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Abstract: This work aimed to study different seeding rates in soybean, at management 
zones determined by the mapping of the soil apparent electrical conductivity (ECa) and 
its relationships with plant phenology and grain yield (GY). The experiment consisted 
of a completely randomized design, with six replications. The plant population ranged 
between 311,000, 360,000, and 422,000 plants ha-1, and the fi xed population (360,000 
plants ha-1). The management zone with the least yield potential, received the highest 
seed population. The management zone with the highest plant vigor potential, received 
the lowest seed population. The variables plant height, Normalized Difference Vegetation 
Index (NDVI) at 50, 66, and 92 days after emergence (DAE), one hundred-grain weight, and 
GY were analyzed. ECa maps can be used to decide the seed population of the soybean. 
The decision strategy of increasing 20% of the seed soybean population on the smaller 
ECa map zones, and decreasing 20% seed population on higher ECa zones was effective 
and resulted in similar GY, even with the negative pressure of the high resistance of 
penetration (RP) values in some zones. GY map variability was infl uenced by ECa 0-0.2 
m, by NDVI at 92 DAE and by RP 0.4-0.6 m soil layer. 

Key words: seed population, precision agriculture, vegetation index, soil mechanical 
resistance to penetration.

INTRODUCTION

Soybean (Glycine max. L. Merrill) is the most 
important legume crop worldwide. It plays an 
essential role in the Brazilian economy owing 
to the large volume produced and exported 
(Yorinori 2007, CONAB 2018). With the increase 
in the world’s population and the demand 
for food, the constant challenge is to increase 
production sustainably. To this end, effi cient crop 
management and higher accuracy technologies 
are crucial for more profitable agriculture 
(Velandia et al. 2008).

S oybean yield can be affected by several 
environmental factors, and the soil apparent 
electrical conductivity can be used as an indicator 

for the monitoring of soil characteristics, such 
as salinity, texture, moisture, density, organic 
matter, and cation exchange capacity (CEC), 
(Molin & Rabello 2011). Optical, electromagnetic, 
electrochemical, mechanical, acoustic, and 
airfl ow systems have been studied in an attempt 
to develop techniques to indirectly measure soil 
properties (Adamchuk et al. 2004).

Some of these operating principles are found 
in the equipment Veris P4000 (Salina, KS, EUA), 
which, when in contact with the soil, measures 
its ECa in depth using a hydraulic probe with 
sensors and acquires spectral measurements in 
the Infrared and Red wavelength ranges (Veris 
2018). Maps based on the ECa variability can 
be applied to delimiting management zones 
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(Fraisse et al. 2001, Molin & Castro 2008). This 
strategy can increase the effi cient use of natural 
resource and reduce the impact of agriculture 
on the environment (Luchiari Junior et al. 2011).

Management interventions should 
be specifically prescribed for each zone, 
considering yield-limiting factors, with different 
applications, such as VRT (Variable Rate 
Technology), which includes the information 
collected in each unit at a given time and 
field region. The plant population may vary 
according to soil characteristics. The number of 
seeds or plants per unit area can be increased 
under more favorable conditions. Particular 
conditions may also occur, such as soil patches 
containing historically lesser-developed plants. 
In such cases, increased seeding density 
is recommended. Thus, the use of the VRT 
technology is suggested due to the specific 
seeding density variation for each management 
zone (Coelho & Silva 2009, Luchiari Junior et al. 
2011).

The differences in populations lead to 
variations in the soybean plant. The increase 
in the plant population reduces the number 
of pods, decreases the number of grains per 
plant, and promotes higher fi nal plant height 
(Knebel et al. 2006). Higher leaf area indices 
were observed in treatments with higher density 
populations of soybean plants per hectare 
(Luchiari Junior et al. 2011). Also, higher soybean 

leaf area index indicates higher NDVI values, 
and they are positively correlated to grain yield 
(Casa et al. 2018).

Soybean crops can withstand great 
population reduction without signifi cant yield 
losses (Vazquez et al. 2008, Embrapa 2011). We 
hypothesize that the variation of the soybean 
population based on ECa can affect yield grain. 
Thus, the study on VRT seeding is fundamental 
to understand the infl uence of variable and fi xed 
seeding rate on soybean yield. This work aimed 
to study soybean VRT seeding in management 
application zones determined by the soil ECa 
mapping and VRT relations with plant phenology 
and grain yield.

MATERIALS AND METHODS

The experiment was conducted in the 
experimental area of the Federal University 
of Mato Grosso do Sul (lat. 0.18°77’19”S; long. 
0.52°62’10”W, at 810 m of altitude), in Chapadão 
do Sul/MS, in the agricultural year 2016/17. The 
one-hectare area had a history of 15 years of no-
tillage system, and maize had been previously 
used as the cover crop. The climate of the 
region is Aw type, according to the Koppen’s 
classifi cation, defi ned as tropical humid, with 
rainy summer and dry winter (Fig. 1) (Kottek et al. 
2006). Between November 2016, and March 2017, 

Figure 1. Rainfall (mm), maximum, 
minimum, and average 
temperature (°C) every ten days, 
during the soybean cultivation 
in the fi eld. Chapadão do Sul-MS, 
agricultural year 2016/17.



SUZANY S. MOURA et al.	 SEEDING RATE IN SOYBEAN

An Acad Bras Cienc (2020) 92(Suppl. 1)  e20181112  3 | 13 

the average rainfall in ten days was between 27 
and 209 mm, and the average temperature was 
between 21 and 25 °C.

The experiment consisted of a completely 
randomized design, with six replications in each 
treatment (variable seeding rate versus fixed 
seeding rate). The management application zone 
with the lowest ECa (4.79 to 5.25 mS m-1) received 
the highest seed population (422,000 seeds per 
hectare) due to the growth potential of plants 
that present low biomass and vegetation index. 
The management application zone with the 
highest ECa (5.53 to 6.24 mS m-1) represented a 
higher potential for plant vigor and received the 
lowest seed population (311,000 soybean seeds 
per hectare). Soybean was sown on November 
16, 2016.

The experiment used the soybean cultivar 
(Glycine max. L. Merrill) Desafio 8433 RR (Brasmax 
corporation), which has indeterminate growth 
habit and the average cycle of 110 days. Plants 
were spaced at 0.45 m between rows. The three 
management application zones were established 
with the ECa map at 0.0 to 0.2 m depth. The 
VRT seeding rates were established in three 
plant populations in the three management 
application zones (Fig. 2). The fixed population 
consisted of 360,000 plants ha-1. For the VRT seed 
treatment, plant population ranged between 311, 
360, and 422 thousand plants per hectare (20% 
higher and lower than the mean population), 

based on previous studies on plant population 
under the same environmental conditions 
(Knebel et al. 2006, Heiffig et al. 2006).

Thirty-three sites were defined in the 
different management application zones 
to measure the response variables, such as 
phenological indices and grain yield. The 33 
sample sites were interpolated by ordinary 
kriging. The GNSS Trimble Nomad (Sunnyvale, 
USA) was used for navigation. The geostatistical 
analysis to determine the semivariograms and 
elaborate the ECa, RP (soil mechanical resistance 
to penetration) and VI (vegetation index) maps 
were performed in the software ArcGIS 10.5 
(ESRI, Redlands, CA, USA). The maps allowed a 
visual analysis of the variability of the variables.

Geostatistical analyses were made modeling 
the spatial continuities of the regionalized 
variables, according to Matheron´s theory, and 
represented by the semivariogram (Equation 
1). The spatial dependence index (SD) of the 
semivariogram models was calculated by the 
variance percentage of the nugget effect, as it 
represents the analytical error and indicates 
the spatial variability that cannot be explained 
(Trangmar et al. 1985). Spatial dependence 
was verified by semivariogram adjustments 
(Vieira 2000), taking into account the inference 
of intrinsic stationary process. The degree of 
spatial dependence of the studied variables was 
analyzed based on the following classification: 

Figure 2. Spatial distribution 
of soil apparent electrical 
conductivity (a) based on 
a regular quadratic grid 
of 10x10 m, VRT seeding 
prescription map (b), and 
sampling points of response 
variables control in the 
three management zones.
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low, for SD <25%; moderate, for 25% <SD <75%; 
and strong, for SD> 75% (Trangmar et al. 1985). 
The methodology used in the interpolation of 
the sampled data for the variables with spatial 
dependence had the theoretical models of the 
semivariogram based on the residual sum of 
the squares (exponential and spherical), which 
estimated the ECa and RP at different depths, 
and the NDVI at different days after emergence.

γ̂ (h)=
1

2N (h)
∑
i=1

N (h)

[Z (xi )−Z (xi+h)]
2

7

	 (1)

where: ŷ(h) is the estimated semivariogram; N(h) 
is the number of pairs of measured values, Z(xi) 
and Z(xi+h), separated by a vector distance h; 
Z(xi) and Z(xi+h) values of the i-th observation of 
the regionalized variable, collected at points  x 
and xi+h(i=1,...,n), separated by a vector h.

Apparent electrical conductivity (ECa) data 
were collected on the soil profile based on a 
regular quadratic grid of 10x10 m to define 
the different management application zones, 
using the real-time sensor Veris model P4000 
(Salina, KS, EUA). This equipment has a hydraulic 
probe with a set of electrodes, which drives an 
electrical current through the ground, indicating 
the apparent electrical conductivity at each 
depth (Molin & Rabello 2011).

Soil compaction data were collected in 
kPa to the 0.6 m depth when the soil was in 
field capacity condition, to study the possible 
causes of the final grain yield variability. Soil 

profile readings were performed every other 
0.02 m, using the Veris P4000 probe. The 
device used a load cell to acquire the data on 
the soil mechanical resistance to penetration 
by measuring the insertion force required to 
push the probe into the soil (Veris 2018). The 
ECa and RP samples were georeferenced by the 
georeferencing device (GNSS) of the P4000. This 
tool was coupled to a Valtra tractor, model BL88, 
which provided hydraulic and electrical power 
to the system. The ECa and RP values were 
sampled in 100 sites of a 10 x 10 m rectangular 
grid. ECa maps were plotted at 0-0.2, 0.2-0.4, 
and 0.4-0.6 m depths. Ordinary kriging was used 
as the interpolation method, adjusted in the 
software ArcGIS 10.5 (ESRI, Redlands, CA, USA).

Deformed samples were collected at the 
33 sites, at 0.0-0.2 m depth, for soil chemical 
analysis (Table I). These analyses were performed 
after the experiment implantation only for 
observation of the chemical compounds that 
influence soil ECa. The gravimetric moisture of 
the soil was determined by drying the sample 
in a conventional oven (oven) at 110 °C, for 
24 h. The clay content was determined by the 
granulometric analysis methodology (total 
dispersion) (Embrapa 1997).

Base fert i l i zat ion was performed 
according to the soil analysis, following the 
recommendations for cultivation in cerrado. 
Therefore, 150 kg ha-1 of Potassium Chloride 
(00-00-60) was applied at pre-sowing, and 335 

Table I. Mean results of soil chemical analysis.

pH H+Al Ca Mg Al CEC B Cu Fe Mn Zn K P OM Clay V m

cmolc dm-3 g dm-3 %

4.41 7.2 1.8 0.3 0.4 9.4 0.5 0.9 75.5 9.0 3.9 62.5 15.6 23. 6 456. 
7 23.6 16.3

pH CaCl2; H + Al: Potential acidity; Ca: Calcium; Mg: Magnesium; Al: Aluminum; CEC: Cation exchange capacity; B: Boron; Cu: 
Copper; Fe: Iron; Mn: Manganese; Zn: Zinc; K: Potassium; P: Phosphorus (resin); OM: Organic matter; Clay: Clay content; V: base 
saturation; m: Aluminum saturation.
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kg ha-1 of the NPK formulation (05-25-15) was 
applied at sowing. Phytosanitary treatments and 
agricultural inputs were applied over the crop’s 
development according to the crop monitoring 
and the standards for pest control and disease 
in the region. All the cultural treatments, such 
as herbicide, insecticide, and fungicide spraying 
and fertilization were carried out based on the 
crop’s needs, following the recommendation for 
soybean crops in the region (Embrapa 2011).

For the phenological analysis of the 
response-variables at each sampling point (33 
sites), plant height (PH) and vegetation index 
(VI) were measured in five plants, which were 
marked for identification in future evaluations. 
Plant height was measured at 46, 58, 66, and 
92 days after emergence (DAE), in the main 
trunk, from the soil surface up to the insertion 
of the last fully expanded leaf. The vegetation 
index was recorded at 50, 66, and 92 DAE, at 
different phenological stages of the soybean 
crop. The Crop Circle equipment measured the 
NDVI vegetation index, model ACS-470 (Holland 
Scientific, Lincon, NE), using the 670 nm (red) 
and 760 nm (NIR - near infrared) filters. This 
equipment has three optical measurement 
channels, associated with the positioning of 
its integrated GPS. The sensor measures crop’s 
reflectance at three wavelengths, according to 
the lenses selected for measurement. The area 
was manually scanned at the height of 0.8 m 
from the plants’ canopy, interspersing the 
experimental field at every two planting rows. 
Plants were manually harvested at each of the 
33 sampling points, in a sample area of ​​4.05 
m2. Soybean from each plot was weighed, and 
moisture was corrected to 14%. Afterward, the 
mean 100-grains weight was calculated.

After verifying the homogeneity between 
residual variances of each experiment, data were 
subject to analysis of variance, and the contrast 
between variable seeding rate (populations of 

311,000; 360,000; and 422,000 plants ha-1) and fixed 
seeding rate (360,000 plants ha-1) was estimated. 
Subsequently, the principal components analysis 
(PCA) was performed in order to determine the 
trend of the variability of the variables, using 
the Rbio software (Bhering 2017). The method 
allows identifying the main spatial patterns 
by considering simultaneously all variables. 
The PCA is a multivariate covariance modeling 
technique that linearly transforms an original 
set of variables, initially correlated to each other, 
into a smaller set of uncorrelated variables 
that contains most of the information from the 
original set. This technique is associated with 
the idea of ​​reducing data volume, with the 
lowest possible information loss. The principal 
components have important properties, i.e., 
each principal component is a combination 
(Hongyu et al. 2016).

The study of the autocorrelation for 
attributes that showed spatial dependency 
structure was made using Moran´s bivariate 
(Ixy) index analyses (Anselin et al. 2002, Taylor & 
Bates 2013), via ArcGIS without interpolation. The 
variables were the same that showed straight 
correlation with yield by the PCA analyses. 
Interpolation procedures increase the amount 
of autocorrelation in the data and is statistically 
flawed. 

IXY=

∑
i=1

n

∑
j=1

n

ui z j wij

s0√su2 sz2

7

	 (2)

where: n is the number of points; ui and zj are 
the standardized values of the variables X and Y, 
respectively; wj is the element of the normalized 
neighborhood matrix, corresponding to the 
spatial weights 0 and 1, being 0 for the areas 
i and j that do not border each other and 1 for 
the areas  and  that border each other; s0 is 
the sum of the elements wi of the symmetric 
matrix of spatial weights; s2

u and s2
z correspond 
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respectively to the variances of variables X and 
Y.

The relative deviation coefficient (RDC) 
expresses the dissimilarity between two maps in 
the module (Coelho et al. 2009). The calculation 
was performed by Equation 3. All values of the 
variables were converted to percentual values, 
in order to compare their different units. The 
grain yield map was considered the reference 
(standard) for comparison with the other maps. 

RDC=

∑
i=1

n

|Pij−PirefPiref |∗100
n

8

	 (3)

where: n is the number of points; Pij is the value 
of the variable at the specific point sample; Piref 
is the value of the reference variable at the same 
point sample. 

RESULTS AND DISCUSSION
Geostatistical analyses
The geostatistical analysis was performed 
for the most correlated variables with grain 
yield. Table II shows the parameters and the 

semivariograms models adjusted to the selected 
soybean phenology.

The exponential model was adjusted for 
all variables, according to the cross-validation, 
except for the variables ECa and RP at 0.0-
0.2 m, which presented the best fit of the 
spherical model. All variables presented spatial 
dependence (SD). The NDVI at 50 and 66 DAE; the 
ECa at 0.0-0.2 and 0.4-0.6 m depth; and the RP 
at 0.2-0.4 m depth presented moderate spatial 
dependence (from 25% to 75%). The variables 
NDVI at 92 DAE, ECa at 0.2-0.4 m depth, RP at 0.0-
0.2 and 0.4-0.6 m depths, and yield had strong 
SD (> 75%). The semivariogram must present SD, 
where the data can be interpolated by ordinary 
kriging (Cambardella et al. 1994).

Among the critical parameters in the 
semivariogram study, the range is the most 
relevant for revealing the limit distance of the 
spatial dependence, i.e., the maximum distance 
at which a variable is spatially correlated. The 
mapped range ensures that all neighbors (within 
a radius) have spatial continuity and be used to 
estimate values ​​at any position between them 
(Machado et al. 2007). The lowest range values ​​
were 12.25 and 21.27 m, for the variables NDVI (at 

Table II. Parameters of the semivariograms adjusted for the phenological variables and the soybean vegetation 
index.

Model
Nugget 
Effect      
(Co)

Sill  (Co+C) Range (m) SD r

NDVI 50 DAE Exponential 0.0012 0.0018 35.28 0.35 0.67
NDVI 66 DAE Exponential 0.0004 0.0006 22.04 0.36 0.43
NDVI 92 DAE Exponential 0.0005 0.0026 12.25 0.81 0.85

ECa 0.0-0.2 m Spherical 0.4382 1.5111 64.70 0.71 0.87
ECa 0.2-0.4 m Exponential 0.0000 3.8100 21.27 1.00 0.46
ECa 0.4-0.6 m Exponential 0.3574 1.0212 24.91 0.65 0.57
RP 0.0-0.2 m Spherical 0.0000 5.2901 53.31 1.00 0.53
RP 0.2-0.4 m Exponential 1.3984 3.6800 68.29 0.62 0.95
RP 0.4-0.6 m Exponential 0.0000 1.9228 49.97 1.00 0.47

Yield Exponential 0.0000 3.8105 24.91 1.00 0.45
ECa: Soil Apparent electrical conductivity; RP: soil mechanical resistance to penetration; SD: Spatial dependence [1-(C/Co+C)]; r: 
Cross-validation regression coefficient.
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92 DAE) and ECa (at 0.2-0.4 m depth), respectively.  
The highest ranges, 68.29 m, and 64.70 m, were 
recorded for the variables RP (at 0.2-0.4 m depth) 
and ECa (at 0.0-0.2 m depth), respectively. This 
study revealed a low magnitude of the nugget 
effect (Co), which represents the unexplained 
variance, or the random variance, usually caused 
by measurement errors or property variations 
that cannot be detected in the sampling scale.

Researchers state that when the 
semivariance is constant at a certain level; 
regardless of the increase in distance, the model 
has a pure nugget effect (Mendes et al. 2008). 
These results suggest that besides the random 

distribution, samples are independent of the 
classical statistical methods and dependent on 
the distance that separates the sampling points 
(Motomiya et al. 2012).

Contrasts between variable seeding rate and 
fixed seeding rate
Table III presents the contrasts between the 
results for the variable seeding rate and fixed 
seeding rate for the NDVI evaluated at different 
days after emergence. The contrast at 92 DAE 
revealed significance, indicating the difference 
between the management of the different seed 
populations for this variable. This result can be 

Table III. F calculated values for NDVI, soil apparent electrical conductivity (ECa) and soil mechanical resistance to 
penetration (RP) evaluated at different depths (m), plant height (PH) evaluated at different days after emergence 
(DAE), 100-grain weight (100GW), and grain yield (GY)  evaluated at different days after emergence of soybean 
cultivated under variable seeding rate and fixed seeding rate.

Variable

F calculated values
Overall 
mean CV (%)

Fixed seeding 
rate (FSD)

Variable seeding 
rate (VSR)

FSR vs. 
VSR

NDVI

50 DAE 1.84ns 1.24ns 0.18ns 0.89 1.39

66 DAE 0.38ns 0.05ns 0.29ns 0.89 1.59

92 DAE 0.95ns 0.95ns 5.71* 0.70 4.19

ECa (mS m-1)

0.0-0.2 m 2.46ns 2.55ns 37.28* 5.48 4.10

0.2-0.4 m 9.36ns 3.11ns 10.25* 4.11 7.11

0.4-0.6 m 8.18ns 0.71ns 2.73ns 3.25 12.72

RP (kPa)

0.0-0.2 m 0.82ns 0.10ns 2.85ns 3040.24 12.20

0.2-0.4 m 0.80ns 2.09ns 20.78* 2631.97 7.45

0.4-0.6 m 1.81ns 4.55ns 27.91* 1851.65 7.82

PH (m)

46 DAE 2.24ns 0.13ns 2.22ns 0.64 5.79

50 DAE 0.04ns 0.41ns 0.29ns 0.80 8.73

66 DAE 4.14ns 5.21ns 1.25ns 0.83 6.66

92 DAE 0.30ns 0.23ns 0.36ns 0.88 4.68

100GW (g) 2.21ns 3.51ns 1.18ns 15.24 2.72

GY (kg ha-1) 2.32ns 1.71ns 0.94ns 3941.34 13.56
ns and *: not significant and significant at 5% probability by the F test, respectively; CV: coefficient of variation.
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explained by the fact that, at this stage, plants 
already present uniform size without plant 
density variation, limiting the perception about 
changes in the NDVI (Mercante et al. 2009, Groff 
et al. 2013). For this reason, significant contrasts 
were not detected at 50 DAE and 66 DAE.

NDVI increased gradually from 50 to 66 DAE 
(Fig. 3). However, this VI decreased by 92 DAE. 
This event happened because the dry matter 
increment rate in soybean plants increases 
gradually during the vegetative development 
stages until the R1 stage. Around the R2 stage, 
the daily rate of dry matter accumulation is 
constant, but a gradual decrease occurs during 
the grain filling stage (shortly after the R6 stage). 
Dry matter accumulation ends after the R6.5 
stage (Ritchie 2000).

The significance of ECa in the soil surface 
layer (Table III) can be associated to the organic 
matter accumulation, which is restricted to the 
surface layers, influencing the soil physical, 
chemical, and biological conditions (Araújo et 
al. 2016). The organic matter accumulation in 
the no-tillage system increases soil CEC (Ciotta 
et al. 2003), which is highly related to the soil 
apparent electrical conductivity (Araújo et al. 
2016). Although the VSR plots showed lower 
ECa, indicating lower potential fertility, and 
presented greater compaction in depth, the 

NDVI indices at 50 and 66 DAE were equal, i.e., 
they agreed with the plant height. This result 
reflected in the grain yield; with a lower ECa and 
higher RP, the yield value was the same, showing 
that the variation in the seed population 
provided similar grain yield. This phenomenon 
shows that management application zones were 
well established and precision agriculture was 
similar to FSR.

Soil mechanical resistance to penetration 
and depth are directly proportional since the RP 
increased with the increase in the depth (Table 
III). The less compacted surface layer is explained 
by the non-compaction in the furrow caused by 
fertilizer machines, leading to non-compaction 
between depths of 0.08 and 0.12 m, and also 
by the seeder machine (Baio et al. 2017). The 
degree of soil compaction can be expressed by 
the measurement of soil mechanical resistance 
to penetration since its quantification indicates 
the growth and development dynamics of the 
root system (Silveira et al. 2010).

The variables related to plant height (PH) 
evaluated at different development stages 
(100-grain weight [100GW] and grain yield [GY]) 
presented no significant contrast when cultivated 
under variable and fixed seeding rates (Table III). 
Taller plants were expected at higher population 
density due to the possible etiolation caused 

Figure 3. Spatial distribution of NDVI with five classes, according to the readings performed at 50 (a), 66 (b), and 92 
DAE (c).
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by shading. This fact is because the increase 
in seeding density increases the intraspecific 
competition for light (Mauad 2010). However, 
this behavior was not verified for plant height 
evaluated at different phenological stages (Table 
III) and was not significant for any of the plant 
populations (311, 360, or 422 thousand plants 
per hectare). This result was also observed in a 
similar study (Monteiro et al. 2015).

These events indicate that the differences 
between the different seeding populations 
influenced the agronomic behavior of the 
soybean crop, which was possibly due to 
the small variation in the plant population. 
Moreover, the number of pods per plant, which 
varies according to population increase or 
reduction, is a plant production component that 
contributes to higher tolerance to population 
variation (Peixoto et al. 2000).

Principal component analysis (PCA)
ECa at 0-0.2 m depth and NDVI at 92 DAE 
presented the highest factorial load in the first 
principal component and are directly correlated 
to each other and to yield (Fig. 4), contributing 
with most of the total variability observed. This 
result demonstrates that the management 
application zones to soybean seed rate were 
well defined based on the ECa at that given 
depth. The inverse occurred with soil mechanical 
resistance to penetration at the three depths 
evaluated (0-0.2, 0.2-0.4, and 0.4-0.6 m) and 
soybean yield. 

Several factors can contribute to the 
explanation of the yield variation correlated to 
the ECa. The soil apparent electrical conductivity 
can be attributed to the different clay contents 
in each area (Molin & Rabello 2011). Clay is more 
efficient in retaining water when compared with 
silt and sand and is one of the determining 
factors in the ability of the soil to conduct electric 
current. However, other factors also influence 

soil ECa, such as salinity, water content, texture, 
and some chemical properties of agricultural 
interest (e.g., cation exchange capacity [CEC]) 
(Molin & Rabello 2011). 

The points sample sites 22, 28, 30, and 32 
were closer to the NDVI at 92 DAE and ECa at 0.0-
0.2 m depth, being very close to the yield vector. 
In these sites, seed management was carried 
out at a variable rate, i.e., precision agriculture 
was applied. The corresponding values of these 
sites were the seed rate of 360 and 311 thousand 
seeds per ha-1. Regarding yield, this variation 
was not much different since the soybean crop 
can withstand massive population reductions 
without significant yield losses. The difference 
between soybean populations does not interfere 
with the physiological quality, size, and seeds 
mass (Vazquez et al. 2008).

In experiments with precision agriculture 
techniques are more difficult to control 
experimental field factors that can affect the 
results. Several times, experimental field results 
are influenced by all variables together, making 
it difficult to be interpreted. PCA can help with 
this experimental field situation. In this study, 
the difference in the seed population was 
influenced by the ECa at 0-0.2 m and promoted 
higher values of NDVI values at 92 DAE (Figure 5). 

Map similarities between significative 
variables and yield
Table IV presents the spatial autocorrelation 
(Moran´s index) and similarities between maps 
by the RDC to the variables yield, ECa, RP, and 
NDVI at 50, 66, and 92 DAE. Moran´s index 
showed that all analyzed variables presented 
spatial autocorrelation defined by the clustered 
zones on their maps, corroborating to the 
geostatistical analyses. The yield map presented 
the higher index (0.99), showing that there is 
a straight positive correlation between the 
values of a point and its neighbors (original 
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samples). Significant spatial autocorrelation 
is generally higher than 0.3 (Jung et al. 2006), 
but all measured variables presented statistical 
significance level (p-value < 0.01). Thus, this is 
possible to confirm that the spatial variability of 
the measured variables was not random. 

The smallest difference between two maps 
(presenting the higher correlation) was measured 
between NDVI at 50 and 66 DAE (1.0 % - Table IV). 
Small difference between subsequent VI maps 
is expected, mainly at the beginning of the crop 
cycle. The correlation between yield and ECa 
0-0.2 m maps presented the smallest RDC index 
when comparing yield, showing only 40% of 
the difference between their relative variability 
values. This result corroborates with previous 
PCA analyses, presenting the same trend. There 
is no RDC value considered as optimum, and 
the choice of an acceptable RDC percentage 
value depends on the degree of accuracy 
desired by the user. Based on that, an RDC of 
15% is considered a suitable value for guiding 
the interpretation of the results (Martins et al. 
2018). The higher RDC index (or higher relative 
variability difference) was observed between 
yield and NDVI at 66 DAE maps. 

When analyzing VI maps, NDVI at 92 DAE 
presented the highest correlation that influenced 
yield (Table IV). This fact may have occurred due 
to the difference in plant mass reflecting on the 
NDVI vegetation index in this period. Around R2, 
the daily dry matter accumulation rate by the 
plant is constant. Stages from R1 to R6 describe 
better the development of the plant. Plant mass 
accumulation depends on nutrients assimilation 
by the plants over their cycle, which increases 
until the final production stage and decreases 
after grain filling, being responsible for the 
soybean yield (Ritchie 2000).

Even with the negative influence of compaction 
at 0.4-0.6 m depth, the yield was satisfactory, with 
a mean of 3,941.34 kg ha-1. Considering that ideal 
climatic conditions might have minimized the 
effects of soil with a compaction trend, the crop’s 
root system might have obtained adequate water 
and nutrients at the non-compacted soil layer, 
which provided good yields even at locations 
with compacted subsurface layers (Drescher et 
al. 2012). 

Figure 4. Principal component 
analysis applied to the different 
sample sites evaluated under 
variable seeding rate and fixed 
seeding rate.
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CONCLUSIONS

ECa maps can be used to decide the seed 
population of the soybean crop, applying 
precision agriculture techniques. The decision 
strategy of increasing 20% of the seed soybean 
population on the smaller ECa map zones, and 
decreasing 20% seed population on higher ECa 
zones was effective and resulted in similar grain 
yield, even with the negative pressure of the 
high RP values in some zones. 

The soybean yield map variability was 
influenced by ECa 0-0.2 m, by NDVI at 92 DAE 
and by RP 0.4-0.6 m soil layer. 

Based on these findings, Brazilian Cerrado 
farmers will be able to use variable rate sowing 
based on ECa maps. This technique may 
contribute to increased soybean grain yield.
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Table IV. Spatial autocorrelation (Moran´s index) and similarities between maps by the relative deviation 
coefficient (RDC %) to the variables yield, apparent electrical conductivity (ECa), soil resistance to the penetration 
(RP) and NDVI at 50, 66 and 92 DAE (ND).

Moran´s index Relative deviation coefficient (RDC %)

index z-score p-value class Yield ECa RP ND 50 ND 66 ND 92

Yield 0.9874 11.1 <0.0001 clustered 0.0 4.0 7.1 7.9 8.9 5.5

ECa 0.9518 10.7 <0.0001 clustered 4.0 0.0 6.2 6.4 6.8 4.7

RP 0.9376 10.6 <0.0001 clustered 7.1 6.2 0.0 5.0 5.4 5.4

ND 50 0.2705 3.1 <0.0016 clustered 7.9 6.4 5.0 0.0 1.0 7.8

ND 66 0.2317 2.8 <0.0052 clustered 8.9 6.8 5.4 1.0 0.0 8.3

ND 92 0.5388 6.1 <0.0001 clustered 5.5 4.7 5.4 7.8 8.3 0.0

Figure 5. Spatial variability of grain yield (a), NDVI at 66 DAE (b), and soil mechanical resistance to penetration (c) 
measured at 0.4-0.6 m soil layer.
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