we have

max
i=1,2,3

[
max

x∈[a,b]

∣
∣
∣φ(i)j (x)

∣
∣
∣

]
≤ 23(3!)2b, j = 1, 2.

Let p1(x), p2(x) be two polynomial functions as in Figure 1 which join φ1(x), φ2(x) to a line l

C2-smoothly respectively.
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Figure 1

Let

C (i)
j = max

x∈[a/3,2a/3]

∣
∣
∣p(i)j (x)

∣
∣
∣ , and C j (a, b) := max

{
C (1)

j ,C (2)
j ,C (3)

j

}
, j = 1, 2.

It is clear that C j (a, b) is in a small neighborhood of max
{
23(3!)2b, b/((1 − 2η)a)

}
. Therefore by

Remark 2.4, we have

max
i=1,2,3

[
max

x∈[a,b]

∣
∣φ(i)(x)

∣
∣
]

≤ 15
(
23(3!)2b + max

{
23(3!)2b, 3b/a

})
. �

Let us recall some properties of the pseudosphere. Suppose the parametric equations of pseudo-

sphere are 




x = ±
(

ln tan t
2 + cos t

)
,

y = sin t cos θ,

z = sin t sin θ,

(10)

where t ∈ [π2 , π), θ ∈ [0, 2π ]. We only consider the part of x ≥ 0, and we have

x = cosh−1

(
1

y

)
−

√
1 − y2.

A direct calculation implies that

dx

dt
=

cos2 t

sin t
,

dx

dy
= −

√
1 − y2

y
, y′

x = tan t, y′′
x =

sin t

cos4 t
. (11)

LEMMA 2.6. For any given 0 < ε << 1 and 0 < δ << 1, there is a smooth function hε,δ(x) on [0,+∞)

such that

1. For x ∈ [0, x2ε −
√

1 − 4ε2], the parametric equation of hε,δ(x) is
{

x = ln
(

tan t
2 + cos t

)
,

y = sin t,

where t ∈
[
π
2 , tε

]
, tε satisfies the equation ln

(
tan tε

2 + cos tε
)

= x2ε −
√

1 − 4ε2;

2. For x ∈
[
x2ε +

√
1 − 4ε2,+∞

)
, hε,δ(x) = ε.
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Here

x2ε = ln
1 + (1 − 2ε)

√
1 − 4ε2

2ε
.

PROOF. Suppose f (x) is a smooth function which is defined as
{

x = ln
(

tan t
2 + cos t

)
,

y = sin t,

where t ∈
[
π
2 , π

)
.

It is easy to check that point

A =
(

ln
1 + (1 − 2ε)

√
1 − 4ε2

2ε
, 2ε

)

belongs to the image of function f (x). Suppose line AB is tangent to f (x) at point A (Fig. 2). B is the

intersection point of line AB and x-axis. AC is perpendicular to x-axis. D, E are the midpoints of AB and

BC respectively. DF is parallel to x-axis. And xF = xB .

Figure 2

It’s easy to see that

|AB| = 1.

Thus, we have

|BC | =
√

1 − 4ε2, |DE | = ε, |C E | =
1

2

√
1 − 4ε2.

and

xC = x2ε := ln
1 + (1 − 2ε)

√
1 − 4ε2

2ε
,

xE = xC + |C E | = x2ε +
1

2

√
1 − 4ε2,

xB = xC + |BC | = x2ε +
√

1 − 4ε2.

Define g̃(x) as follows

g̃(x) =






−
2ε

√
1 − 4ε2

x +
2ε

√
1 − 4ε2

(x2ε +
√

1 − 4ε2), x ∈ [0, xE ],

ε, x ∈ [xE ,+∞).
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That is the broken line ÃDF .

We smooth it by the method in Lemma 2.1 and denote the result smooth function by g(x). Choose

δ1 =
1

4
|C E | =

1

8

√
1 − 4ε2.

By inequality (4), we have the estimate:

∣
∣g′′(x)

∣
∣ ≤

2ε
1
2

√
1 − 4ε2 ∙ 1

8

√
1 − 4ε2

=
32ε

1 − 4ε2
.

Next, we observe that f (x2ε) = g(x2ε) and f ′(x2ε) = g′(x2ε). According to Lemma 2.2, for any

0 < δ < 1
4 |C E |, there is a smooth function kδ(x) on

[
0, x2ε + 1

2 |C E |
]
, such that

kδ(x)
∣
∣
[0,x2ε−2δ] = f (x), kδ(x)

∣
∣[

x2ε+2δ,x2ε+
1
2 |C E |

] = g(x).

Choose point P = (xP , yP) ∈ Im f (x) and Q = (xQ, yQ) ∈ Img(x) such that

2ε < yP ≤ 4ε, x2ε < xQ ≤ x2ε +
1

4
|C E | .

According to Lemma 2.3, we have
∣
∣k ′′
δ (x)

∣
∣ ≤ 4(M + N ),

where

M := sup
x∈[xP ,xQ ]

∣
∣ f ′′(x)

∣
∣ , N := sup

x∈[xP ,xQ ]

∣
∣g′′(x)

∣
∣ = 0.

Since f ′′(x) =
sin t

cos4 t
(see (11)), f ′′(x2ε) =

2ε

(1 − 4ε2)2
. Because

x

(1 − x2)2
is a increasing function

about x for x ∈ (0, 1),

M =
∣
∣ f ′′(xP)

∣
∣ ≤

4ε
(
1 − 16ε2

)2 .

Then, we get a global smooth function hε,δ(x) on [0,+∞) such that





hε,δ(x)
∣
∣
[0,x2ε−

√
1−4ε2]

= f (x),

hε,δ(x)
∣
∣
[x2ε+

√
1−4ε2,+∞)

= ε.

since

kδ(x) = g(x), for x ∈
(

x2ε +
1

4
|C E | , x2ε +

3

4
|C E |

)
. �

REMARK 2.7. Let 6hε,δ be the surface in R3 generated by the rotation around the x-axis of the graph of

the function hε,δ . Then we have the estimate about the sectional curvature:

1. For x ∈
[
0, x2ε −

√
1 − 4ε2

]
,

∣
∣
∣K6hε,δ

∣
∣
∣ ≤

∣
∣g′′(x)

∣
∣

g(x)
≤

32ε
1−4ε2

ε
=

32

1 − 4ε2
.
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2. For x ∈
[
x2ε +

√
1 − 4ε2,+∞

)
,

∣
∣
∣K6hε,δ

∣
∣
∣ ≤

4(M + N )

ε
=

4M

ε
≤

4 ∙ 4ε
(1−16ε2)2

ε
=

16

(1 − 16ε2)2
.

So, we can choose a constant C which is independent of ε and δ, such that

∣
∣
∣K6hε,δ

∣
∣
∣ ≤ C.

Figure 3

LEMMA 2.8. For any given 0 < ε << 1 and 0 < δ << 1, there is a smooth surface 6ε,δ which is

generated by rotation of the graph of a smooth function hε,δ(x) satisfying the following conditions along

x-axis.

1. hε,δ(x) =
√

1 − x2, for x ∈
[
−1,

√
2

2 − δ
]
.

2. For x ∈
[√

2
2 + δ, x2ε −

√
1 − 4ε2 + ln

(
1 +

√
2

2

)]
, hε,δ has following parametric equation:

{
x = ln

(
tan t

2 + cos t
)
+ ln

(
1 +

√
2

2

)
,

y = sin t,

where t ∈
(

3π
4 + δ, tε

)
.

3. hε,δ(x) = ε, for x ∈
[
x2ε +

√
1 − 4ε2 + ln

(
1 +

√
2

2

)
, x2ε +

√
1 − 4ε2 + ln

(
1 +

√
2

2

)
+ 1

]
.

x2ε and tε are the same as in Lemma 2.6. Moreover, the sectional curvature of 6ε,δ is bounded by a

constant C which is independent of ε and δ.

PROOF. By Lemma 2.2, 2.3, 2.6 and Remark 2.7. �

REMARK 2.9. If we let δ (which used in Lemma 2.2–2.3) be small enough in Lemma 2.8, the area of

the smooth surface above is less than (2 + 2
√

2)π + 1. If we add two ends to the surface, we will get the

required Y-piece as showed in Figure 4.
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Figure 4

3 MINIMAL VOLUME OF R3

By Lemma 2.8 and torus decomposition of R3 in (Cheeger and Gromov 1985), we can construct a se-

quence of complete smooth metrics on R3 with bounded curvatures and the corresponding volumes tend to

zero. So the minimal volume of R3 is zero. The completeness of every metric we constructed is followed

from Proposition 3.1. Note that the diameters of the Y-pieces we constructed have a positive lower bound.

By Hopf-Rinow theorem (Chavel 1993), (R3, gε) is also geodesic complete.

PROPOSITION 3.1. Let A1 ⊂ A2 ⊂ ∙ ∙ ∙ An ⊂ ∙ ∙ ∙ be a sequence of compact metric spaces. Suppose

dn is the distance function on An, and dn+1|An = dn for all n. Define function d : A = ∪∞
n=1 An → R

by d(x, y) = dm(x, y), where m is the positive integer such that x, y ∈ Am. Then (A, d) is a metric

space. If additionally we suppose that there is a sequence of concentric balls {Bn} such that Bn ⊂ An and

diameter(Bn) → ∞ as n → ∞, then (A, d) is a complete metric space.

Before the proof of Proposition 3.2, it maybe useful to keep Figure 5 in mind which describes the

construction of metrics on R3.

As in (Cheeger and Gromov 1985, Example 1.4), we decompose R3 into a sequence of solid toruses,

C1 ⊂ C2 ⊂ ∙ ∙ ∙ ⊂ Cn ⊂ ∙ ∙ ∙ ,

such that R3 = ∪∞
i=1Ci , where Ci = D2

i × S1, {D2
i } are closed disks. Every solid torus is contractible

in the next. Let

C1 = 62
1 × S1 = D2

1 × S1.

Let Ai denote the axis (i.e. {0} × S1 ⊂ D2
i × S1) of Ci . The tubular neighborhood of Ai+1 denotes by

62
2i+1 × S1.

Then, we have

Ci+1 \ Ci = 62
2i × S1 ∪62

2i+1 × S1,

where 62
2i is a surface with nonempty boundary which consists of three circles.

PROPOSITION 3.2. MinVol(R3) = 0.
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Fig. 5 – Metrics on R3.

PROOF. Our goal is to construct a sequence of complete smooth metrics gε on R3 such that

Vol(R3, gε) → 0, as ε → 0,

and the corresponding curvatures are uniformly bounded by 1, i.e.
∣
∣Kgε

∣
∣ ≤ 1.

In Lemma 2.8, we have constructed a surface (disk) 6 with nonempty boundary (circle) ∂6 satisfying

Vol(6, g
6
) < +∞,

∣
∣Kg

6

∣
∣ ≤ C, Length(∂6) = 2πε, (12)

and, if restricted on a tubular neighborhood of ∂6 in 6, g
6

is product metric.

As has been mentioned in Section 2, it is also easy to construct metric on Y-piece
(
62

2i

)
satisfying the

similar conditions as above. With such metric, 62
2i looks like as in Figure 6.

Next, we give the explanation in details as follows.

For 62
1 , we assign it a metric g1, ε2

as in Lemma 2.8. Denote the geometric surface by M ε
2 ,δ

, or simply

by M ε
2
, where the ε

2 means the length of ∂M ε
2

is πε under the metric given. By Remark 2.9,

Vol
(
M ε

2

)
≤

(
2 + 2

√
2
)
π + 1,

when δ is small enough.

For 62
2i+1, i ≥ 1, define

M ε

2i
:=

(
62

2i+1, g1, ε
2i

)
, for i ≥ 1.
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Fig. 6 – Metric on Y-piece.

We assign 62
2i a metric to be a Y-piece (see Fig. 6), and denote it by

Yi = Y2i,ε = Y
2i;

(
ε

2i−1 ,
ε

2i ,
ε

2i+1

),

which means the lengths of the components of the boundary ∂Y2i,ε are 2πε
2i−1 , 2πε

2i , 2πε
2i+1 respectively.

In summary, we use the following notations:





M0 = M ε
2

:=
(
62

1 , g1, ε
21

)
,

Mi = M ε

2i
:=

(
62

2i+1, g1, ε
2i

)
, for i ≥ 1,

Yi = Y
2i;

(
ε

2i−1 ,
ε

2i ,
ε

2i+1

) :=
(
62

2i , g
2;

(
ε

2i−1 ,
ε

2i ,
ε

2i+1

)

)
, for i ≥ 1.

(13)

We simply write the last equation as

Yi = Y2i,ε :=
(
62

2i , g2,ε
)
. (14)

Then the process of constructing the metric gε on R3 is as follows.

According to the torus decomposition of R3, to get a global smooth metric on R3, we have to glue the

metrics on the pieces
M0 × S1

ε , S1
ε
2
× M1, S1

ε
4
× M2, S1

ε
8
× M3, . . .

Y1 × S1
ε
2
, Y2 × S1

ε
4
, Y3 × S1

ε
8
, . . .

(15)

along boundary circles or the product factors S1 in certain pairs and certain order. The metrics on such

product manifolds are chosen simply as product metrics. S1
ε means that the circle has length 2πε under

the given metric ε2dθ2. The relation between the lengths of the boundary circles must be related to ε.

The order and the relation of gluing is stated as follows.

Let ∂Yi;(1) × I , ∂Yi;(2) × I , and ∂Yi;(3) × I denote the three tubular neighborhoods of the three

boundary components of Yi for i ≥ 1.
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First, the metrics on ∂Yi;(3) × I × S1
ε

2i
and ∂Yi+1;(1) × I × S1

ε

2i+1
are chosen to be the following

product metrics: ( ε

2i+1

)2
dθ2 + dt2 +

( ε

2i

)2
dα2, (16)

and ( ε

2i

)2
dθ2 + dt2 +

( ε

2i+1

)2
dα2. (17)

The order of gluing here is that we direct glue the first term of (16) and the third term of (17); and direct

glue the third term of (16) and the first term of (17).

Second, the metrics on ∂Yi;(2) × I × S1
ε

2i
and S1

ε

2i
× I × ∂Mi are chosen to be

( ε

2i

)2
dθ2 + dt2 +

( ε

2i

)2
dα2, (18)

and ( ε

2i

)2
dα2 + dt2 +

( ε

2i

)2
dθ2. (19)

The order of gluing here is that we exchange the variables α and θ in the second (or first) metric, so that

they can be glued directly with the first (or second) metric.

At last, what remains to do is to glue the metrics on ∂M0 × I × S1
ε and ∂Y1;(1) × I × S1

ε
2
.

Thus, we get a sequence of complete metrics gε,δ (simply denote by gε) on R3 such that

∣
∣Kgε

∣
∣ ≤ C,

where C is independent of ε and δ; and we have

Vol
(

Yi × S1
ε

2i

)
≤ 3(2 + 2

√
2)π ∙

2πε

2i
, (20)

and

Vol
(

S1
ε

2i
× Mi

)
≤

2πε

2i
((2 + 2

√
2)π + 1). (21)

By scaling and the fact

Kλg =
1

λ
Kg, Vol(M, λg) = λn/2Vol(M, g), (22)

where n = dim M , we get our metrics (still denote by gε) such that the curvature is uniformly bounded

by 1, while the volumes of the surfaces are finite, since

ε +
ε

2
+
ε

4
+
ε

8
+ ∙ ∙ ∙ = 2ε. (23)

Hence,

Vol(R3, gε) → 0, as ε → 0. (24)

Therefore,

MinVol(R3) = 0.

The proposition is proved. �
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4 MINIMAL VOLUMES OF Rn FOR n ≥ 3

PROPOSITION 4.1. MinVol(R4) = 0.

PROOF. We still use the notations (13) and (14) in the proof of Proposition 3.2. The metric on Yi

(i.e. Y2i,ε or Y2i;( ε

2i−1 ,
ε

2i ,
ε

2i+1 )
) is denoted by g2,ε (means the second kind metric).

Let the metric on Yi × S1
ε

2i
× R be

g̃2,ε = g2,ε + f 2(t)g
S1
ε

2i

+ dt2, i = 1, 2, 3, . . . , (25)

where

g
S1
ε

2i

=
( ε

2i

)2
dθ2, θ ∈ [0, 2π ], t ∈ R, (26)

and f (t) is defined by

f (t) =

{
1 − e− 24

t2 , t 6= 0,

1, t = 0.
(27)

It is easy to prove that f (t) is a smooth function. Moreover, f (t) satisfies





∣
∣ f ′′(t)

∣
∣

f (t)
≤ 1,

∣
∣ f ′(t)

∣
∣

f (t)
≤

√
3

6
,

∫ +∞

−∞
f (t)dt = 4

√
6π < ∞,

f (t) > 0, for all t ∈ R.

(28)

Replace the metric g1, ε
2i

on 62
2i+1 (that is, the surface Mi , see (13)) by the metric g1, ε(t)

2i
and denote

the surface
(
62

2i+1, g1, ε(t)
2i

)
by M ε(t)

2i
, where ε(t) means that the length of the boundary circle is a function

of t . If we want to realize the smooth gluing (i) as in Figure 7, that is to glue the metric on factor S1
ε

2i
and

the metric on boundary S1
ε(t)
2i

, the direct way is to require that the metric on a small tubular neighborhood

of ∂M ε(t)
2i

is a product metric, and

Length(∂M ε(t)
2i
) = 2π

ε(t)

2i
= f (t) ∙ 2π

ε

2i
.

Thus

ε(t) = f (t)ε.

But, in order to make the volume Vol
(

S1
ε

2i
× M ε(t)

2i
× R

)
finite, the metric on S1

ε

2i
× M f (t)ε

2i
× R should

has the following form

f 2(t)
( ε

2i

)2
dθ2 + g1, f (t)ε

2i
+ dt2. (29)
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Fig. 7 – Gluing.

The gluing (ii) is similar to (i). Hence, the metric g2,ε on Yi (i.e. Y2i;( ε

2i−1 ,
ε

2i ,
ε

2i+1 )
) should be changed to

g2, f (t)ε. That is,

Y
2i;

(
ε

2i−1 ,
ε

2i ,
ε

2i+1

)

becomes to

Y
2i;

(
f (t)ε
2i−1 ,

f (t)ε
2i ,

f (t)ε
2i+1

).

To realize the gluing (i) and (ii) while keeping the curvature bounded, we first construct an ε related

smooth function Gε(x, t) (simply denoted by G(x, t), see (36)) which is used to construct the smooth

surface M( f (t)ε)/2i . After that, we calculate the sectional curvatures and claim that the sectional curvatures

are bounded. Then, by calculating the volumes, we complete the proof. For state clearly, we divided

the proof into several steps:

Step 1: Construction of function G(x, t). By Lemma 2.5, there is a C∞ function φ(x̄) (0 ≤ φ(x̄) ≤ 1)

on [−1,+∞) such that

φ(x̄) =






1, −1 ≤ x̄ ≤ 0,

1 − e− 1
x̄2 , 0 < x̄ ≤ 1

3 ,

e
− 1
(x̄−1)2 ,

2

3
≤ x̄ < 1,

0, x̄ ≥ 1.

(30)

There exists a constant C > 0, such that

∣
∣φ′

x̄

∣
∣ ,

∣
∣φ′′

x̄

∣
∣ ,

∣
∣φ′′′

x̄

∣
∣ ≤ C. (31)
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In particular, 




φ′
x̄ = −

2

x̄3
e− 1

x̄2 , for x̄ ∈
(

0,
1

6

)
,

φ′
x̄ =

2

(x̄ − 1)3
e

− 1
(x̄−1)2 , for x̄ ∈

(
5

6
, 1

)
.

Let

ϕ(x, t) =

{
1, −1 ≤ x ≤ 0,

φ( f (t)x), 0 < x < +∞,
(32)

where t ∈ R and x̄ = f (t)x . Let

F(x, t) = ε(1 − f (t))h(x), (33)

where h(x) satisfies





h(x) = 1, for x ∈ [−1, 0],
∣
∣h′

∣
∣

h
,

∣
∣h′′

∣
∣

h
≤ C,

∫ +∞

0
h(x)dx < ∞,

0 < h(x) ≤ 1, for x ∈ [−1,+∞).

For simplicity, let

h(x) =

{
1 − e− 24

x2 , x > 0,

1, x ∈ [−1, 0].
(34)

Then, we have

|h(x)| ,
∣
∣h′(x)

∣
∣ ,

∣
∣h′′(x)

∣
∣ ≤ 1. (35)

Then we define the function G(x, t) by

G(x, t) = F(x, t)ϕ(x, t)+ ε f (t), x ∈ [−1,+∞), t ∈ R. (36)

Step 2: Calculation of the sectional curvature of surface 6G(x,t). Now for every t , let 6G(x,t) be

the surface generated by rotation of the graph of the function G(x, t). 6G(x,t) is just a part of surface

M f (t)ε
2i

. It can also be used to construct the surface Y2i;( f (t)ε
2i−1 ,

f (t)ε
2i ,

f (t)ε
2i+1 )

.

On S1
ε

2i
×6G(x,t) × R, the metric is given by

f 2(t)
( ε

2i

)2
dθ2 +

(
1 + (G ′

x(x, t))2
)
dx2 + G2(x, t)dα2 + dt2. (37)

where θ, α ∈ [0, 2π ]. Let

ω1 =
ε

2i
f (t)dθ, ω2 =

√
1 + G ′2

x dx, ω3 = G(x, t)dα, ω4 = dt.
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Then by the structure equations, we have






ω2
1 = 0, ω3

1 = 0, ω4
1 = −

ε

2i
f ′(t)dθ,

ω3
2 =

G ′
x√

1 + G ′2
x

dα, ω4
2 = −

G ′
x G ′′

xt√
1 + G ′2

x

dx, ω4
3 = −G ′

t dα.

So the curvatures are 




K12 = −
f ′(t)

f (t)

G ′
x G ′′

xt

1 + G ′2
x

,

K13 = −
f ′(t)

f (t)

G ′
t

G
,

K14 = −
f ′′(t)

f (t)
,

K23 = −
(

G ′′
xx

G(1 + G ′2
x )

2
+

G ′
x G ′

t G
′′
xt

G(1 + G ′2
x )

)
,

K24 = −
(G ′′

xt)
2 + G ′

x G ′′′
xtt(1 + G ′2

x )

(1 + G ′2
x )

2
,

K34 = −
G ′′

t t

G
.

(38)

Step 3: We claim that:
∣
∣Ki j

∣
∣ ≤ C, for i, j = 1, 2, 3, 4. (39)

PROOF. By Equation (32), we have






ϕ′
x = φ′

x̄ f (t),

ϕ′
t = φ′

x̄

f ′(t)

f (t)
x̄,

ϕ′′
xx = φ′′

x̄ f 2(t),

ϕ′′
t t = φ′′

x̄

( f ′(t)

f (t)

)2
x̄2 + φ′

x̄

f ′′(t)

f (t)
x̄,

ϕ′′
xt = φ′′

x̄ f ′(t)x̄ + φ′
x̄ f ′(t),

ϕ′′′
xtt = φ′′′

x̄

( f ′(t))2

f (t)
x̄2 + 2φ′′

x̄

( f ′(t))2

f (t)
x̄ + φ′′

x̄ f ′′(t)x̄ + φ′
x̄ f ′′(t).

(40)

By Equation (33), we have





F ′
x = ε(1 − f (t))h′(x), F ′

t = −ε f ′(t)h(x),

F ′′
xx = ε(1 − f (t))h′′(x), F ′′

t t = −ε f ′′(t)h(x),

F ′′
xt = −ε f ′(t)h′(x), F ′′′

xtt = −ε f ′′(t)h′(x).

(41)
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By Equation (36), we have






G ′
x = F ′

xϕ + Fϕ′
x ,

G ′
t = F ′

t ϕ + Fϕ′
t + ε f ′(t),

G ′′
xx = F ′′

xxϕ + 2F ′
xϕ

′
x + Fϕ′′

xx ,

G ′′
t t = F ′′

t tϕ + 2F ′
t ϕ

′
t + Fϕ′′

t t + ε f ′′(t),

G ′′
xt = F ′′

xtϕ + F ′
xϕ

′
t + F ′

t ϕ
′
x + Fϕ′′

xt ,

G ′′′
xtt = F ′′′

xttϕ + 2F ′′
xtϕ

′
t + F ′

xϕ
′′
t t + F ′′

t tϕ
′
x + 2F ′

t ϕ
′′
xt + Fϕ′′′

xtt .

(42)

Hence, by Equations (30)–(36), (40)–(42), we have

∣
∣G ′

x

∣
∣ ≤ ε + εC,

∣
∣G ′′

xt

∣
∣ ≤ ε + 4Cε,

∣
∣G ′′′

xtt

∣
∣ ≤ ε + 14Cε. (43)

∣
∣G ′′

xx

∣
∣

G
≤

∣
∣h′′

∣
∣ϕ

hϕ
+

2
∣
∣h′

∣
∣
∣
∣φ′

x̄

∣
∣ f (t)

f
1− f

+
h

∣
∣φ′′

x̄

∣
∣ f 2(t)
f

1− f

,

≤ 1 + 3C.

(44)

∣
∣G ′

t

∣
∣

G
≤

2
∣
∣ f ′(t)

∣
∣ + (1 − f (t))h(x)

∣
∣ϕ′

t

∣
∣

(1 − f (t))h(x)ϕ(x, t)+ f (t)

≤
2

∣
∣ f ′(t)

∣
∣

f (t)
+

h(x)
∣
∣ϕ′

t

∣
∣

h(x)ϕ(x, t)+ f (t)
1− f (t)

≤
2

∣
∣ f ′(t)

∣
∣

f (t)
+

h(x)
∣
∣ϕ′

t

∣
∣

h(x)ϕ(x, t)+ f (t)

≤ 2 +
C

ϕ(x, t)+ f (t)
h(x)

.

(45)

Similarly, we have ∣
∣G ′′

t t

∣
∣

G
≤ 2 + 2C +

2C

ϕ(x, t)+ f (t)
h(x)

. (46)

Then,

ϕ(x, t)+
f (t)

h(x)
= φ( f (t)x)+

f (t)

f (x)
→ 0

if and only if

φ( f (t)x) → 0, and
f (t)

f (x)
→ 0.

That is

f (t)x → 1, and
f (t)x

f (x)x
→ 0.
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This implies that f (x)x → +∞, and it is a contradiction since f (x) < 1
x . Hence, there is a positive

number σ > 0 which is independent of x , t and ε, such that

ϕ(x, t)+
f (t)

h(x)
> σ > 0.

Therefore, ∣
∣G ′

t

∣
∣

G
< C,

∣
∣G ′′

t t

∣
∣

G
< C. (47)

According to inequalities (43), (44) and (47), curvatures in (38) must be bounded. So the Claim is

proved. �

Step 4: Conclusion. Therefore, for every piece considered above, we have constructed a metric on it.

By scaling if necessary, we can make the metric satisfying the condition that the curvature is bounded by 1.

Moreover, we have

Vol
(

S1
ε

2i
× M f (t)ε

2i
× R

)
≤

2πε

2i
∙ 4

√
6π ∙

(
(2 + 2

√
2)π + 1

)
, (48)

and

Vol
(

Y2i, f (t)ε × S1
ε

2i
× R

)
≤ 3(2 + 2

√
2)π ∙

2πε

2i
∙ 4

√
6π. (49)

Hence, we have construct a sequence of complete metrics gε with bounded curvatures on R3 × R, and

Vol
(
R3 × R, gε

)
→ 0, as ε → 0.

Therefore,

MinVol
(
R4

)
= 0. �

THEOREM 4.2. MinVol(Rn) = 0 for n ≥ 3.

PROOF. Every positive integer n can be written in one of the forms:

3k, 3k + 1 = 3(k − 1)+ 4, 3k + 2.

Then Rn (n ≥ 3) can be written as

R3 × ∙ ∙ ∙ × R3
︸ ︷︷ ︸ , or R3 × ∙ ∙ ∙ × R3

︸ ︷︷ ︸ ×R4, or R3 × ∙ ∙ ∙ × R3
︸ ︷︷ ︸ ×R2.

Take product metric on it, then MinVol(Rn) = 0 since MinVol(R3) = MinVol(R4) = 0 and MinVol(R2)

= (2 + 2
√

2)π . �
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RESUMO

Neste artigo fornecemos uma demonstração elementar do resultado de que os volumes minimais de R3 eR4 são ambos

iguais a zero. A abordagem consiste na construção de uma seqüência de métricas completas explícitas nesses espaços

cujas curvaturas seccionais são limitadas em valor absoluto por 1 e os volumes tendem a zero. Como conseqüência

direta, estabelecemos que MinVol(Rn) = 0 para n ≥ 3.

Palavras-chave: volume mínimo, colagem diferenciável, geometria.
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