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ABSTRACT

The present paper is concerned with the thermodynamic theory of the normal shock in compressible fluid

flow in pipes, in the lights of the pioneering works of Lord Rayleigh and G. Fanno. The theory of normal

shock in pipes is currently presented in terms of the Rayleigh and Fanno curves, which are shown to cross

each other in two points, one corresponding to a subsonic flow and the other corresponding to a supersonic

flow. It is proposed in this paper a novel differential identity, which relates the energy flux density, the

linear momentum flux density, and the entropy, for constant mass flow density. The identity so obtained

is used to establish a theorem, which shows that Rayleigh and Fanno curves become tangent to each other

at a single sonic point. At the sonic point the entropy reaches a maximum, either as a function of the

pressure and the energy density flux or as a function of the pressure and the linear momentum density flux.

A Second Law analysis is also presented, which is fully independent of the Second Law analysis based on

the Rankine-Hugoniot adiabatic carried out by Landau and Lifshitz (1959).

Key words: Normal shocks in pipes, compressible fluid flow, gas dynamics, Second Law analysis.

INTRODUCTION

The study of the shock theory in fluid mechanics started with the pioneering work of (Rayleigh, 1899-1920)

who discovered that in a steady-state compressible flow of an ideal gas in a straight pipe under the condition

of constant linear momentum, defined by p + ρV 2, there occurs a normal shock, whenever the fluid speed

reaches the sound speed. Rayleigh described the geometric loci of constant linear momentum in the Mollier

diagram as a curve that became known as the Rayleigh curve. Fanno (Shapiro 1953), in his doctor thesis,

which was submitted to the Real Academy of Engineering of Genova in 1930, proposed a new approach to

predict the normal shock in pipes, other than the one due to Rayleigh1 . In his approach he considered the

gas flow under constant energy density flux defined by h+V 2/2. In both works, it is assumed that the mass

E-mail: sergio.colle@ufsc.br
1His thesis was approved. However, because he was denounced as a jew, his PhD title was refused. He never recovered the PhD,

until his death in 1962.
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flow density defined by j = ρV is constant. The geometric loci of states of constant values of h + V 2/2

as defined by Fanno became known as the Fanno curve. It is well known in gas dynamics that Rayleigh

and Fanno curves can cross each other in two distinct points, one of which where the flow is subsonic and

the other one where the flow is supersonic. It is hard to find in scientific journals any novelty concerning

the theory on the normal shock in pipes, since there is a considerable number of papers and books devoted

to the topic of gas dynamics, covering normal and oblique shock in compressible fluid flow, as well as its

application to the design of nozzle, turbine blades and supersonic aircraft wings. The book of Anderson

(2003) and the e-book of Bar-Meir (2013) report the state of the art of gas dynamics theory and applications

to aerodynamics. However, it seems that few works have been published concerning the thermodynamic

analysis of the normal shock in pipes. A remarkable analysis is presented in Landau and Lifshitz (1959)

where the authors carried out a thermodynamic analysis focusing the normal shock in pipes based on the

Hugoniot-Rankine adiabatic. In their work, based on the Second Law of Thermodynamics, they set down

thermodynamic inequalities for both, weak and strong normal shocks. They also carried out a thermody-

namic analysis of the Fanno flow, from which the Fanno curve is shaped in the entropy-pressure diagram.

In spite the fact that the theory beneath the normal shock is well established, the author of the present paper

carried out a thermodynamic analysis for the Rayleigh flow, from which, a theoretical duality for the Fanno

flow and the Rayleigh flow is shown to exist. It is shown here that there exist a single state in the entropy -

pressure diagram, at which the Fanno and Rayleigh curves become tangent. The existence of the tangency

point enables one to establish a symmetric thermodynamic formalism which provides the basis to obtain a

Second Law inequality. This inequality is expressed in terms of the entropy, either as a function of the pres-

sure and the linear momentum density flux jm = j(p+ ρV 2) or as a function of the pressure and the energy

density flux je = j(h+ V 2/2), where j = ρV is the mass flow density in the pipe, which is assumed to be

constant. The entropy inequality enables one to derive two independent inequalities, which are expressed

in terms of the fluid specific heats, the isothermal compressibility coefficient, the adiabatic compressibility

coefficient, and the thermal expansion coefficient. It is also shown that the entropy discontinuity arising

from a weak normal shock implies the entropy discontinuity for a strong normal shock.

FANNO FLOW

In Landau and Lifshitz (1959), the authors set down thermodynamic propriety relationship for sonic and

supersonic states, by assuming that the mass flow density j = ρV and the energy flux density h+V 2/2 are

constant along the pipe axis. However, similar conditions can be found by assuming both j and the energy

flux density je = j(h+ V 2/2) constant. Defining x as the axial coordinate of a pipe and V as the average

velocity over the cross section of the pipe, it follows,

(
∂je
∂x

)
je,j

= j
∂

∂x

(
h+

V 2

2

)
je,j

= j

[(
∂h

∂x

)
je,j

+ j2v

(
∂v

∂x

)
je,j

]
= 0
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where V = jv and v is the fluid specific volume. Furthermore, dh = Tds+ vdp, and therefore(
∂h

∂x

)
je,j

= T

(
∂s

∂x

)
je,j

+ v

(
∂s

∂x

)
je,j

. On the other hand,

(
∂v

∂x

)
je,j

=

(
∂v

∂p

)
s

(
∂p

∂x

)
je,j

+(
∂v

∂s

)
p

(
∂s

∂x

)
je,j

. These identities lead to

[
T + j2v

(
∂v

∂s

)
p

](
∂s

∂x

)
je,j

+ v

[
1 + j2

(
∂v

∂p

)
s

](
∂p

∂x

)
je,j

= 0 (1)

It is well known from thermodynamics that,

(
∂v

∂s

)
p

=
Tα

cp
. For gases this derivative is positive, since

the thermal expansion coefficient α =
1

v

(
∂v

∂T

)
p

is also positive. Moreover,

j2
(
∂v

∂p

)
s

=
V 2

v2

(
∂v

∂p

)
s

= V 2

/[
v2

(
∂p

∂v

)
s

]
= −V 2

c2

where c2 =

(
∂p

∂ρ

)
s

= −v2
(
∂p

∂v

)
s

is the sound speed square for the fluid considered. The above identity

can be expressed as follows,

1 + j2
(
∂v

∂p

)
s

= 1− V 2

c2
(2)

Eq. (1) gives the derivative of the pressure as follows,(
∂p

∂x

)
je,j

= −

[
T + j2v

(
∂v

∂s

)
p

](
∂s

∂x

)
je,j

/
v

[
1 + j2

(
∂v

∂p

)
s

]
(3)

Since the fluid flow is irreversible one has,

(
∂s

∂x

)
je,j

> 0. By considering that the denominator of the

above equation does not vanish for V 6= c, Eq. (2) and Eq. (3) imply that

(
∂p

∂x

)
je,j

< 0 for V < c while

for V > c,

(
∂p

∂x

)
je,j

> 0. The conclusion is that for a subsonic flow the pressure decreases downstream

while for a supersonic flow the pressure increases downstream. Eq. (1) enables one to write the following

identity, (
∂s

∂p

)
je,j

= −v

[
1 + j2

(
∂v

∂p

)
s

]/[
T + j2v

(
∂v

∂s

)
p

]
(4)

From Eq. (2) the above identity can be expressed as follows,(
∂s

∂p

)
je,j

= −v

(
1− V 2

c2

)/[
T + j2v

(
∂v

∂s

)
p

]
(5)

Since the denominator of this equation is positive, one can conclude that for subsonic flow the entropy

derivative is negative, while for supersonic flow it is positive. For V = c the above derivative clearly
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vanishes, which shows that the entropy reaches an extremum. These results allow one to conclude that the

geometric loci of states of constant je in the s−p diagram display a curve along which the entropy increases

up to the point where the flow is sonic, and decreases thereafter. By using analogous procedure of Landau

and Lifshitz, the following identity can be obtained,(
∂2s

∂p2

)
je,j

∣∣∣∣∣
V=c

= −j2v

(
∂2v

∂p2

)
s

/[
T + j2v

(
∂v

∂s

)
p

]
(6)

The second derivative of the volume in the above equation can be reduced with the help of a Maxwell

relation derived from the Gibbs thermodynamic potential, to obtain the following identity,(
∂2v

∂p2

)
s

=
∂

∂p

(
∂v

∂p

)
s

=
∂

∂p
(−ksv)s, where ks is the adiabatic compressibility coefficient. Thus the

following identity holds, (
∂2v

∂p2

)
s

= v

[
k2s −

(
∂ks
∂T

)
p

αv

cpT
−
(
∂ks
∂p

)
T

]
(7)

whereα is the thermal expansion coefficient. For a perfect gas ks = 1/(kp)where k = cpo/cvo is the Poisson

coefficient, which is known to be constant. Therefore the derivative of ks respective to the temperature

vanishes. Thus Eq. (7) is reduced to the following expression,(
∂2v

∂p2

)
s

= v

(
ks

2 +
1

kp2

)
> 0 (8)

As remarked in (Landau and Lifshitz 1959), for most real gases of practical interest this derivative is

known to be positive. Thus the second derivative given by Eq. (6) is negative at the point for which V = c.

Therefore, the sonic state is the geometric locus of a maximum for the entropy as a function of p, under the

condition of constant energy flux density. The above results allow one to justify the Fanno curve shape in

the s− p diagram as shown in Fig. 1 reported in the above mentioned reference. The identities given by Eq.

(1) to Eq. (6) are shown here to be equivalent to the respective identities reported in the above mentioned

reference.

RAYLEIGH FLOW

The theory presented in the previous section, can be extended to the Rayleigh flow by assuming both, j and

the linear momentum density jm = j(p+ ρV 2) constant. By replacing ρV 2 = j2v into the last equation it

follows, d(p+ ρV 2) = d(p+ j2v) = djm. Thus the following identity holds,

dp+ j2dv = 0 (9)

The above identity leads to the identity,

(
∂p

∂x

)
jm,j

+ j2
(
∂v

∂x

)
jm,j

= 0. By replacing the volume

derivative by the identity given by,

(
∂v

∂x

)
jm,j

=

(
∂v

∂s

)
p

(
∂s

∂x

)
jm,j

+

(
∂v

∂p

)
s

(
∂p

∂x

)
jm,j

the following

identity is found, (
∂p

∂x

)
jm,j

= −j2
(
∂v

∂s

)
p

(
∂s

∂x

)
jm,j

/[
1 + j2

(
∂v

∂p

)
s

]
(10)
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Figure 1 - Fanno curves in the entropy – pressure diagram.

From the above equation and Eq. (2), one can see that

(
∂p

∂x

)
jm,j

is negative whenever V < c and pos-

itive whenever V > c. Therefore, the pressure decreases downstream whenever the fluid follow is subsonic

and it increases downstream whenever the fluid flow is supersonic. Equation (10) enables one to write the

following, (
∂s

∂p

)
jm,j

= −
[
1 + j2

(
∂v

∂p

)
s

]/[
j2

(
∂v

∂s

)
p

]
(11)

As has been remarked earlier, the derivative

(
∂v

∂s

)
p

is positive. It follows from the above equation and

Eq. (2) that

(
∂s

∂p

)
jm,j

is positive whenever V > c and negative whenever V < c.

For V = c Eq. (2) implies that

(
∂s

∂p

)
jm,j

= 0. Thus, the entropy as a function of p and jm reaches an

extremum at the state of sonic flow on the curve of jm constant. Analogous proof as given by Landau and

Lifshitz is reported in Colle (2015), to obtain the following identity,(
∂2s

∂p2

)
jm,j

∣∣∣∣∣
V=c

= −
(
∂2v

∂p2

)
s

/(
∂v

∂s

)
p

(12)

As remarked earlier, the derivative

(
∂2v

∂p2

)
s

is positive. From the above identity it follows that(
∂2s

∂p2

)
jm,j

< 0. Thus, the entropy reaches its maximum as a function of p under the condition of

constant linear momentum density flux. The above results indicate that the Rayleigh curve shape is similar

to the Fanno curve shape in the s− p diagram of Fig. 1.
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MAXIMUM ENTROPY THEOREM

In order to show the existence of a thermodynamic symmetry between Rayleigh flow and Fanno flow, in

terms of the entropy either as a function of the pressure and je or as a function of the pressure and jm, under

the condition of constant mass flow density, the following Lemma is proposed and proved.

Lemma: If a compressible steady-state axial flow of a gas in a pipe of constant cross section is adiabatic,

then the entropy variation along the pipe axis is due to the variation of the linear momentum density flux

along the pipe axis. Conversely, if the linear momentum density flux is constant along the pipe axis, then the

entropy variation along the pipe axis is due to the heat flux at the boundary of the pipe cross section.

Proof: By assuming j constant, we can write,

dje|j − vdjm|j = jd (h+ V 2/2)
∣∣
j
− jvd(p+ ρV 2)|j

By the definitions of je and jm, the following differential expressions are obtained,

d je|j = d (h+ j2v2/2)
∣∣
j
= dh+ j2vdv, and djm|j = d(p+ j2v)|j = dp+ j2dv

From these identities it follows,

d je|j − vd djm|j = j(dh+ j2vdv)− jv(dp+ j2dv) = j(dh− vdp) = jTds

Thus the following thermodynamic identity holds,

dje|j − vdjm|j = jTds (13)

From this identity, the following identities hold(
∂je
∂x

)
j

− v

(
∂jm
∂x

)
j

= jT

(
∂s

∂x

)
j

(14)

The above equation implies the following identities,(
∂jm
∂x

)
je,j

= −jT

(
∂s

∂x

)
je,j

/v (15)(
∂je
∂x

)
jm,j

= jT

(
∂s

∂x

)
jm,j

(16)

The first part of the lemma follows from Eq. (15). The second part of the lemma follows from Eq. (16),

since jm is constant while

(
∂s

∂x

)
jm,j

is due to the axial variation of je, which by its turn is proportional to

the heat flux variation at the pipe cross section boundary. In other words, quasi-static heat income is required

in order to maintain jm constant along the pipe axis downstream. However, it remains to be shown that jm
decreases downstream. By the way, for the present case the First Law of thermodynamics, can be expressed

by the following equation,

d

dx

[
ρV

(
h+

V 2

2

)]
j

=

(
∂je
∂x

)
j

= − 1

A

∮
Γ
q̂ · n̂ldl (17)
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The Second Law can be expressed as follows,

jT

(
∂s

∂x

)
j

= − 1

A

∮
Γ
q̂ · n̂ldl +

1

A

∮
A

(
φ̇− q̂ · ∇T

T

)
dA (18)

where A is the pipe cross section area, q̂ is the heat flux vector, n̂l is the unit vector normal to the cross

section boundary curve Γ, and φ̇ is the fluid power dissipation per unit volume due to friction. From Eq.

(14), Eq. (17), and Eq. (18) the following identity is obtained,

−v

(
∂jm
∂x

)
j

=
1

A

∫
A

(
φ̇− q̂ · ∇T

T

)
dA (19)

Since from thermodynamics q̂ · ∇T is known to be non-positive, the above equation implies that the

linear momentum density decreases with x downstream.

Since Eq. (19) holds regardless to the fact that the flow is adiabatic or not, for an adiabatic flow one

has,

−v

(
∂jm
∂x

)
j

=
1

A

∫
A

(
φ̇− q̂ · ∇T

T

)
dA = jT

(
∂s

∂x

)
je,j

(20)

The above identity is equivalent to identity (15). In Eq. (19), q̂ · ∇T = −kc

(
dT

dx

)2

, where kc is the

fluid thermal conductivity. It is remarkable that the integral of Eq. (19) vanishes if and only if the dissipation

term vanishes in the case the flow is assumed to be isothermal. On the other hand, for high flow speed, the

axial temperature gradient in both, Eq. (18) and Eq. (19), becomes much smaller than the viscous dissipation

term. By disregarding the viscous dissipation term in favor of the heat flux term in Eq. (18), Eq. (19) implies

that jm becomes constant. Thus Eq. (17) and Eq. (18) enable one to write the following identity,(
∂je
∂x

)
jm,j

= − 1

A

∮
Γ
q̂ · n̂ldl = jT

(
∂s

∂x

)
jm,j

(21)

The above identity is equivalent to identity (16). These equations show that the axial variation of both,

the energy density flux and the entropy arise from the heat flux effect at the boundary, as stated in the second

part of the Lemma.

Since the pressure is a function of x, the following identity also holds,(
∂je
∂p

)
j

− v

(
∂jm
∂p

)
j

= jT

(
∂s

∂p

)
j

(22)

The above equation implies the following identities,(
∂jm
∂p

)
je,j

= −jT

v

∂s

∂p
(p, je, j) (23)(

∂je
∂p

)
jm,j

= jT
∂s

∂p
(p, jm, j) (24)
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It is remarkable that Eq. (13) suggests that the parameters je and jm can be regarded as independent

thermodynamic variables of the entropy function. Furthermore, the differential form of Eq. (13) enables one

to write the following identities, (
∂s

∂je

)
jm,j

=
1

jT
(25)(

∂s

∂jm

)
je,j

= − v

jT
(26)

Since T is always positive, Eq. (25) implies that the entropy increases with the increase of the energy

density flux, under constant linear momentum density flux. Eq. (26), by its turn shows that the entropy

decreases with the increase of the linear momentum density flux, under constant energy density flux.

The proved lemma enables one to prove the following theorem:

Theorem: ”In a compressible steady-state fluid flow of a gas in a pipe of constant cross section area,

for a given energy flux density, there exist a minimum linear momentum density flux below which a normal

shock cannot occur. Conversely, for a given linear momentum density flux, there exist a maximum energy

density flux above which a normal shock cannot occur”.

Proof: The proof of this theorem follows from the fact that at pointM of the state for which V = c the

following identity holds

∂s

∂p
(p, je, j) = j2v

(
∂v

∂s

)
p

∂s

∂p
(p, jm, j)

/[
T + j2v

(
∂v

∂s

)
p

]
(27)

This identity can be proved with the help of the following identity derived from calculus,

∂s

∂p
(p, jm, j) =

∂s

∂p
(p, je, j) +

(
∂s

∂je

)
p,j

(
∂je
∂p

)
jm,j

(28)

The definition of je gives, (
∂je
∂je

)
p,j

= j

[(
∂h

∂je

)
p,j

+ j2v

(
∂v

∂je

)
p,j

]
= 1

where (
∂h

∂je

)
p,j

= T

(
∂s

∂je

)
p,j

and

(
∂v

∂je

)
p,j

=

(
∂v

∂s

)
p

(
∂s

∂je

)
p,j

From these three last identities it follows,(
∂s

∂je

)
p,j

= 1

/
j

[
T + j2v

(
∂v

∂s

)
p

]
(29)

Analogous proof can be used to obtain the following identity(
∂s

∂jm

)
p,j

= 1

/
j3

(
∂v

∂s

)
p

(30)
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The identity given by Eq. (27) is obtained by replacing in to Eq. (28), the derivative

(
∂je
∂p

)
jm,j

by its

expression of Eq. (24), and the derivative

(
∂s

∂je

)
p,j

by its expression given by Eq. (29). From Eq. (27)

one can see that the derivative
∂s

∂p
(p, je, j) vanishes if and only if

∂s

∂p
(p, jm, j) vanishes. Eq. (27) and the

results obtained in the previous sections, enable one to conclude that pointM is the point for which both, the

entropy expressed by s(p, je, j) and the entropy expressed by s(p, jm, j) reach an extremum. It remains to

be shown that at pointM , jm reaches a minimumwhile je reaches a maximum as functions of p for constant

j.

The second derivative of Eq. (22) leads to the following identity(
∂2je

∂p2

)
j

−
(
∂v

∂p

)
j

(
∂jm
∂p

)
j

− v

(
∂2jm

∂p2

)
j

= j

(
∂T

∂p

)
s

(
∂s

∂p

)
j

+ jT

(
∂2s

∂p2

)
j

(31)

For je constant the above equation is reduced to(
∂v

∂p

)
je,j

(
∂jm
∂p

)
je,j

+ v

(
∂2jm

∂p2

)
je,j

= −j

(
∂T

∂p

)
s

(
∂s

∂p

)
je,j

+ jT

(
∂2s

∂p2

)

At point M where V = c, Eq. (23) implies that

(
∂jm
∂p

)
je,j

vanishes, since

(
∂s

∂p

)
je,j

vanishes at the

point considered. From the above expression of the second derivative it follows the identity

v

(
∂2jm

∂p2

)
= −jT

(
∂2s

∂p2

)
je,j

Since the entropy as a function of p and je reaches a maximum for V = c, its second derivative with

respect to p is negative. Therefore the second derivative of the left hand side of the above equation becomes

positive. This shows thatM is a point of minimum of jm as a function of p and je for constant je.

For jm regarded as constant, Eq. (24) shows that at point M ,

(
∂je
∂p

)
jm,j

vanishes, since
∂s

∂p
(p, jm, j)

vanishes at the point considered, while Eq. (31) gives,(
∂2je

∂p2

)
jm,j

= j

(
∂T

∂p

)
s

(
∂s

∂p

)
jm,j

+ jT

(
∂s

∂p

)
jm,j

At the pointM the first derivative of the entropy vanishes and therefore one has,(
∂2je

∂p2

)
jm,j

= jT

(
∂2s

∂p2

)
jm,j

(32)

Since the entropy as a function of p and jm reaches a maximum for V = c, its second derivative is

negative and therefore the second derivative of the left hand side of the above equation becomes negative.

This shows that M is a point of maximum of je as a function of p and jm for constant jm. Figures 2a and

2b show pictures of the tangency point as well as the curves for which two intersecting points are possible,

according to the theorem. It should be noted in Fig. 2b that ∆je is negative.
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Figure 2 - (a) Possible states arising from the intersection of Rayleigh curves with a given Fanno curve. (b) Possible states arising

from the intersection of Fanno curves with a given Rayleigh curve.

The last step of the proof is to show that point M is a single tangency point of Fanno and Rayleigh

curves. By the way, Eq. (6) and Eq. (12) enables one to write the following inequality,

(
∂2s

∂p2

)
je,j

∣∣∣∣∣
V=c

>

(
∂2s

∂p2

)
jm,j

∣∣∣∣∣
V=c

On the other hand, in the neighborhood of the tangency point for which p = pe = pm, the Taylor

expansion of s(pe, je, j) gives, s(pe ±∆p, je, j) − smax(pe, je, j) =

(
∂2s

∂p2

)
je,j

(∆p)2

2
, while the Taylor

expansion of s(pm, jm, j) gives, s(pm ± ∆p, jm, j) − smax(pm, jm, j) =

(
∂2s

∂p2

)
jm,j

(∆p)2

2
. From the

above expressions it follows,

s(pm ±∆p, je, j)− s(pm ±∆p, jm, j) =

[(
∂2s

∂p2

)
je,j

−
(
∂2s

∂p2

)
jm,j

]
pm

(∆p)2

2
> 0 (33)

The above inequality enable on to conclude that the convexity of the curve respective to s(p, jm, j) (the

Rayleigh curve) is greater than the convexity of the curve respective to s(p, je, j) (the Fanno curve). From

Eq. (33) it can be seen that as ∆p vanishes, s(pm, jm, j) = s(pm, je,max, j) and

s(pm, je, j) = s(pm, jm,min, j), as shown in Fig. 2.

TEMPERATURE INEQUALITY

An useful identity to derive an inequality related to the Second Law of thermodynamics can be obtained by

casting Eq. (29) with the identity given by,(
∂T

∂je

)
p,j

=

(
∂T

∂s

)
p

(
∂s

∂je

)
p,j
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and the thermodynamic identity given by,

(
∂v

∂s

)
p

=
Tvα

cp
. The following identity is found,

(
∂T

∂je

)
p,j

=
1

j(cp + j2v2α)
(34)

This identity enables one to conclude that the temperature increases by increasing the energy density

flux, under constant pressure. Analogous proof with the help of Eq. (30) leads to the following identity(
∂T

∂jm

)
p,j

=
1

j3vα
(35)

This identity enables one to conclude that the temperature increases by increasing the linear momentum

density flux under constant pressure.

The temperature as a function of s and p gives, dT =

(
∂T

∂p

)
s

dp+

(
∂T

∂s

)
p

ds, where(
∂T

∂s

)
p

=
T

cp
and

(
∂T

∂p

)
s

=
αvT

cp
. Integrating the temperature differential between the states of (s1, p1)

and (s2, p2) it follows,

T2 − T1 =

∫ p2

p1

(
∂T

∂p

)
s1

dp+

∫ s2

s1

(
∂T

∂s

)
p2

ds (36)

The derivative identity respective to je former to Eq. (34) enables one to write,(
∂T

∂je

)
p,j

dje|p =
(
∂T

∂s

)
p

ds|p. Thus, the second term of Eq. (36) can be expressed by∫ je+∆je

je

(
∂T

∂je

)
p2,j

dje, for ∆je < 0. Eq. (34) implies that the derivative of T with respect to je is always

positive. From Eq. (36) one can conclude that T2 > T1 whenever p2 > p1. One can see from Eq. (34) and

Eq. (36) that state (2) can be reached from state (2”) by increasing the energy density flux under constant

pressure. The chosen integration path is shown in Figure 3.

Figure 3 - Integration path respective to Eq. (36).
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Eq. (36) implies that the temperature of state (2”) shown in Figure 3, which has the same entropy of

state (1), is greater than the temperature of the latter state. In other words, the inequality T2 > T1 holds

whenever p2 > p1, even if s2 = s1. Therefore the temperature inequality does not necessarily imply the

entropy inequality.

THE MOLLIER DIAGRAM

The thermodynamic equations expressed in terms of the independent variables je and jm can be used to

derive appropriate equations in order to express the entropy as a function of the enthalpy. Figure 4 illustrates

the Fanno and the Rayleigh curves sketched in the well known Mollier diagram.

Figure 4 - Fanno and Rayleigh curves in the Mollier diagram.

THE ENTROPY AS A FUNCTION OF h, je , AND j - FANNO CURVE

From calculus it follows (
∂s

∂h

)
je,j

=

(
∂s

∂p

)
je,j

/(
∂h

∂p

)
je,j

(37)

while from thermodynamics one has, (
∂h

∂p

)
je,j

= T

(
∂s

∂p

)
je,j

+ v (38)

By replacing the derivative of the right hand side of the former equation by its expression given by Eq.

(5), it follows, (
∂h

∂p

)
je,j

= Tv

(
V 2

c2
− 1

)/[
T + j2v

(
∂v

∂s

)
p

]
+ v

This derivative can also be expressed as follows(
∂h

∂p

)
je,j

= v

[
TV 2

c2
+ j2v

(
∂v

∂s

)
p

]/[
T + j2v

(
∂v

∂s

)
p

]
(39)
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As remarked earlier, for gases,

(
∂v

∂s

)
p

is known to be positive. This implies that both, the numerator

and the denominator of Eq. (39) are positive. Thus, the inverse derivative(
∂p

∂h

)
je,j

= 1

/(
∂h

∂p

)
je,j

becomes also positive. This identity implies that the pressure turns to be

a monotonically increasing function of h. Thus, one can write, s = s(p, je, j) = s(p(h, je, j), je, j) =

s(h, je, j), so that this function preserves the shape of the Fanno curve in the h− sMollier diagram.

As can be seen in Figure 4, point F is the state for which the entropy reaches a maximum as a function

of h for constant je. In fact, Eq. (37) shows that at point F , for which V = c, the derivative of the entropy

as a function of p for constant je vanishes. Thus, the derivative of the entropy as a function of the enthalpy

for constant je also vanishes.

THE ENTROPY AS A FUNCTION OF h, jm, AND j - RAYLEIGH CURVE

From calculus it follows (
∂s

∂h

)
jm,j

=

(
∂s

∂p

)
jm,j

/(
∂h

∂p

)
jm,j

(40)

while from thermodynamics one has

(
∂h

∂p

)
jm,j

= T

(
∂s

∂p

)
jm,j

+v, where

(
∂s

∂p

)
jm,j

is given by Eq. (11).

The inverse of the derivative given by Eq. (40) is given by the identity,(
∂h

∂s

)
jm,j

=

(
∂h

∂p

)
jm,j

/(
∂s

∂p

)
jm,j

(41)

The above identities and the identity given by Eq. (11) enables one to obtain the following identity,(
∂h

∂s

)
jm,j

= −T

[
αV 2 − cp

(
1− V 2

c2

)]/
cp

(
1− V 2

c2

)
(42)

For V different from c, the denominator of the above equation is non-vanishing. As can be verified,

the above derivative vanishes for V = VQ, the solution of the algebraic equation given by, αV
2 − cp(1 −

V 2/c2) = 0. This equation gives,

VQ/c =
√

cp/(cp + αc2) (43)

The pointQ shown in Fig. 4 represents the state for which the derivative given by Eq. (42) vanishes. For

the particular case of a perfect gas, it can be verified that Eq. (43) is reduced to the well known correlation,

VQ/c = 1/
√
k. By replacing cp obtained from Eq. (43) into Eq. (42), the following identity is found(

∂h

∂s

)
jm,j

= T

(
VQ

2

c2
− V

c2

)/(
VQ

2

c2

)(
1− V 2

c2

)
(44)

The inverse of the above derivative is expressed as follows(
∂s

∂h

)
jm,j

=

(
1− V 2

c2

)(
VQ

2

c2

)/[
T

(
VQ

2

c2
− V

c2

)]
(45)
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As shown by Eq. (43), VQ/c < 1. Therefore, for V = c Eq. (45) leads to

(
∂s

∂h

)
jm,j

= 0, which

is the necessary condition for point R shown in Fig. 4 to be a point of maximum. Equation (44), by its

turn shows that the derivative

(
∂h

∂s

)
jm,j

vanishes at the point Q shown in the same figure, which is the

necessary condition for this point to be a point of maximum. Equation (44) enables one to conclude that for

V < VQ and V < c, the derivative

(
∂h

∂s

)
jm,j

is positive, which means the enthalpy increases by increasing

the entropy. In other words, the enthalpy increases with the heat income and, therefore, the flow is heated.

For any point located between point Q and point R where V > VQ and V < c, the derivative

(
∂h

∂s

)
jm,j

becomes negative, which means the flow is cooled. For any point located at the inner branch of the Rayleigh

curve, V > c and V > VQ, and therefore the derivative

(
∂h

∂s

)
jm,j

becomes positive, which means the flow

is heated.

THE SECOND LAW INEQUALITY

The entropy change in the neighborhood of point M of maximum of the entropy, as shown in Fig. 2b,

can be expressed in terms of the independent variables p and je, along the curve of jm constant. Since the

first derivative

(
∂s

∂p

)
je,j

vanishes at point M , the Taylor expansion of the entropy up to the second order

derivatives evaluated at pointM , can be expressed as follows

∆s(p, je, j)|jm = (46)

=

(
∂s

∂je

)
p,j

∆je|jm +
1

2

(
∂2s

∂p2

)
je,j

(∆p)2 +

(
∂2s

∂p∂je

)
j

∆je |jm∆p+
1

2

(
∂2s

∂je
2

)
p,j

(∆je|jm)2

In the above equation ∆je|jm becomes constrained on the curve of jm constant. The identity given by

Eq. (13) leads to,∆je|jm = jT∆s(p, je, j)|jm . On the other hand, thought
(
∂s

∂p

)
jm,j

vanishes at pointM ,

the Taylor expansion of s(p, jm, j) in terms of p in the neighborhood of this point is reduced to the following

identity,

∆s(p, je, j)|jm =
1

2

(
∂2s

∂p2

)
jm,j

(∆p)2 (47)

The last two identities lead to, ∆je|jm = jT
1

2

(
∂2s

∂p2

)
jm,j

(∆p)2. Since the entropy reaches a maximum

at point M , its second derivative in this expression is negative and therefore ∆je|jm becomes negative, as

assumed earlier. Moreover∆s(p, je, j)|jm is equal to∆s(p, jm, j)|je , for both are equal to the length of the
segment AM shown in Fig. 2b. By replacing∆je|jm by its last expression and∆s(p, je, j)|jm given by Eq.

(47) into Eq. (46), the following algebraic equation of second degree in terms of ∆p is found,

A(∆p)2 +B∆p+ C = 0
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The coefficients A, B, and C evaluated at pointM are given as follows,

A = −j2T 2

8

(
∂2s

∂je
2

)
p,j

(
∂2s

∂p2

)2

jm,j

(48)

B = −jT

(
∂2s

∂je∂p

)(
∂2s

∂p2

)
jm,j

(49)

C =
1

2

[(
∂2s

∂p2

)
jm,j

−
(
∂2s

∂p2

)
je,j

]
− jT

2

(
∂s

∂je

)
p,j

(
∂2s

∂p2

)
jm,j

(50)

By taking the derivative of Eq. (29) with respect to je, by reducing the obtained equation with the help

of the identity,
∂

∂je

∣∣∣∣
p,j

=

(
∂s

∂je

)
p,j

∂

∂s

∣∣∣∣
p

, and by replacing the derivative

(
∂s

∂je

)
p,j

by its expression of

Eq. (29), the following identity is found(
∂2s

∂je
2

)
p,j

= −

[(
∂T

∂s

)
p

+ j2
(
∂v

∂s

)2

p

+ j2v

(
∂2v

∂s2

)
p

]/
j2

[
T + j2v

(
∂v

∂s

)
p

]3

(51)

The second derivative in the numerator of the above equation can be replaced by the identities,

∂

∂s

(
∂v

∂s

)
p

=
∂

∂T

(
∂v

∂s

)
p

(
∂T

∂s

)
p

=
∂

∂T

(
αTv

cp

)
p

T

cp

The term of the last equality can be expanded in the form(
∂2v

∂s2

)
p

=
Tv

cp2

{
α+ α2T + T

[(
∂α

∂T

)
p

− α

cp

(
∂cp
∂T

)
p

]}
(52)

Eq. (51) and Eq. (52) enable one to express Eq. (48) as follows

A = −

T 3

8cp

(
∂2s

∂p2

)2

jm,j

{
1 +

j2v2

cp

[
α+ T

(
∂α

∂T

)
p

]
+

j2v2Tα

cp

[
2α− 1

cp

(
∂cp
∂T

)
p

]}
[
T + j2v

(
∂v

∂s

)
p

]3 (53)

In the above equation, j2v2 = V 2 = c2 while from thermodynamics it is known that, c2 =
vcp
cvkT

. Thus

the above equation can also be expressed as follows,

A =

1

8

(
∂2v

∂p2

)
s

2
cp

T 2α2v2

{
1 +

v

cvkT

[
α+ T

(
∂α

∂T

)
p

]
+

αTv

cvkT

[
2α− 1

cp

(
∂cp
∂T

)
p

]}
(
1 +

αv

cvkT

)3 (54)

For the particular case of an ideal gas, for which α =
1

T
, the expression into the first bracket of the

numerator of the above equation vanishes, while the remaining terms are reduced to the following,

1 +
αTv

cvkT

[
2α− 1

cp

(
∂cp
∂T

)
p

]
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By replacing α, c, and kT , this expression can be reduced to,

1

cvo

[
cpo +R− RT

cpo

dcpo
dT

]
As the author has verified, this expression is positive for all ideal gases currently reported in thermo-

dynamics textbooks.

By taking the derivative of Eq. (4) with respect to parameter je, at pointM the following identity holds,

∂2s

∂je∂p
= − jv

∂2v

∂p∂s

/[
T + j2v

(
∂v

∂s

)
p

]2

(55)

where,
∂2v

∂p∂s
=

∂

∂s
(−ksv)p = −

[
v

(
∂ks
∂s

)
p

+ ks

(
∂v

∂s

)
p

]
,

(
∂ks
∂s

)
p

=

(
∂ks
∂T

)
p

(
∂T

∂s

)
p

,(
∂v

∂s

)
p

=
αTv

cp
> 0, and

(
∂T

∂s

)
p

=
T

cp
> 0. From these identities it follows

∂2v

∂p∂s
= −Tv

cp

[
ksα+

(
∂ks
∂T

)
p

]
(56)

Equations (49), (55), and (56) enable one to write constant B as follows

B =
cp

cvkTαT

(
∂2v

∂p2

)
s

[
ksα+

(
∂ks
∂T

)
p

]/(
1 +

αv

cvkT

)2

(57)

For the particular case of a perfect gas, ks = 1/kp, where k is the Poisson coefficient. Thus,(
∂ks
∂T

)
p

= 0. By considering that the second derivative in the numerator of Eq. (57) is positive, for this

particular case considered, the constant B becomes positive. One can see from Eq. (57) that the constant B

is positive if and only if the inequality, ksα+

(
∂ks
∂T

)
p

> 0 holds.

By replacing the derivatives in Eq. (50) by their expressions given by Eq. (6) and Eq. (12), the following

equation is found,

C = − T

2

(
∂2v

∂p2

)
s

/(
∂v

∂s

)
p

[
T + j2v

(
∂v

∂s

)
p

]
(58)

By replacing the derivative

(
∂v

∂s

)
p

=
αTv

cp
in the above equation it follows

C = − 1

2

cp
αTv

(
∂2v

∂p2

)
s

/(
1 +

αv

cvkT

)
(59)

Since the second derivative of the above equation is assumed to be positive, the coefficient C becomes

unconditionally negative. The roots of the formerly obtained algebraic equation in terms of are given

by, ∆p− = −(B +
√
B2 − 4AC)/(2A) and ∆p+ = −(B −

√
B2 − 4AC)/(2A). Let us assume that

ksα+

(
∂ks
∂T

)
p

> 0 holds, in which caseB becomes positive. By assuming the constantA to be negative, one
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has,
√
B2 − 4AC < B, since C < 0. Thus, ∆p− becomes positive. Since by definition ∆p− = p− − pM ,

p− becomes grater than pM , which cannot be the case. Therefore,Amust be positive. Thus Eq. (54) implies

the inequality given below

1 +
v

cvkT

[
α+ T

(
∂α

∂T

)
p

]
+

αTv

cvkT

[
2α− 1

cp

(
∂cp
∂T

)
p

]
> 0 (60)

Since C is negative one has
√
B2 − 4AC > B, which implies ∆p+ > 0 and ∆p− < 0 as expected.

Moreover, ∆p+ + ∆p− = −B/A. It follows from this inequality that |∆p−| > ∆p+. On the other hand,

Eq. (47) leads to, s− − sM = ∆s−|jm =
1

2

(
∂2s

∂p2

)
jm,j

(∆p−)2, and

s+ − sM = ∆s+|jm =
1

2

(
∂2s

∂p2

)
jm,j

(∆p+)2. These equations enable one to write the following,

s+ − s− = s+ − sM − (s− − sM ) =
1

2

(
∂2s

∂p2

)
jm,j

[(∆p+)2 − (∆p−)2] (61)

Since at pointM the second derivative of the entropy is negative, the above equation implies, s+ > s−.

This inequality shows that the entropy increases during the transition of a weak shock, from the supersonic

state of s− to the subsonic state of s+. Conversely, by assuming the Second Law inequality to hold for a

weak shock, as is currently assumed, Eq. (61) clearly implies the inequality, (∆p−)2 > (∆p+)2. As can

be shown, this inequality leads to, B
√
B2 − 4AC > 0 and therefore, B > 0. From Eq. (57) follows the

inequality, ksα+

(
∂ks
∂T

)
p

> 0.

From the identity given by Eq. (25), for the states of s− and s+ on the curve of constant jm one has,(
∂s

∂je

)−

jm,j

=
1

jT− and

(
∂s

∂je

)+

jm,j

=
1

jT+
. It should be taken into account that along the curve of constant

jm, for both states, s(p, jm, j) = s(p, je, j) and therefore in each branch of the curve given by s(p, jm, j),

the later equality leads to an implicit function of jm, je, and p, for constant j. As Fig. 5 shows, for a given

value of je, the curve of constant jm crosses the curve of constant je in two distinct points corresponding to

two states, one of which defined by p−, which is a supersonic state and the other one defined by p+, which

is a subsonic state.

The former derivatives of the entropy enable one to write the following inequality(
∂s

∂je

)−

jm,j

=
1

jT− >
1

jT+
=

(
∂s

∂je

)+

jm,j

(62)

for Eq. (36) gives T+ − T− > 0 for p+ > p− and s+ ≥ s−.

By multiplying both sides of inequality (62) by an arbitrarily small (−∆je|jm) > 0, the following inequality

is obtained,

sM − s− ≈
(

∂s

∂je

)−

jm,j

(−∆je|jm) >
(

∂s

∂je

)+

jm,j

(−∆j − e|jm) ≈ sM − s+
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Figure 5 - Integration path for inequality (63).

The above inequality implies s+ > s−. On the other hand, by integrating the left hand side of inequality

(62) from state (1) to state of s− and the right hand side of the same inequality from the state of to state (2)

with respect to the variable je along the path shown in Fig. 1 it follows

s− − s1 =

∫ je,max+∆je

je

(
∂s

∂je

)−

jm,j

dje =

∫ je,max+∆je

je

1

jT−dje >

>

∫ je,max+∆je

je

1

jT+
dje =

∫ je,max+∆je

je

(
∂s

∂je

)+

jm,j

dje = s∗ − s2

where ∆je = ∆je|jm < 0. This inequality gives, s2 > s1 + (s+ − s−) > s1 and therefore, s2 > s1. The

above inequality shows that as ∆je vanishes, as shown in Fig. 5 both, s
− and s+ become equal to sM , and

therefore the above inequality is reduced to the following

sM − s1 =

∫ je,max

je

(
∂s

∂je

)−

jm,j

dje >

∫ je,max

je

(
∂s

∂je

)+

jm,j

dje = sM − s2 (63)

The above inequality also implies s2 > s1. These results enable one to conclude that the entropy

discontinuity arising from a weak shock implies an entropy discontinuity for a strong shock.

EVALUATION OF THE TANGENCY POINT

At the tangency point the following equations must be imposed(
∂s

∂p

)
(p, jm, j) = 0 (64)(

∂s

∂p

)
(p, je, j) = 0 (65)

s(p, jm, j) = s(p, je, j) (66)

Equation (64) can be written as(
∂s

∂p

)
v

+

(
∂s

∂v

)
p

(
∂vm
∂p

)
jm,j

= 0 (67)

An Acad Bras Cienc (2017) 89 (2)



THERMODYNAMIC BOUNDS IN COMPRESSIBLE FLUID FLOW IN PIPES 1331

From the definition of jm it follows

vm = (jm/j − p)/j2 (68)

Equation (65) can be written as(
∂s

∂p

)
v

+

(
∂s

∂v

)
p

(
∂ve
∂p

)
je,j

= 0 (69)

From the definition of je it follows

ϕ = h(p, ve) + j2ve/2− je/j = 0 (70)

The derivative

(
∂ve
∂p

)
je,j

in Eq. (69) is determined by the identities arising from calculus,

(
∂ve
∂p

)
je,j,ϕ

= −
(
∂ϕ

∂p

)
v,je,j

/(
∂ϕ

∂v

)
p,je,j

,

(
∂ϕ

∂p

)
v,je,j

=

(
∂h

∂p

)
v

, and

(
∂ϕ

∂v

)
p,je,j

=

(
∂h

∂v

)
p

+ j2v.

By replacing these derivatives into Eq. (69) it follows[(
∂h

∂v

)
p

+ j2v

](
∂s

∂p

)
v

−
(
∂h

∂p

)
v

(
∂s

∂v

)
p

= 0 (71)

On the other hand, from thermodynamics one has,(
∂s

∂v

)
p

=
cp

αvT
,

(
∂s

∂p

)
v

=
cvkT
αT

, dh = Tds+ vdp ,(
∂h

∂p

)
v

= T

(
∂s

∂p

)
v

+ v =
cvkT
α

+ v ,

(
∂h

∂v

)
p

= T

(
∂s

∂v

)
p

=
cp
αv

Furthermore, Eq. (68) gives,

(
∂vm
∂p

)
jm

= − 1

j2
. By casting these identities with Eq. (71) the following

identity is obtained

j2vmcvkT − cp = 0 (72)

This identity can also be obtained fromEq. (67). Therefore, at the tangency point the following equations

must be satisfied

p+ j2v − jm/j = 0 (73)

h(p, v) + j2v2/2− je/j = 0 (74)

j2vcvkT − cp = 0 (75)

These equations can be simultaneously solved in term of p, v, and je for a specified value of jm or in

terms of p, v, and jm for a given value of je. The identity given by Eq. (75), as can be verified, implies V = c
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for, j2v2 = V 2 and c2 = cpv/(cvkT ). The details of the analytical solutions obtained for the particular case

of a perfect gas are given in the Appendix.

Another interesting identity to show that je and jm play the role of independent variables can be derived

from the Jacobian of these parameters respective to p and v, as defined by,

J

(
je, jm
p, v

)
=

(
∂je
∂p

)
v,j

(
∂jm
∂v

)
p,j

−
(
∂je
∂v

)
p,j

(
∂jm
∂p

)
v,j

(76)

where

(
∂je
∂p

)
v,j

= j

(
∂h

∂p

)
v

,

(
∂je
∂v

)
p,j

= j

[(
∂h

∂v

)
p

+ j2v

]
,

(
∂jm
∂p

)
v,j

= j,

(
∂jm
∂v

)
p,j

= j3,(
∂h

∂v

)
p

=
cp
αv

, and

(
∂h

∂p

)
v

=
cvkT
α

+ v. By replacing the above derivatives in the Jacobian given by Eq.

(76) it follows,

J

(
je, jm
p, v

)
=

j(j2vcvkT − cp)

αv
(77)

It is remarkable that this Jacobian vanishes at the pointM , for Eq. (75) holds at this point. This means

that at pointM , jm and je become conjugated, as shown by the theorem proved here.

ANALYTICAL EXAMPLE FOR A PERFECT GAS

In order to illustrate the analysis presented in this paper, the particular case of a perfect gas will be presented.

For a perfect gas, the enthalpy can be expressed by h = kpv/(k − 1), where k = cpo/cvo is assumed equal

to 1,4. The physical variables can be replaced by the dimensionless variables, α = p/po, µ = j2v/po,

ζm = (sm − som)/R, ζe = (se − som)/R = (se − soe)/R + (soe − som)/R, where se = s(p, je, j),

sm = s(p, jm, j), and soe and som are the values of the entropy at an arbitrary chosen state given by po
and vo. The dimensionless enthalpy is defined by χ = hj2/po. Let us define also, βm = jm/(jpo) and

βe = jje/p
2
o. The corresponding dimensionless equations respective to equations presented in the previous

section are given in the Appendix. Fig. 6a shows the Fanno and Rayleigh curves in a dimensionless entropy

- pressure diagram, for the case for which βm is specified.

In Fig. 7, βm = 1, 05βm,min and βe = 0, 95βe,max were chosen in order to fit the curves in a

reduced diagram size. In the present case it is found,χA = 1, 225,χR = 1, 164,αQ = 0, 6388,χQ = 1, 389,

ζQ = 2, 846, and
VQ

c
=

1√
k
.

The curves are plotted for βm = 1, 2, for which βe,max = 1, 47 and αe = 0, 5 are found. For the

sake of comparison, the curve of βe = 0, 8βe,max is also plotted. Fig. 2b shows the Fanno and Rayleigh

curves for the case for which βe is specified. The curves are plotted for βe = 1, 47, for which βm,min = 1, 2

and αm = 0, 5 are found. For the sake of comparison, the curve of βm = 1, 1βm,min is also plotted.

These particular numerical cases are chosen in order to show the evaluation of the unknown parameters

are correctly computed. Fig. 7a and 7b show the Fanno and Rayleigh curves plotted in the dimensionless

Mollier diagram, corresponding to Fig. 6a and 6b.
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Figure 6 - (a) Limiting Rayleigh curve for a given Fanno curve. (b) Limiting Fanno curve for a given Rayleigh curve.

Figure 7 - (a) Limiting Rayleigh curve for a given Fanno curve in the Mollier diagram. (b) Limiting Fanno curve for a given

Rayleigh curve in the Mollier diagram.

CONCLUSIONS

In the present paper, it is shown that the Fanno flow and Rayleigh flow can be thermodynamically related

in order to set up the condition under which a normal shock can occur in compressible flow of a gas in a

pipe. Thermodynamic identities are proved in order to show that there is a single point where the Fanno and

the Rayleigh curves become tangent to each other. It is also shown that the contact and tangency point of

the Rayleigh and Fanno curves is the single thermodynamic state for which Fanno flow and Rayleigh flow

become dependent of each other, trough an existing relationship among the linear momentum density flux,

the energy density flux, and the pressure. It is also shown that the linear momentum density flux and the

energy density flux can play a role as independent thermodynamic properties of the entropy function. It is

shown also that a Second Law inequality can be obtained by expressing the entropy both as a function of

the linear momentum density flux and as a function of the energy density flux, respectively to Rayleigh and
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Fanno flows. The theoretical results are graphically illustrated for the particular case of a perfect gas in both,

the s− p and the Mollier diagram.
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APPENDIX

The enthalpy of a perfect gas can be expressed as h = kpv/(k − 1). By this definition Eq. (74) becomes(
k

k − 1

)
pv +

j2v2

2
− je

j
= 0 (78)

From Eq. (75) follows j2vkT − k = 0 where kT = 1/p and therefore

p = j2v/k (79)

By replacing v from its expression given by Eq. (73) in the above equation it follows

pm = jm/[j(k + 1)] (80)

By combining this equation with Eq. (79) one has

vm = kjm/[j3(k + 1)] (81)

From the equation of the sound speed given by, c2 = kpv, Eq. (79), and Eq. (80) it follows

cm = kjm/[j2(k + 1)] (82)

From Eq. (78) follows

ve =
1

j2

√(
k

k − 1

)2

p2 + 2jje −
(

k

k − 1

)
p

 (83)
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By replacing ve from the above equation in Eq. (79) it follows

pe

√
2

k

√
k − 1

k + 1

√
jje (84)

By eliminating pe(= pm) from Eq. (80) and Eq. (84) the following function relating jm and je is found

jm =

√
2

k
j
√

k2 − 1
√

jje (85)

From Eq. (79) and Eq. (84) follows

ve =

√
2

j2

√
k − 1

k + 1

√
jje (86)

From the sound speed equation given by c2 = kpv, Eq. (84), and Eq. (86) it follows

ce =
√
2

√
k − 1

k + 1

√
je
j

(87)

By dividing both sides of Eq. (73) by po one has, jm/(jpo) = p/po + j2v/po. By defining the dimen-

sionless variables βm = jm/(jpo), α = p/po, and j
2v/po, Eq. (68) is reduced to, βm = α+ µ, from which

comes

µm(α, βm) = βm − α (88)

where µm = j2vm/po, µom = j2vom/po, and µom = βm − 1, and therefore βm > 1 and vm > 1. Eq. (88)

implies α < βm. Equation (78) can be reduced to the dimensionless form, βe =

(
k

k − 1

)
αµ+

µ2

2
where

βe = jje/po
2 is dimensionless. Solving the former equation in terms of µ one has,

µe(α, βe) =

√(
k

k − 1

)
α2 + 2βe −

(
k

k − 1

)
α (89)

where µe = j2ve/po, so that the above equation implies, βe > 0. By making ve = vm, Eq. (81) and Eq.

(86) give,
kjm

j3(k + 1)
=

√
2

j2

√
k − 1

k + 1

√
jje, from which it follows,

jm
j

=

√
2

k

√
k2 − 1

√
jje. By dividing

both sides of this equation by po, the following dimensionless function relating βe and βm is found

βm =

√
2

k

√
k2 − 1

√
βe (90)

At the point of maximum of both, s(p, jm, j) and s(p, je, j), Eq. (80) and Eq. (84) give respectively

αm =
βm

(k + 1)
(91)

αe =

√
2

k

√
k − 1

k + 1

√
βe (92)

The entropy function can be expressed as follows,

sm(p, jm, j) = som + cpo ln(T/To)−R ln(p/po)
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By replacing T and To in terms of the pressure and volume it follows

sm(p, jm, j) = som + cpo ln[pvm/(povom)]−R ln(p/po) (93)

where vm is expressed by Eq. (68) and vom is expressed by the same equation in the form

vom = (jm/j − po)/j
2 (94)

In the same way,

se(p, je, j) = soe + cpo ln[pve/(povoe)]−R ln(p/po) (95)

where ve is expressed by Eq. (83) and vom is expressed by the same equation in the form

voe =
1

j2

√(
k

k − 1

)2

p2o + 2jje −
(

k

k − 1

)
po

 (96)

The dimensionless entropies are defined by ζm = (sm − som)/R, and

ζe = (sm − som)/R = (se − soe)/R+ (soe − som)/R

Thus, Eq. (93) and Eq. (95) can be expressed by their respective dimensionless forms as follows

ζm(α, βm) =

(
k

k − 1

)
ln

[
αµm(α, βm)

µm(1, βm)

]
− lnα (97)

ζe(α, βm) = ∆ζe +

(
k

k − 1

)
ln

[
αµe(α, βe)

µe(1, βe)

]
− lnα (98)

where ∆ζe = (soe − som)/R, µm(α, βm) is expressed by Eq. (88) and µe(α, βe) is expressed by Eq. (89).

Two cases are analyzed as follows.

Case (a) - The parameter βm > 1 is specified

From Eq. (90) one has βe,max = βm
2k2/[2(k2−1)], and from Eq. (91) one has αm = βm/(k+1). The

contact condition for the entropy curves given by sm and se, for the present case is assured by the equality

ζm(αm, βm) = ζe(αm, βe,max). From this equation, Eq. (97), and Eq. (98) it follows

∆ζe(αm) =

(
k

k − 1

)
ln

[
µm(αm, βm)µe(1, βe,max)

µm(1, βm)µe(αm, βe,max)

]
(99)

The contact of the curve of constant βe with the curve of constant βm is assured by expressing Eq. (98)

as follows

ζe(α, βe) = ∆ζe(αm) +

(
k

k − 1

)
ln

[
αµe(α, βe)

µe(1, βe,max)

]
− lnα (100)

while ζm(α, βm) is expressed by Eq. (97).

Case (b) - The parameter βe is specified
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From Eq. (90) one has βm,min =

√
2

k

√
k2 − 1

√
βe, and from Eq. (92) one has αe =

√
2

k

√
k − 1

k + 1

√
βe.

The contact condition for the entropy curves is assured by the equality ζm(αe, βm,min) = ζe(αe, βe). From

this equation, Eq. (97), and Eq. (98) it follows

∆ζe(αe) =

(
k

k − 1

)
ln

[
µm(αe, βm,min)µe(1, βe)

µm(1, βm,min)µe(αe, βe)

]
(101)

The contact of the curve of constant βe with the curve of constant βm is assured by expressing Eq. (97)

as follows

ζm(α, βm) =

(
k

k − 1

)
ln

[
αµm(α, βm)

µm(1, βm,min)

]
− lnα (102)

while ζe(α, βe) is expressed by Eq. (98).

The point Q located on the Rayleigh curve as shown in Fig. 4 is determined by Eq. (86) given in the

same reference. For a perfect gas, VQ/cs = 1/
√
k. By replacing VQ = jvQ in the preceding equation one

has, jvQ/cs = 1/
√
k. By replacing the sound speed cs from its expression of Eq. (82) in the last equation

one has,

j3vQ(k + 1)/jm =
√
k

In terms of the dimensionless variables the above equation is reduced to the following equation,

(βm − αQ)/βm =
√
k/(k + 1) (103)

This equation gives αQ = βm(1 + k −
√
k)/(k + 1).

The dimensionless enthalpy is defined as

χ = hj2/po
2

From the expressions of µ and α one has,

χ = kµα/(k − 1)

By the definition µ and α, at the point Q, this equation leads to the following equation

χQ = kαQ(βm − αQ)/(k − 1) (104)
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