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ABSTRACT

Chagas’ disease is a debilitating and often fatal disease caused by the protozoan parasiteTrypanosoma cruzi.

The great majority of surface molecules in trypanosomes are either inositol-containing phospholipids or

glycoproteins that are anchored into the plasma membrane by glycosylphosphatidylinositol anchors. The

polyalcoholmyo-inositol is the precursor for the biosynthesis of these molecules. In this brief review, recent

findings on some aspects of the molecular and cellular fate of inositol inT. cruzi life cycle are discussed and

identified some points that could be targets for the development of parasite-specific therapeutic agents.
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INTRODUCTION

Chagas’ Disease

American trypanosomiasis or Chagas’disease,

whose etiologic agent isTrypanosoma cruzi, was

discovered by Carlos Chagas who characterized the

parasite, its life cycle and its vector as well as the

transmission process (Chagas 1909). Chagas dis-

ease ranks high in the group of infectious and par-

asitic diseases in terms of disability-adjusted years

of life lost in Latin America. Only acute respiratory

infections, diarrhoeal diseases and HIV / AIDS ac-

count for a greater burden (Schmuniset al. 1996).

World Health Organization estimates that 15 to 20

million people are infected withT. cruzi. The dis-
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ease is acquired by invasive trypomastigotes which

are transmitted by insect vectors, blood transfusion,

transplacental and organ transplantation (Brener &

Gazzinelli 1997). T. cruzi is now viewed as an

emerging human pathogen of HIV-infected individ-

uals, since it induces dramatic brain pathology and

faster death in the affected patients (Del Castilloet

al. 1990).

The progression of Chagas’disease even today

defies the attempts at efficient and safe chemother-

apy. There are no vaccines and the drug presently in

use to control the acute stage of the disease shows

restrict applicability in chronic patients, besides pre-

senting severe side effects (De Castro 1993). The

best hope of finding new therapies rests in the de-

velopment research programs that explore the dif-

ferences between the parasite and its host, as it has

been done by several research groups (Rodriguez

& Gross 1995). This article focuses on segments
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of the known and suggested differences be-

tweenTrypanosoma cruzi and mammalian inositol

metabolism.

Inositol Lipids

Inositol, found in animals and plants, has been cited

as essential in the growth of animals and microor-

ganisms, includingT. cruzi (Eagleet al. 1957, Holub

1982, Einicker-Lamaset al. 1999). Its action rests

in the formation of a complex set of inositol-

containing lipids, whose parent compound is the

phospholipid phosphatidylinositol (PI), which can

be further phosphorylated or glycosylated forming

new classes of bioactive molecules, as depicted in

Figure 1.

The glycosylated inositol derivatives are found

in the outer leaflet of the plasma membrane fac-

ing the external medium, whereas the phosphory-

lated phosphatidylinositols are found on the inner

leaflet of the lipid bilayer and play an important

role on signaling pathways, modulating vital func-

tions of the parasite. Glycosylphosphatidylinosi-

tol (GPI) -anchored or GPI-related molecules are

present in the cell surface of the trypanosomatids at

all stages of their life cycles. The detailed structure

and the biosynthesis of the GPI anchors in African

trypanosomes led the way for the development of

this area of study. The cell coat ofTrypanosoma

brucei comprises approximately 107 copies/cell of

variant specific glycoproteins anchored to the mem-

brane by a GPI moiety (Ferguson 1999). Although

GPI-anchors are present in many membrane proteins

of mammalian cells, the biosynthetic pathways and

particularities of this anchor in African try-

panosomes is now being considered as a therapeu-

tic target for African trypanosomiasis (Fergusonet

al. 1999). InT. cruzi, most of the GPI structures

are not attached to proteins, but form glycoinositol

phospholipids (GIPLs) (Previatoet al. 1990, Led-

erkremeret al. 1991, Carreiraet al. 1996). The

cell coat ofT. cruzi is made up of a layer of GI-

PLs (2×107 copies/cell) and small mucin-like GPI-

anchored glycoproteins (2× 106 copies/cell) that

project above this layer (Almeidaet al. 1994, Pre-

viato et al. 1995, Serranoet al. 1995). The mucins

from the bloodstream trypomastigote stage of the

parasite are extremelly potent inducers of proinflam-

matory cytokines, and this activity resides in GPI-

anchor component. Thus, some parasite GPI-

anchors appear to be bioactive and to modulate de

host immune system (Brener & Gazzinelli 1997).

The phosphorylated inositol derivatives inT.

cruzi are found in fewer copies per cell than the GI-

PLs, amounting in approximately 12% of all phos-

pholipids (Antunes & Oliveira 1981, Kanedaet al.

1986). Phosphoinositides in addition to their struc-

tural function, play active roles in cell signaling

pathways as precursors of the potent second mes-

sengers inositol trisphosphate (IP3) and diacylglyc-

erol (DAG) (Nishizuka 1984, Berridge 1984) or

directly mediating cell functions through the prod-

ucts of the phosphoinositide-3-OH-kinase (PI-3-K)

(Toker & Cantley 1997). These signaling pathways

were found to modulate different steps ofT. cruzi

life cycle.

Inositol-lipids signaling pathways

Activation of IP3/DAG system by exogenous CaCl2

in digitonin-permeabilised epimastigotes was ob-

served by Docampo and Pignataro (1991), and it was

also reported an alteration of the phosphoinositides

metabolism after cholinergic stimulation (Machado

de Domenechet al. 1992). Earlier work from our

laboratory suggested a phosphoinositide role inT.

cruzi proliferation (Antunes & Oliveira 1981). Fur-

ther investigation cleared the role of phosphoinosi-

tide signaling pathway, as we have shown that the

exposure ofT. cruzi to mitogenic factors in foetal calf

serum (FCS) stimulate a PI-specific phospholipase

C (PI-PLC) leading to the accumulation of IP3 and

DAG (Oliveiraet al. 1993). Among all the phospho-

lipids only the phosphatidylinositol(4, 5)P2 (PIP2)

was mobilised by serum, and the PIP2 hydrolysis as

well as epimastigotes proliferation were hindered

by specific PI-PLC inhibitors. The other phospho-

inositides had no significant modification, as well

as the major phospholipids such as phosphatidyl-

choline and phosphatidylethanolamine. Lysophos-
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Fig. 1 – myo-inositol metabolic pathways. Symbols:PI - phosphatidylinosi-

tol; PI-4-P - phosphatidylinositol-4-phosphate;PI-4,5-P2 - phosphatidylinositol-

4,5-bisphosphate;Ins(1,4,5)P3 and IP3 - inositol trisphosphate;IP2 - inosi-

tol bisphosphate;IP1 - inositol monophosphate;DAG - diacylglycerol; PI-
3-P - phosphatidylinositol-3-phosphate;PI-3,4-P2 - phosphatidylinositol-3,4-

bisphosphate;PI-6-O-Glycan - phosphatidylinositol-6-ortho-glycan;GPI - gli-

cosylphosphatidylinositol;GIPL - glicosylphosphatidylinositol lipid;Ins-2-P -

Inositol-2-phosphate.

phatidic acid (LPA), reported to be the active agent

in some serum effects, had no mitogenic activity

when added to epimastigotes cultures. The intra-

cellular signaling downstream of PI-PLC activation

was mediated by Ca2+/phospholipid -dependent pro-

tein kinase and Ca2+/Calmodulin dependent kinase

II (Malaquias & Oliveira 1999).

A subversion of the host cell phosphoinositide

signaling pathway was reported. In the invasion of

T. cruzi into fibroblasts. Andrews and colleagues

observed activation of the PI-PLC leading to IP3 for-

mation, followed by calcium mobilization into the

host cell cytosol (Rodriguezet al. 1995). Results

from our laboratory showed that a different phos-

phatidylinositol signaling pathway is activated dur-

ing the infection ofT. cruzi in macrophages, the first

step in the naturally occurring Chagas disease. The

entry of trypomastigotes strongly stimulated the for-

mation of the lipid products of the PI-3-OH-

kinases: phosphatidylinositol-3-phosphate (PI-3-

P), phosphatidylinositol-3,4-bisphosphate (PI-3,4-

P2) and phosphatidylinositol-3,4,5-trisphosphate
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(PI-3,4,5-P3), but not the other phosphoinositides.

Pre-treatment of the macrophages with the PI-3-K

inhibitor, Wortmannin, markedly arrestedT. cruzi

infection. Using specific antibodies for each of the

three classes of PI-3-K, and assaying the immuno-

precipitates for enzymatic activity, we found dif-

ferent levels of stimulation in each PI-3-K class,

thus suggesting differential roles for these inositol

lipids in the process of parasite/host-cell interaction

(Todorovet al. 2000). Further studies are necessary

to clarify these points.

Fluorinated Inositol Analogues

To further evaluate the functional responses coupled

to the inositol metabolism inT. cruzi, we have used

the six isomers ofmyo-inositol in which a single

hydroxyl group was replaced by a fluorine and eval-

uated their role onT. cruzi cell biology (Einicker-

Lamaset al. 1999). The inclusion of fluorine in

enzyme substrates has been recognised as a useful

technique for the generation of enzyme inhibitors.

Fluorinated analogues ofmyo-inositol were used

as potential inhibitors of the phosphoinositide

metabolism in different cells (Moyeret al. 1988,

Kozikowski et al. 1990, McPheeet al. 1991, Offer

et al. 1993, Cosulichet al. 1993). The rationale was

that these monodeoxyfluoro-myo-inositols (nFIns)

might be taken up into cells by the same uptake pro-

cess asmyo-inositol, and either be incorporated into

phosphoinositides or prevent their formation, de-

pending on the position of the fluorine substituent.

We found differences betweenT. cruzi and mam-

malian systems in response to the fluorinated inos-

itols. The inositol transport system inT. cruzi has

different features than the one operating in thymo-

cytes (Offeret al. 1993). All the[3H ]-labeled fluo-

roinositols were taken up by thymocytes whereas in

epimastigotes only the analogues with fluor in 1, 2

and 4 position on the inositol ring, entered the par-

asite and were weak substrates for the PI synthases.

The [3H ]-3Fins,[3H ]-5Fins and[3H ]-6Fins were

not internalised, indicating that they were not recog-

nized by the parasite inositol transport system. This

was further confirmed in competitive assays for the

uptake of[3H ]-inositol and its incorporation into

phosphoinositides (Einicker-Lamaset al. 1999).

One major difference between the parasite and

the mammalian pathways was the action of the 6-

deoxy-6-fluoro-inositol, that although fully perme-

able to fibroblasts was innocuos to these cells, while

having the strongest inhibitory effect on amastigotes

and epimastigotes proliferation (Einicker-Lamaset

al. 1999). The other cell-impermeable 3Fins and

5Fins analogues also hamperedT. cruzi cell division,

as they did in fibroblasts (Cosulichet al. 1993). The

inhibitory mechanism displayed by the 3Fins and

5Fins were different in the parasite and in fibrob-

lasts, where they interfered directly with the phos-

phoinositide metabolism (Cosulichet al. 1993).

The selective action of these inositol analogues

betweenT. cruzi and mammalian system opens a line

of research leading to a chemical formulation of a

parasite specific inhibitor with therapeutic potential.

INOSITOL TRANSPORT IN TRYPANOSOMA CRUZI

Adaptation of protozoan parasites to hostile envi-

ronments within their vectors and hosts depends on

their ability to maintain intracellular homeostasis of

ions and nutrients. The level of expression and func-

tion of membrane transporters is therefore critical

for parasite survival inside their hosts. Transport

processes through the parasite plasma membrane are

potential targets for new chemotherapeutic drugs.

The results with fluoro-inositols led us to in-

vestigate the inositol transport system inT. cruzi.

Inositol can be synthesized from glucose, as de-

picted in Figure 1, but most cells possess a spe-

cific transport system for the uptake of inositol from

the medium. InT. cruzi it is not known whether

the biosynthesis of inositol is occurring, but its ab-

sence from the culture medium impairs epimastig-

otes growth (Einicker-Lamaset al. 1999). Inositol

transport inT. cruzi is an active transport process,

as it is almost completed ablated by inhibitors of

the energy metabolism. Also there is a partial de-

pendence on extracellular sodium for this transport,

implying the operation of a Na+/inositol symport

An. Acad. Bras. Ci., (2000)72 (3)
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(Einicker-Lamas et al. 2000). In view of the

Na+-requirement for the inositol transport we inves-

tigated the Na+ homeostasis inT. cruzi. We found

two different Na+ pumps in the parasite: a clas-

sical ouabain-sensitive (Na++K+)-ATPase (Caruso-

Neveset al. 1998) and a Na+-ATPase (ouabain-

insensitive) furosemide-inhibitable (Caruso-Neves

et al. 1999). The inhibition of the inositol transport

by furosemide, but not by ouabain suggested that

the Na+-ATPase may have a more important role in

the creation and maintenance of the Na+ gradient

across theT. cruzi cell membrane, thus enabling an

Na+/inositol symport.

The characteristics of inositol transport sys-

tem in T. cruzi are different from the ones found

in the closely related trypanosomatidLeishmania

donovani, as this organism features anH+/inositol

co-transport (Drewet al. 1995) and from the well

studied trypanosome glucose carriers (Barrettet al.

1998). The inositol transported into epimastigotes is

used for phosphoinositides and inositol-phosphates

synthesis. These are not products of the PI-PLC

action since we found inositol-phosphates with dif-

ferent degrees of phosphorylation (Einicker-Lamas

et al. 1999, 2000). The function of these inositol-

polyphosphates inT. cruzi cell biology is unknown

at present, and further studies are necessary to eluci-

date this point. It is possible that theT.cruzi inositol

carrier may represent either a chemoterapeutic tar-

get or a gateway, which allow the targeting of other

toxic molecules to these parasites.

PERSPECTIVES

Some progress has been made on the biochemistry of

the inositol metabolism inT. cruzi. Despite the over-

all conservation of the GPI anchors and the phos-

phoinositide signaling pathways, significant differ-

ences in the specificities of trypanosome and mam-

malian inositol metabolism have been demonstrated.

The effects of 6-deoxy-6-fluoro-inositol constitute a

promising research avenue to the design of specific

drugs anti-T. cruzi. The biosynthetic routes involv-

ing inositol and principally the inositol transporter

as the primary target, could be specific and potential

therapeutic points to be explored in order to develop

new drugs against Chagas disease. The clonning of

T. cruzi inositol transport genes and structural infor-

mation on this protein remain important goals for

the future.
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