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ABSTRACT
Let M be an n-dimensional closed minimally immersed hypersurface in the unit sgfiete
Assume in addition tha¥/ has constant scalar curvature or constant Gauss-Kronecker curvature.
In this note we announce thati# has(n — 1) principal curvatures with the same sign everywhere,

thenM is isometric to a Clifford Toru§1(\/g) x §"71(,/2=1).

n
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1. INTRODUCTION

Let M be an n-dimensional hypersurface in a unit spiséré. We choose a local ortonormal frame
field {eq, ..., e,41} in S"*1, so that, restricted td1, e, ..., e, are tangent td/. Letws, ..., wyi1
denote the dual co-frame field §#+1. Then, inM

Wp+1 = 0.
It follows from Cartan’s Lemma that

Whl,i = Zhijwj, hij = hji- (1-1)
j
The second fundamental fortnand the mean curvaturé of M are defined by

h = Zh,-jw,-wjenH and H = Zhi,‘. (12)

i,j
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We recall thatM is by definition a minimal hypersurface if the mean curvaturgfo identically
zero. The connection form;; is characterized by the structure equations

dw,-+2wl~j/\wj =0, w;j + wj =0,
J
dwij + 3 wix A wyj = Qjj, (1.3)
3
Qij =3 > Rijuwi A w,
I

whereQ;; (resp. R;j;) denotes the curvature form (resp. the components of the curvature tensor)
of M. The Gauss equation is given by

Rijii = Gikdj1 — 8i18jx) + (hixhiy — hith ji). (1.4)

The covariant derivative i of the second fundamental fortrof A with components; ;. is given

by
Zhijkwk = dhij + Zhjkwik + Zhikwjk.
k k k

Then the exterior derivative of (1.1) together with the structure equations yield the following
Codazzi equation

hijk = hikj = hjik- (1.5)
Similarly, we have the covariant derivativés of Vi with components; ik as follows
Z hijuw; = dhjji + Z hijrwi; + Zhilkwﬂ + Zhijzwkz,
1 1 I 1

and it is easy to get the following Ricci formula

hiji — hijik = Z himRmjii + Z nj Rmiki - (1.6)
From now on, we assume thét is minimal. Denote by = ) h,?,. the square of length d@f. The

i,j ’

components of the Ricci curvature and the scalar curvature are given respectively by

R,‘j = (I’l — 1)8,’j — Zhikhjk- (17)
k

R=nn-1)-S. (1.8)

It follows from (1.8) thatS is constant if and only iR is constant. For any fixed poiptin M, we
can choose a local orthonormal frame field..., e, such that

h,‘j = )\igij- (19)
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LetS =) h,zj The following formulas can be obtained by a direct computation (Peng and Terng
i.j

1983).

1 2
5AS=§:mﬂ—sw—my (1.11)

i,j.k
The Gauss-Kronecker curvatukeof M is defined by

In this note we give a sketch of the proof of the following results.

Tueorem 1.1. Let M be a closed minimal hypersurface with constant scalar curvature in §”"+1.
If M has (n — 1) principal curvatures with the same signal everywhere, then M isisometric to a
Clifford Torus Sl(\/g) x S"( /2.

n

COROLLARY 1.2. Let M be a closed minimal hypersurface with constant scalar curvature in S°.
Assume in addition that M has Gauss-Kronecker curvature K negative everywhere. Then M is
isometric to a Clifford Torus $(3) x $3(%).

CorOLLARY 1.3. Let M be a closed minimal hypersurface with constant scalar curvature in S°.
Assume S > 4. Then there existsa point p on M such that K (p) > 0.

THEOREM 1.4. Let M bea closed minimal hypersurface with constant Gauss-Kronecker curvature
in S"+1. If M has (n — 1) principal curvatureswith the samesignal everywhere, then M isisometric
to a Clifford Torus Sl(\/%) x §"L( /1L,

n

2. SKETCH OF THE PROOF OF THEOREM 1.1

By changing the orientation fa¥ and renumbering, ..., e, if necessary, we may assume
Mm<0< At <Ar<..<A,1 (2.1)
Notice thatK # 0, hence the following function is well defined
F = log|det(h;;)|.

We compute the Laplacian @f obtaining

Fi = Zhijhijk andAF = Z Fu = Z( - Z R B By + hijhijkk)~ (2.2)
k

i,j i,j.k l,m
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Sinces is constant, from (1.10), (1.11) and using the symmetrl; gffor indices, we get
n—1

A S 25 2 s 25 2
SAF=—Z(P+§)}1M _Z<P+)~)\ —|—n)h,,] Z(F—FW )h”n -
; igj N =L T

i

2.3)
n—1
D) h2 ., — — oy Tk S hZ S S — '
/2_;(/\5 +)~j)~n +n> nnj 3i§ék[( Aidjhi ) + ] ik~ 5SS —n)

We need the following algebraic Lemma.

LeEmMmA 2.1. Let A; and B;;,i, j =1, ...,n, bereal numberssuchthat A, <0 < A1 < ... < A,1
ande = Z,BU = Zk Bij=0,j=1, .. n Letusfixj e {1,..,n—1}andsetg; € {1, ..., n}

thegreate;tmdawchthat |Bijl = max{|B,;l,i =1,..,n}. Then B,; = Oifandonlyif g; = n.
By dlﬁerentlatlngZh,, =0 anth,k = § = const., we obtain

h;;;i =0and Aihiii =0, j:l,...,l’l
> hiis > b

Therefore, defining;; = h;;;, theni; andp;; satisfy the conditions in Lemma 2.1. Consider the
following subsets ofl, ...,n — 1} = I, _1:

={jel1 g =jth B={jel_1; g ¢{j.n}}, C={jel,_1; g =n}.

Possibly, some of these subsets may be empty.
After re-enumeration oy, ..., ¢,_; if necessary, we can assume that

A=0orA={1,..,r}, B=0orB={r+1 ..,t}, C=porC={+1,..,n—1}

where we adopt the following convention: Af = @, thenr = 0, if B = ¢, thent = r and if
C =@, thenr =n — 1. Forinstance, iB = @,thenA = {1, ....,r}andC ={r +1, ...,n — 1}.
According to Lemma 2.1, (2.3) can be rewritten as

" S ) S 28 2
SAF=— % (M - B)h’” 2. (? vy +n>h’” -
i=r+1 i £ i iy

i,j<n-1
G #@j ) j=r+1 ..t

n—1

S 28 ) [/ S 28 ) S )
Z(P + )\‘ )\‘ + n)htm Z[()LZ + XA +n>hnnj+<p + 3>h]]] -
i=1 l

j=1 Y J
t
S 28 5 S 28 5
Z [(ﬁ ik )hnnj + ()\2 + Y +n)h8/g_ij:| -
At A+ A 2
1 Z MEM TN G L ln2, — Lss — ). (2.4)
)» Ajhk J 3
I#J#k
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Notice that

rid; <0, i< j, ifandonlyifi € {1,....,n — 1} andj = n,

G s S 0, fori #j#kell,...,n—1},

Xikjhk
(2.5)
,\g_,,lxj + ﬁ >0, forj=r+1,..1,
ni2 >y =S, thusn > 5.
Using Lemma 2.1 and combining (2.4) with (2.5), we get
2n
SAF < —?S(S —n). (2.6)

Since M is compact, we can find a poipt on M such thatF(p) = min F. In particular,
VF(p) = 0 andAF(p) > 0 atp. On the other hand, frol§ > 0, AF(p) > 0 and (2.6), we
conclude thats € (0, n]. In this situation, a theorem of (Chern et al. 1970) implies that »
so thatM is isometric to a Clifford Toru§l(\/§) X S"*l(\/"Tj). The Corollaries 1.2 and 1.3 are
obvious from the result due to (Chern et al. 1970) and Theorem 1.1.

3. SKETCH OF THE PROOF OF THEOREM 1.4

The proof of Theorem 1.4 follows essentially the pattern of the proof of Theorem 1.1 taking into
account the presence of one term that contaiis We only stress those points which may lead to
some differences. By using (1.10), (1.11), (2.2) and the factRhigtconstant, we obtain

S n\,, S 28 )
0=SAF = _Z(P + 5)1@”[ - Z(F ot n>hiij - (3.1)
i i it N !
> ( * ")hz 255 —m + 223
o, Ttk T e Tn :
=\ 3 3 6

SinceM is compact, we can find a poipton M such thatS(p) = maxsS. In particularVS(p) =0
andAS(p) < Oatp. SinceVS(p) = 0,wehave) A;h;;;(p) =0, j =1, ..., n, therefore, defining
Bij = hiij(p), theni;(p) andp;; satisfy the conlditions inLemma 2.1.

By making use of the same proof as in Theorem 1.1, we obtain the following inequality

nAS 2n

< 1A 2y () — . (3.2)
6 3

SinceS > 0, S(p) = maxS andAS(p) < 0, by (3.2) we get tha$ < (0, n]. It follows from a

theorem of (Chern et al. 1970) th&t is isometric to a Clifford Toru§1(\/%) x S,/ =1).

n

0
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REMARK. Assume thab is bounded from above or th&tis bounded from below. In this situation,
by applying theGeneralized Maximum Principle due to Yau and Omori (Yau 1975), and a result

due to (Cheng 1993), we can generalize all the results in this natemplete hypersurfaces in
Sn+1.
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RESUMO

SejaM uma hipersuperficie n-dimensional, minima, fechada, imersa na esfera usiit&ridimensional.
Suponha queé/ tem curvatura escalar ou curvatura de Gauss-Kronecker constantes. Nesta nota, anuncia-
remos que s#/ tem (n — 1) curvaturas principais com o mesmo sinal em todos 0s seus pontosMitdo
isométrica ao toro de Cliffordl(\/g) x S”—l(\/”TTl).

Palavras-chave: Hipersuperficies minimas, curvatura escalar, curvaturas principais, toro de Clifford.
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