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ABSTRACT

Let M be an n-dimensional closed minimally immersed hypersurface in the unit sphereSn+1.

Assume in addition thatM has constant scalar curvature or constant Gauss-Kronecker curvature.

In this note we announce that ifM has(n−1) principal curvatures with the same sign everywhere,

thenM is isometric to a Clifford TorusS1
(√ 1

n

) × Sn−1
(√

n−1
n

)
.
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1. INTRODUCTION

LetM be an n-dimensional hypersurface in a unit sphereSn+1. We choose a local ortonormal frame

field {e1, ..., en+1} in Sn+1, so that, restricted toM, e1, ..., en are tangent toM. Letw1, ..., wn+1

denote the dual co-frame field inSn+1. Then, inM

wn+1 = 0.

It follows from Cartan’s Lemma that

wn+1,i =
∑
j

hijwj , hij = hji. (1.1)

The second fundamental formh and the mean curvatureH of M are defined by

h =
∑
i,j

hijwiwjen+1 and H =
∑
i

hii . (1.2)
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We recall thatM is by definition a minimal hypersurface if the mean curvature ofM is identically

zero. The connection formwij is characterized by the structure equations




dwi + ∑
j

wij ∧ wj = 0, wij + wji = 0,

dwij + ∑
k

wik ∧ wkj = �ij ,

�ij = 1
2

∑
kl

Rijklwk ∧ wl,
(1.3)

where�ij (resp.Rijkl) denotes the curvature form (resp. the components of the curvature tensor)

of M. The Gauss equation is given by

Rijkl = (δikδjl − δilδjk)+ (hikhil − hilhjk). (1.4)

The covariant derivative�h of the second fundamental formh ofM with componentshijk is given

by ∑
k

hijkwk = dhij +
∑
k

hjkwik +
∑
k

hikwjk.

Then the exterior derivative of (1.1) together with the structure equations yield the following

Codazzi equation

hijk = hikj = hjik. (1.5)

Similarly, we have the covariant derivative�2h of �h with componentshijkl as follows

∑
l

hijklwl = dhijk +
∑
l

hljkwil +
∑
l

hilkwjl +
∑
l

hij lwkl,

and it is easy to get the following Ricci formula

hijkl − hijlk =
∑
m

himRmjkl +
∑
m

hmjRmikl. (1.6)

From now on, we assume thatM is minimal. Denote byS = ∑
i,j

h2
ij the square of length ofh. The

components of the Ricci curvature and the scalar curvature are given respectively by

Rij = (n− 1)δij −
∑
k

hikhjk. (1.7)

R = n(n− 1)− S. (1.8)

It follows from (1.8) thatS is constant if and only ifR is constant. For any fixed pointp inM, we

can choose a local orthonormal frame fielde1, ..., en such that

hij = λiδij . (1.9)
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Let S = ∑
i,j

h2
ij . The following formulas can be obtained by a direct computation (Peng and Terng

1983).

�hij = (n− S)hij . (1.10)

1

2
�S =

∑
i,j,k

h2
ijk − S(S − n). (1.11)

The Gauss-Kronecker curvatureK of M is defined by

K = det(hij ). (1.12)

In this note we give a sketch of the proof of the following results.

Theorem 1.1. Let M be a closed minimal hypersurface with constant scalar curvature in Sn+1.

If M has (n − 1) principal curvatures with the same signal everywhere, then M is isometric to a

Clifford Torus S1
(√

1
n

) × Sn−1
(√

n−1
n

)
.

Corollary 1.2. Let M be a closed minimal hypersurface with constant scalar curvature in S5.

Assume in addition that M has Gauss-Kronecker curvature K negative everywhere. Then M is

isometric to a Clifford Torus S1
(

1
2

) × S3
(√

3
2

)
.

Corollary 1.3. Let M be a closed minimal hypersurface with constant scalar curvature in S5.

Assume S > 4. Then there exists a point p on M such that K(p) ≥ 0.

Theorem 1.4. LetM be a closed minimal hypersurface with constant Gauss-Kronecker curvature

in Sn+1. IfM has (n−1) principal curvatures with the same signal everywhere, thenM is isometric

to a Clifford Torus S1
(√

1
n

) × Sn−1
(√

n−1
n

)
.

2. SKETCH OF THE PROOF OF THEOREM 1.1

By changing the orientation forM and renumberinge1, ..., en if necessary, we may assume

λn < 0< λ1 ≤ λ2 ≤ ... ≤ λn−1. (2.1)

Notice thatK �= 0, hence the following function is well defined

F = log|det(hij )|.

We compute the Laplacian ofF obtaining

Fk =
∑
i,j

hijhijk and�F =
∑
k

Fkk =
∑
i,j,k

(
−

∑
l,m

himhljhlmkhijk + hijhijkk

)
. (2.2)
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SinceS is constant, from (1.10), (1.11) and using the symmetry ofhijk for indices, we get

S�F = −
∑
i

(
S

λ2
i

+ n

3

)
h2
iii −

∑
i �=j

(
S

λ2
i

+ 2S

λiλj
+ n

)
h2
iij −

n−1∑
i=1

(
S

λ2
i

+ 2S

λiλn
+ n

)
h2
iin −

(2.3)
n−1∑
j=1

(
S

λ2
n

+ 2S

λjλn
+ n

)
h2
nnj − 1

3

∑
i �=j �=k

[(
λi + λj + λk

λiλjλk

)
S + n

]
h2
ijk − 2n

3
S(S − n).

We need the following algebraic Lemma.

Lemma 2.1. Let λi and βij , i, j = 1, ..., n, be real numbers such that λn < 0 < λ1 ≤ ... ≤ λn−1

and
∑
i

λi = ∑
i

βij = ∑
i

λiβij = 0, j = 1, ..., n. Let us fix j ∈ {1, ..., n−1} and set gj ∈ {1, ..., n}
the greatest index such that |βij | = max {|βgj j |, i = 1, ..., n}. Then βnj = 0 if and only if gj = n.

By differentiating
∑
i

hii = 0 and
∑
i,k

h2
ik = S = const., we obtain

∑
i

hiij = 0 and
∑
i

λihiij = 0, j = 1, ..., n.

Therefore, definingβij = hiij , thenλi andβij satisfy the conditions in Lemma 2.1. Consider the

following subsets of{1, ..., n− 1} = In−1:

A = {j ∈ In−1; gj = j}, B = {j ∈ In−1; gj �∈ {j, n}}, C = {j ∈ In−1; gj = n}.
Possibly, some of these subsets may be empty.

After re-enumeration ofe1, ..., en−1 if necessary, we can assume that

A = ∅ orA = {1, ..., r}, B = ∅ orB = {r + 1, ..., t}, C = ∅ orC = {t + 1, ..., n− 1},
where we adopt the following convention: ifA = ∅, thenr = 0, if B = ∅, thent = r and if

C = ∅, thent = n− 1. For instance, ifB = ∅, thenA = {1, ..., r} andC = {r + 1, ..., n− 1}.
According to Lemma 2.1, (2.3) can be rewritten as

S�F = −
n∑

i=r+1

(
S

λ2
i

= n

3

)
h2
iii −

∑
i �= j

i, j ≤ n− 1

(i, j) �= (gj , j), j = r + 1, ..., t

(
S

λ2
i

+ 2S

λiλj
+ n

)
h2
iij −

n−1∑
i=1

(
S

λ2
i

+ 2S

λiλn
+ n

)
h2
iin −

r∑
j=1

[(
S

λ2
n

+ 2S

λjλn
+ n

)
h2
nnj+

(
S

λ2
j

+ n

3

)
h2
jjj

]
−

t∑
j=r+1

[(
S

λ2
n

+ 2S

λjλn
+ n

)
h2
nnj +

(
S

λ2
gj

+ 2S

λjλgj
+ n

)
h2
gj gj j

]
−

1

3

∑
i �=j �=k

[(
λi + λj + λk

λiλjλk

)
S + n

]
h2
ijk − 2n

3
S(S − n). (2.4)
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Notice that



λiλj < 0, i < j, if and only if i ∈ {1, ..., n− 1} andj = n,

λi+λj+λk
λiλj λk

> 0, for i �= j �= k ∈ {1, ..., n− 1},

1
λgj λj

+ 1
λj λn

> 0, for j = r + 1, ..., t,

nλ2
n >

∑
i

λ2
i = S, thusn > S

λ2
n
.

(2.5)

Using Lemma 2.1 and combining (2.4) with (2.5), we get

S�F ≤ −2n

3
S(S − n). (2.6)

SinceM is compact, we can find a pointp onM such thatF(p) = min F . In particular,

∇F(p) = 0 and�F(p) ≥ 0 atp. On the other hand, fromS > 0, �F(p) ≥ 0 and (2.6), we

conclude thatS ∈ (0, n]. In this situation, a theorem of (Chern et al. 1970) implies thatS = n

so thatM is isometric to a Clifford TorusS1
(√

1
n

) × Sn−1
(√

n−1
n

)
. The Corollaries 1.2 and 1.3 are

obvious from the result due to (Chern et al. 1970) and Theorem 1.1.

3. SKETCH OF THE PROOF OF THEOREM 1.4

The proof of Theorem 1.4 follows essentially the pattern of the proof of Theorem 1.1 taking into

account the presence of one term that contains�S. We only stress those points which may lead to

some differences. By using (1.10), (1.11), (2.2) and the fact thatK is constant, we obtain

0 = S�F = −
∑
i

(
S

λ2
i

+ n

3

)
h2
iii −

∑
i �=j

(
S

λ2
i

+ 2S

λiλj
+ n

)
h2
iij − (3.1)

∑
i �=j �=k

(
S

λiλj
+ n

3

)
h2
ijk − 2n

3
S(S − n) + n�S

6
.

SinceM is compact, we can find a pointp onM such thatS(p) = maxS. In particular,∇S(p) = 0

and�S(p) ≤ 0 atp. Since∇S(p) = 0, we have
∑
i

λihiij (p) = 0, j = 1, ..., n, therefore, defining

βij = hiij (p), thenλi(p) andβij satisfy the conditions in Lemma 2.1.

By making use of the same proof as in Theorem 1.1, we obtain the following inequality

0 ≤ n�S(p)

6
− 2n

3
S(p)(S(p)− n). (3.2)

SinceS > 0, S(p) = maxS and�S(p) ≤ 0, by (3.2) we get thatS ∈ (0, n
]
. It follows from a

theorem of (Chern et al. 1970) thatM is isometric to a Clifford TorusS1
(√

1
n

) × Sn−1
(√

n−1
n

)
.
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Remark. Assume thatS is bounded from above or thatK is bounded from below. In this situation,

by applying theGeneralized Maximum Principle due to Yau and Omori (Yau 1975), and a result

due to (Cheng 1993), we can generalize all the results in this note tocomplete hypersurfaces in

Sn+1.
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RESUMO

SejaM uma hipersuperfície n-dimensional, mínima, fechada, imersa na esfera unitáriaSn+1 dimensional.

Suponha queM tem curvatura escalar ou curvatura de Gauss-Kronecker constantes. Nesta nota, anuncia-

remos que seM tem(n− 1) curvaturas principais com o mesmo sinal em todos os seus pontos, entãoM é

isométrica ao toro de CliffordS1
(√ 1

n

) × Sn−1
(√

n−1
n

)
.

Palavras-chave: Hipersuperfícies mínimas, curvatura escalar, curvaturas principais, toro de Clifford.
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