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Electromagnetic emission from circumbinary disk
of merging black holes

DMITRY V. BISIKALO & ANDREY G. ZHILKIN

Abstract: In the paper a scenario of an electromagnetic response formation from the
merging of two black holes is considered. In this scenario it’s assumed that the binary
black hole is surrounded by an accretion disk. As a result of the black holes merging
and mass loss, the accretion disk experiences a disturbance, which is accompanied by
shock waves propagation of sufficiently high intensity. Heating of matter by shock waves
leads to a sharp increase in the flux of electromagnetic radiation from the disk. The paper
includes a calculated light curve, radiation spectrum, and the estimation of characteristic
duration of the flare. This method can be used to discover of electromagnetic responses
from gravitational-wave events, which registered by the LIGO (Laser Interferometer
Gravitational-Wave Observatory) and the Virgo detectors. Supporting the registration
of gravitational-wave events by observations in the electromagnetic channel has
far-reaching prospects, since it corresponds to the ”multi-messenger” approach to the
study of astrophysical objects.
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INTRODUCTION

In classical observational astronomy, two important ”channels” or ”windows” were used to study
objects. The first channel is associated with detection of electromagnetic radiation from space objects
in the entire spectral range, from radio to gamma emission. The second channel is determined by
various kinds of particles coming to Earth from outer space. They include, in particular, cosmic rays and
neutrinos. In 2015 gravitational waves (Abbott et al. 2016a) were experimentally detected. As a result
of this discovery, gravitational wave astronomy has become another crucial channel for exploring the
Universe. Observational data, obtained from objects in different channels, allow us to get a muchmore
of useful information about the source. After all, in this case, we simultaneously advance research from
the point of view of fundamentally different physical processes! This is not simply a multi-frequency
method of investigation, when the object is simultaneously observed in different ranges of the
spectrum. This is the so-called ”multi-messenger” approach. Using such complex research methods,
we can achieve a much deeper understanding of the nature of astrophysical objects. Obviously, this
type of research has great and far-reaching prospects.

According to the theoretical concepts (Landau & Lifshitz 1975, Misner et al. 1973), binary black
holes (Clark & Eardley 1977) have the highest intensity of gravitational-wave radiation, and binary
black holes of stellar mass (Tutukov & Yungelson 1993, Lipunov et al. 1997) have the highest probability
of detection. Since 2015 LIGO and Virgo detectors have discovered several gravitational-wave events
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accompanying the merging of pairs of black holes (Abbott et al. 2016a, b, 2017a, b, c, 2019). All these
objects were located at distances from several hundred to several thousand Mps.

From the point of view of multi-messenger astronomy, the following important problem arises,
having both a theoretical and an observational aspect. At the disposal of researchers, there is a means
of detecting gravitational waves, the source of which are merging black holes. Is it possible to see the
electromagnetic response accompanying this event? What energy and what spectral characteristics
should it have? What is its characteristic duration in time?

It follows from the General theory of relativity that as a result of energy loss of a binary black
hole, when gravitational waves are emitted, the mass of the merged product turns out to be several
percent less than the original mass (Misner et al. 1973). In addition, the loss of momentum due to a
deviation from symmetry can cause the object to receive a recoil pulse — ”kick” (Peres 1962) and as
a result it gains speed of up to 1000 km/s (Bekenstein 1973). When a binary system is surrounded by
an envelope or accretion disk, this surrounding matter experiences a perturbation (Bode & Phinney
2007) as a result of the merging, which can lead to increased luminosity and quasi-periodic flares.
The black hole recoil effect and the subsequent gravitational perturbation can excite shock waves in
the accretion disk (Megevand et al. 2009), and the metric perturbations themselves cause mechanical
stresses in the disk, which can dissipate on the viscous time scale (Kocsis & Loeb 2008) or turn into
shock waves (Cherepashchuk 2016).

Attempts to study these questions for the case of merging supermassive black holes in the galactic
nuclei have been made repeatedly by many authors (see, e.g., Megevand et al. 2009, O’Neill et al.
2009, Corrales et al. 2010, Rosotti et al. 2012). In particular, the works (Lippai et al. 2008, MacFadyen &
Milosavljević 2008, Milosavljević & Phinney 2005, Shields & Bonning 2008, Schnittman & Krolik 2008)
studied perturbations of both geodesic orbits of particles and accretion disk in the framework of
simple analytical models. The application to disks in Active Galactic Nuclei is considered in (McKernan
et al. 2019). If a binary black hole with total mass of 106M� after the merging loses 5% of its mass, the
luminosity of the accretion disk increases by an order of magnitude, reaching the value of 1043 erg/s
(Corrales et al. 2010). The effect of the recoil pulse can lead to the same increase in luminosity, but its
value depends significantly on poorly defined parameters of the merging binary black hole (Fitchett
1983, Pietilä et al. 1995). For stellar mass black holes, estimates of accretion disk luminosity growth
were obtained up to 1042–1043 erg/s with the maximum radiation energy in the X-ray range (de Mink
& King 2017), however, it was assumed that the resulting waves are not transformed into shock waves.

Let’s consider the problem of the accretion disk perturbation around merging black holes. The
disturbance occurs as a result of a decrease in the mass of the central object and it can cause shock
waves in the disk, the propagation of which heats disk matter. This should lead to a sharp increase in
brightness of the disk, which can be regarded as the electromagnetic response of the system to the
effect of merging a binary black hole. An important advantage of this approach is that all the necessary
parameters of the model, and, consequently, the parameters of the electromagnetic response, can be
found directly from observations.

The electromagnetic response of the accretion disk around a stellar-mass binary black hole
resulting from decrease in the mass of the central object after the merging was investigated in our
papers (Bisikalo et al. 2019, Bisikalo et al. 2019). In (Bisikalo et al. 2019), a 1D numerical model was
developed and series of calculations were performed for disks with dominant gas pressure. In (Bisikalo
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et al. 2019) we developed a more detailed 1.5D numerical model that takes into account the radiation
pressure, as well as the adiabatic heating and cooling of the disk due to the vertical motion of matter
in the disturbed disk. For models, with parameters corresponded to the event GW170814 (Abbott et al.
2017c), bolometric light curves, electromagnetic radiation spectra were calculated, and flare duration
estimates were obtained. As it turned out, the main part of the electromagnetic radiation energy is
displayed in the X-ray and gamma-ray ranges, where the luminosity reaches 1043–1045 erg/s. We have
shown that such a flare, whose duration reaches hundreds of seconds, can be registered by tools that
currently exist.

The analysis of the results of numerical calculations carried out in papers (Bisikalo et al. 2019,
Bisikalo et al. 2019) allowed us to conclude that for a certain type of distribution density and
temperature in the original undisturbed accretion disk, the propagation of shock waves in the
disturbed disk becomes self-similar over time. In particular, the distance travelled by the shock wave
front in time t is described by the power law t2/3, and its speed falls in time as t–1/3. In (Bisikalo
& Zhilkin 2020), we obtained a complete self-similar solution to this problem using the necessary
information about shock waves taken from numerical calculations. From the self-similar solution,
we can obtain algebraic integrals of angular momentum and adiabaticity, as well as find asymptotic
relations for self-similar functions. This analytical model based on a self-similar solution allows to
estimate approximately the value of electromagnetic response of a gravitational-wave event without
performing time-consuming numerical calculations.

We emphasize that our numerical and analytical (self-similar) solutions assume spherical
symmetry of the central source. In case of accounting recoil momentum it is violated and therefore our
approach becomes inapplicable. It seems reasonable to solve such problems using three-dimensional
numerical models. In this paper, we discuss the results of our work that are of interest to
researchers who makes observations of astrophysical events (including black hole mergings) in the
electromagnetic channel in various ranges of the spectrum.

The paper is organized as follows. The next section describes the problem statement and
discusses approaches to solve it. The following section describes the results obtained using numerical
calculations and a self-similar solution. The last section contains the main conclusions of the paper.

PROBLEM STATEMENT

Basic equations

In the completed series of observations of O1 (from September 12, 2015 to January 19, 2016) and O2
(from November 30, 2016 to August 25, 2017), LIGO and Virgo gravitational wave detectors discovered
10 events of merging binary black holes (Abbott et al. 2019), of which only 5 do not have artefacts.
These events are shown in the Table I along with estimates of the component masses, the fraction
of mass loss, and the distance to the corresponding object. We can see from the table, that all these
objects correspond to black holes of stellar mass. At the same time, the share of mass loss when black
holes merges is about (2–6)%. In this paper we will consider the event GW170814 as the object under
study, corresponding to the merging of a binary black hole with component masses of 30.5 M� and
25.3 M�. For certainty, we will assume that the mass loss in this event was 5%.
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Table I. Parameters of merging binary black holes according to data gravitational-wave observations. The columns
indicate (from left to right): the name of the object, the mass of components, the relative change in mass, the
distance to object, and reference.

Object M1/M�, M2/M� ∆M/(M1 +M2), % D, Mps Reference

GW150914 36+5
–4 , 29

+4
–4 3.3–5.2 410+160

–180 (Abbott et al. 2016a)

GW151226 14.2+8.3
–3.7 , 7.5

+2.3
–2.3 2.9–5.4 440+180

–190 (Abbott et al. 2016b)

GW170104 31.2+8.4
–6.0 , 19.4

+8.3
–5.9 2.3–5.7 880+450

–390 (Abbott et al. 2017a)

GW170608 12+7
–2 , 7

+2
–2 2.8–5.1 340+140

–140 (Abbott et al. 2017b)

GW170814 30.5+5.7
–3.0 , 25.3

+2.8
–4.2 4.0–5.8 540+130

–210 (Abbott et al. 2017c)

When studying single black holes, it is often assumed that they are surrounded by accretion disks.
In our model, it is assumed that the system consists of two black holes surrounded by a circumbinary
disk. Obviously, such a disk cannot be formed at the stage of main-sequence stars or giant stars
(precursors of black holes), because a strong stellar wind and supernova explosions will destroy it
(Cherepashchuk 2016). If the lifetime of a binary system before merging is long, several scenarios for
forming a disk can be implemented. For example, the source of the disk matter may be an interstellar
molecular cloud, wind from a third star in a hierarchical system, or the remains of a star destroyed
by tidal action. As can be seen from the analysis of the considered scenarios, the probability of disk
formation is quite high and directly depends on the lifetime of the system. The lifetime of a binary
black hole before merging can be estimated as the characteristic time of angular momentum loss by
a close binary system with circular orbits. To merge a binary black hole with the parameters of object
GW170814 in Hubble time, it is necessary that initial inter-component distance does not exceed 48
R�. Thus, under any reasonable assumption about the initial distance between the components of a
binary black hole of stellar mass, the lifetime of the system will be sufficient for the formation of a
circumbinary accretion disk.

For single black holes, disks can exist starting from several gravitational radii. It is known (see e.g.
(Misner et al. 1973)) that there are no stable circular orbits inside the zone of 3Rg, where Rg = 2GM/c2

— gravitational radius, G — the gravitational constant, c — speed of light. It means that the internal
radius of the accretion disk around a single black hole should be larger than 3Rg. In the model under
consideration it is assumed that a binary black hole is surrounded by a common accretion disk. The
inner radius of the accretion disk around a binary black hole is about twice the distance between
the centers of black holes. This conclusion follows from estimates of the stability of orbits relative to
tidal forces (Bisikalo et al. 2019, Bisikalo & Zhilkin 2020) and is in good agreement with the results of
numerical simulation of binary systems with circular orbits of components whose mass ratio is close
to unity (Artymowicz & Lubow 1994, Bowen et al. 2019, Kaigorodov et al. 2010, Sytov et al. 2011).

The characteristic lifetime of a binary black hole is long, since the reduction of the
inter-component distance due to the emission of gravitational waves is very slow. The reduction time
of separation A from 3 R� to 3 gravitational radii is approximately 106 years, so the circumbinary disk
has time to adjust to these slow changes and can be considered stationary at any time. The final stage
of merging black holes happen very quickly — in a fraction of a second. The process of rapid merging
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of black holes begins when the distance between them is A = 3Rg,1 + 3Rg,2 = 3Rg, where Rg,1 and
Rg,2 — gravitational radii of components, Rg — gravitational radius calculated from their combined
mass M = M1 + M2 (gravitational radius of accretor) (Pretorius 2005, Campanelli et al. 2006, Baker
et al. 2006, Cohen et al. 2012). From the point of view of the disk, the final stage of merging can be
considered almost instantaneous. Therefore, we can assume that directly before the merger of black
holes, the internal radius of the disk rd is about 6 times greater than the gravitational radius of the
accretor Rg. This allows us to ignore relativistic effects and use the theory of Shakura & Sunyaev (1973)
when describing the properties of such an accretion disk.

In this model, the accretion rate Ṁ is determined by the rate of dissipation of the angular
momentum that occurs due to the turbulent viscosity. The intensity of turbulence is described by the
dimensionless parameter α, whose value does not exceed unit. The critical accretion rate is determined
by the value of the Eddington luminosity

Ṁcr = 1.8 · 10–9 m
χ

M�
year

, (1)

where m = M/M� — the dimensionless mass of the central object. The parameter χ determines the
accretion efficiency and in the case of a single non-rotating black hole is approximately equal to
0.06–0.08 (Lipunov 1992). Rotation increases the efficiency of stationary accretion to 0.32 (Bardeen
1970, Thorne 1974). In episodic accretion scenarios, the efficiency can reach 0.43 (Li & Paczyński 2000).
However, in our model, the specific value of this parameter is not critical, since the dimensionless
accretion rate ṁ = Ṁ/Ṁcr plays a determining role.

In the model of Shakura & Sunyaev (1973), three characteristic zones (A, B, and C) are distinguished
in the accretion disk, in which the distribution of hydrodynamic quantities is determined by the relative
contribution of gas pressure and radiation pressure, as well as the opacity mechanism. In zone A, the
radiation pressure prevails, and in zones B and C, it can be neglected compared to gas pressure. In
zones A and B, opacity is determined by Thomson scattering, and in zone C, opacity is provided by
free-free transitions. The vertical structure of the disk in these zones differs quite significantly, but
the radial dependences of density and temperature are close to power laws with almost the same
degree indices. Therefore, in all our calculations we use the following power distributions of density
and temperature in an undisturbed disk:

ρ0(r) = ρ∗
(
r
r∗

)–kd
, T0(r) = T∗

(
r
r∗

)–kt
, (2)

where ρ∗ and T∗ — the corresponding values at the point r = r∗. In particular, for zone B, the indices
kd = 33/20, kt = 9/10. The characteristic radius r∗ can be defined as the internal radius of the disk
rd or as the inner radius of the zone under consideration. For example, if zone B is considered, the
radius of the inner boundary rAB of this zone is determined from the condition equality of radiation
pressure and gas pressure (Shakura & Sunyaev 1973),

rAB = 159.3 α2/21m2/21ṁ16/21 Rg. (3)

The model of Shakura & Sunyaev (1973) is only used to describe the undisturbed state of an
accretion disk. Since the process of relaxation of the disk after merging black holes and mass
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loss of the central object is relatively fast, the further evolution of the disk can be considered in
the approximation of non-dissipative (without taking into account the viscosity) gravitational gas
dynamics (Bisikalo et al. 2019, Bisikalo et al. 2019).

The equations of gravitational gas dynamics describing the evolution of a geometrically thin
accretion disk after black holes merging can be written in the axisymmetric approximation in
cylindrical coordinates (r, ϕ, z) as follows:

∂ρ

∂t
+ vr

∂ρ

∂r
+ vz

∂ρ

∂z
+ ρ

[
1

r
∂

∂r
(rvr) +

∂vz
∂z

]
= 0, (4)

∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

–
v2ϕ
r

+
1

ρ

∂P
∂r

+ (1 – ξ)
GM
r2

= 0, (5)

∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

+
1

ρ

∂P
∂z

+ (1 – ξ)
GM
r3
z = 0, (6)

∂vϕ
∂t

+ vr
∂vϕ
∂r

+ vz
∂vϕ
∂z

+
vrvϕ
r

= 0, (7)

∂ε

∂t
+ vr

∂ε

∂r
+ vz

∂ε

∂z
+
P
ρ

[
1

r
∂

∂r
(rvr) +

∂vz
∂z

]
= 0, (8)

where ρ — density, vr — radial velocity, vz — vertical velocity, vϕ — azimuthal velocity, P — pressure, ε
— specific internal energy, M — total mass of a binary black hole before merging, ξ — fraction of the
mass of black holes radiated as gravitational waves.

In the case of geometrically thin disks, we can neglect the detailed description of the vertical
structure to study the effects of shock heating and adiabatic expansion. Instead, it can be used a
simple approximation when the vertical velocity vz at any given time remains proportional to the
height z (analogous to Hubble’s law in cosmology):

vz(r, z, t) = ψ(r, t)z. (9)

In the plane of symmetry of the disk, the vertical velocity component vz = 0. In our model we will
write all the equations (4)–(8) for the plane of symmetry of the disk. In this case the term vz∂/∂z in
convective derivatives disappears in all equations, and the equations of continuity (4) and energy (8)
will take the form:

∂ρ

∂t
+ vr

∂ρ

∂r
+ ρ

1

r
∂

∂r
(rvr) + ρψ = 0, (10)

∂ε

∂t
+ vr

∂ε

∂r
+
P
ρ

1

r
∂

∂r
(rvr) +

Pψ
ρ

= 0. (11)

The last term in the energy equation (11) describes the adiabatic heating of the disk due to its vertical
motion.

Suppose that the pressure in the disk at any time is determined by the expression

P(r, z, t) = P(r, t)e–z
2/H2(r,t), (12)

where H is a local half-thickness of the disk. Then from the equation for the vertical velocity (6) with
the help of relation (9) we can obtain the equation for the coefficient ψ,

∂ψ

∂t
+ vr

∂ψ

∂r
+ ψ2 –

2P
ρH2

+ (1 – ξ)
GM
r3

= 0. (13)
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Substituting z = H(r, t) into the relation (9), we find

vz(r,H(r, t), t) = ψ(r, t)H(r, t). (14)

On the other hand, we can write

vz(r,H(r, t), t) =
∂H
∂t

+ vr
∂H
∂r
. (15)

Therefore the local half-thickness of the disk H(r, t) satisfies the equation

∂H
∂t

+ vr
∂H
∂r

– ψH = 0. (16)

To complete the resulting system of equations, it is necessary to take into account the equations
of state that determine the dependence of the pressure P and the internal energy ε on density ρ and
temperature T . Since in this paper we consider only the zone B of the accretion disk, we do not take
into account the radiation pressure. However, it should be noted that in strongly disturbed regions of
this zone, where shock waves of high intensity occur, the temperature can increase so much that the
effects of radiation pressure can play a significant role. The equations of state can be written as:

P = AgasρT , ε =
AgasT
γ – 1

, (17)

where Agas = 2kB/mp — the gas constant, kB — the Boltzmann constant, mp — proton mass, γ —
adiabatic index. For a fully ionized hydrogen plasma, the mean molecular weight should be assumed
to be 1/2, and the adiabatic index γ = 5/3.

Numerical model

For the numerical solution of the obtained equations, it is convenient to rewrite them in dimensionless
form. To do this, we will select the following values as dimensional scales: r0 = r∗, v0 = c∗, t0 = r∗/c∗,
ρ0 = ρ∗, P0 = ρ∗c2∗, ε0 = c2∗, T0 = T∗. Here we use the notation for the speed of sound c∗, which is
determined by the ratio P∗ = ρ∗c2∗, where P∗ is the pressure at the point r∗.

To simplify the writing, when describing a numerical model, dimensionless quantities will be
denoted by the same symbols as the corresponding dimensional ones. Then the system of equations
obtained in the previous section will take the following form:

dρ
dt

+ ρ
1

r
∂

∂r
(rvr) + ρψ = 0, (18)

dvr
dt

–
v2ϕ
r

+
1

ρ

∂P
∂r

+ (1 – ξ)
μ
2

r2
= 0, (19)

dvϕ
dt

+
vrvϕ
r

= 0, (20)

dε
dt

+
P
ρ

1

r
∂

∂r
(rvr) +

Pψ
ρ

= 0, (21)

dr
dt

= vr , (22)
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dψ
dt

+ ψ2 –
2P
ρH2

+ (1 – ξ)
μ
2

r3
= 0. (23)

dH
dt

= ψH, (24)

P = ρT , (25)

ε =
T
γ – 1

. (26)

In these equations we use the notation for the full derivative is used,

d
dt

=
∂

∂t
+ vr

∂

∂r
. (27)

The parameter

μ =

√
GM
r∗c2∗

(28)

corresponds to the Mach number at the point r = r∗.
To implement a numerical method for solving this system of equations, we need to pass to the

mass Lagrangian variable. However, the presence of an additional term ρψ in the continuity equation
(18) implies that the mass of the fluid column of unit height is not conserved:

d
dt

r∫
0

ρrdr 6= 0. (29)

Therefore, this value cannot be used as a mass Lagrangian variable. To solve this problem, we use the
method of virtual fluid. Namely, along with the real fluid with density ρ, which satisfies the equation
(18), we will consider a virtual fluid with a density ρ̃ that satisfies the equation

dρ̃
dt

+ ρ̃
1

r
∂

∂r
(rvr) = 0, (30)

that does not include the corresponded term ρ̃ψ. It is obvious that the virtual fluid describes the same
disk, but it is in strict vertical hydrostatic equilibrium.

In this case, we can define a mass Lagrangian variable of the following view:

q =

r∫
0

ρ̃rdr. (31)

It is easy to see that the relations
∂

∂r
= rρ̃

∂

∂q
,

1

ρ̃
= r

∂r
∂q

(32)

are fulfilled. In Lagrangian variables, the equation (30) takes the form:

d
dt

(
1

ρ̃

)
=

∂

∂q
(rvr) . (33)

It is easy to check that taking into account the equation for the radial coordinate (22), the equation
(33) and the second equation in (32) are equivalent.
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Denote by η the ratio of densities of real and virtual fluids,

η =
ρ

ρ̃
. (34)

Then the second relation in (32) can be rewritten as

η = ρr
∂r
∂q
. (35)

The equations (18), (19) and (21) in mass Lagrangian variables will take the form:

d
dt

(
1

ρ

)
=

1

η

∂

∂q
(rvr) +

ψ

ρ
, (36)

dvr
dt

= –
r
η

∂P
∂q

+
v2ϕ
r
– (1 – ξ)

μ
2

r2
, (37)

dε
dt

= –
P
η

∂

∂q
(rvr) –

P
ρ
ψ. (38)

The other equations in the system (18)–(26) remain the same.
Let’s introduce a difference mesh in the computational domain in the coordinate system

associated with the mass Lagrangian coordinate q, the structure of which is determined by the
distribution of coordinates of nodes qi, where the index i = 0, 1, . . . ,N. The mesh step ∆qi+1/2 =

qi+1 – qi is chosen so that the logarithmic scale of the distance between neighboring nodes is the
same, ln(qi+1/qi) = const. We will refer the radial coordinate r and the velocities vr , vϕ at time tn to
the mesh nodes: rni , v

n
r,i, v

n
ϕ,i, and the thermodynamic values ρ, P, ε, T as well as the values η, ψ, H to

the centers of the cells which are numbered with half-integer indices: ρni+1/2, p
n
i+1/2, ε

n
i+1/2, t

n
i+1/2,

η
n
i+1/2, ψ

n
i+1/2, h

n
i+1/2 (Samarskii & Popov 1980).

To simplify further expressions we will use the following notation for finite difference operators:

(∆tf )n+1/2 =
fn+1 – fn

∆t
, (∆qf )i+1/2 =

fi+1 – fi
∆qi+1/2

, (∆qf )i =
fi+1/2 – fi–1/2

∆qi
, (39)

where ∆qi = (∆qi+1/2 + ∆qi–1/2)/2. At the same time, wherever this does not cause
misunderstandings, indices from operators can be omitted.

The equations (18)–(26) can be approximated using the following finite-difference scheme:

∆t
1

ρi+1/2
=

1

η
n+1/2
i+1/2

[
∆q

(
rn+1/2vn+1/2

r
)]
i+1/2

+
ψ
n+1/2
i+1/2

ρ
n+1/2
i+1/2

. (40)

∆tvr,i = –
rn+1/2
i
η
n+1/2
i

(∆qΠ
n+σ)i +

(vn+1/2
ϕ,i )2

rn+1/2
i

– (1 – ξ)
μ
2

rn+1
i rni

. (41)

∆tvϕ,i = –
vn+1/2
r,i vn+1/2

ϕ,i

rn+1/2
i

, (42)

∆tεi+1/2 = –
Πn+σi+1/2

η
n+1/2
i+1/2

[
∆q

(
rn+1/2vn+1/2

r
)]
i+1/2

–
Pn+1/2
i+1/2 ψ

n+1/2
i+1/2

ρ
n+1/2
i+1/2

. (43)
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∆tri = vn+1/2
r,i , (44)

∆tψi+1/2 = –(ψn+1/2
i+1/2 )

2 +
2Pn+1/2
i+1/2

ρ
n+1/2
i+1/2 (H

n+1/2
i+1/2 )

2
– (1 – ξ)

μ
2

(rn+1/2
i+1/2 )3

, (45)

∆tHi+1/2 = ψn+1/2
i+1/2 H

n+1/2
i+1/2 , (46)

Pn+1
i+1/2 = ρn+1

i+1/2T
n+1
i+1/2, (47)

εn+1
i+1/2 =

Tn+1
i+1/2
γ – 1

, (48)

η
n+1
i+1/2 =

1

2
ρ
n+1
i+1/2

[
∆q(rn+1)2

]
i+1/2

, (49)

Πn+1
i+1/2 = Pn+1

i+1/2 + ω
n+1
i+1/2, (50)

ω
n+1
i+1/2 = Ω

(
ρ
n+1
i+1/2, r

n+1
i , rn+1

i+1 , v
n+1
i , vn+1

i+1

)
, (51)

where
Πn+σi+1/2 = σΠn+1

i+1/2 + (1 – σ)Πni+1/2, (52)

ri+1/2 =
1

2

(
ri + ri+1

)
. (53)

The parameter σ characterizes the degree of implicitness of the scheme and varies from 0 to 1. This
parameter determines the order of approximation in time. In the case of σ = 1/2, the scheme has a
second order of approximation in ∆t, and in other cases — the first order. The value ω describes the
artificial viscosity, that is necessary for a more correct description of solutions with shock waves. The
explicit form of the function Ω is defined by a specific artificial viscosity model. In our calculations we
used a linear viscosity of the following form

ω = –
νρ

2

(
∂vr
∂r

–
∣∣∣∣∂vr∂r

∣∣∣∣) , (54)

where the coefficient νi+1/2 = ν0∆qi+1/2. The value ν0 was set in the range from 3 to 5.
It can be shown that this difference scheme is fully conservative (Samarskii & Popov 1980) in the

sense that it ensures not only a balance of the total energy, but also of the individual types of energy
(thermal, kinetic, rotational, and gravitational). In addition, it can easily be shown that the difference
relation satisfies in the scheme

∆t
(
rivϕ,i

)
= 0, (55)

describing the law of conservation of angular momentum l = rvϕ. This means that the following
equality is implied

rni v
n
ϕ,i = r0i v

0
ϕ,i = li, (56)

where li is the mesh function for specific angular momentum. It follows

vnϕ,i =
li
rni
. (57)
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The system of algebraic equations (40)–(51) is non-linear. To solve this system, we use a
combination of Newton’s method and the sweep method. The expressions (2) are used as initial
conditions for density and temperature. The initial distribution of pressure and the internal energy can
be obtained from the equations of state (25) and (26). In addition, we assume that at the initial moment
vr(r, 0) = 0, ψ(r, 0) = 0, η(r, 0) = 1. Initial conditions for the azimuthal velocity and half-thickness of
the disk can be obtained from stationary solutions of the equations (19) and (23):

vϕ(r, 0) =

[
μ
2

r
– (kd + kt)r–kt

]1/2
, (58)

H(r, 0) =

[
2P(r, 0)
ρ(r, 0)

r3

μ2

]1/2
=

√
2

μ
r
3–kt
2 . (59)

The numerical model is defined by the following parameters: the parameters kd and kt of the initial
density and temperature profiles, the fraction of mass loss ξ, and the Mach number μ. Note that in the
special case ψ = 0, this numerical model turns into the simpler one we considered in paper (Bisikalo
et al. 2019), which does not take into account the effects caused by adiabatic disk vertical expansion.

Analytical approach

The analysis of numerical solutions we obtained in (Bisikalo et al. 2019) allows us to conclude that the
shock waves arising in a perturbed disk have self-similar nature. In particular, the distance travelled
by the shock wave front during the time t is described by the power law t2/3, and its velocity decreases
over time as t–1/3. In (Bisikalo et al. 2019), we explored the possibility of constructing an appropriate
self-similar solution. However, it was not possible to obtain it completely due to the difficulties
associated with analytical definition for positions of shock waves. A complete self-similar solution is
obtained in (Bisikalo & Zhilkin 2020) based on a comparison of self-similar and numerical solutions.

A self-similar solution describes the evolution of a perturbed disk when shock waves travel far
enough away from its internal boundary. We can assume that this region corresponds to zone B of
the accretion disk, and the radiation pressure already does not significantly affect the dynamics of
matter behind the shock wave front. In (Bisikalo & Zhilkin 2020), we also did not take into account
the effects associated with adiabatic disk expansion when constructing a self-similar solution. This
simplified numerical model we considered in (Bisikalo et al. 2019).

The initial distributions of all values with the exception of azimuthal velocity are described by
power functions. The initial distribution for angular momentum (in dimensional values)

l0(r) = r∗c∗

[
μ
2 – (kd + kt)

(
r
r∗

)1–kt
]1/2 (

r
r∗

)1/2
. (60)

This expression shows that in the special case of kt = 1 (which is close to 9/10 in the model of Shakura
& Sunyaev (1973) for zone B), this distribution also turns out to be power-law,

l0(r) = r∗c∗
(
μ
2 – kd – 1

)1/2 ( r
r∗

)1/2
. (61)
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Note that this expression is real if μ2 > kd + 1. For example, in the case of kd = 33/20, it should be
μ > 1.63.

We will look for a solution in the following form (Sedov 1982):

ρ(r, t) = ρ0(r)σ(λ), (62)

vr(r, t) =
r
t
u(λ), (63)

l(r, t) = l0(r)Λ(λ), (64)

ε(r, t) = ε0(r)w(λ), (65)

where the functions ρ0(r) and l0(r) are defined by the expressions (2) and (61), and the function

ε0(r) =
c2∗
γ – 1

(
r
r∗

)–1
(66)

corresponds to the initial temperature distribution (2) with the index kt = 1. The self-similar functions
σ, u, l, and w depend on the self-similar variable λ, which we select as

λ =
r
r∗

(
t∗
t

)δ
, (67)

where δ is the self-similarity index, and t∗ = r∗/c∗. This choice of a self-similar variable implies that
the limit at λ → ∞ corresponds to the undisturbed state of the disk. Therefore, in the self-similar
solution in the limit at λ → ∞ functions σ → 1, u → 0, Λ → 1, w → 1. The δ parameter should be
defined from the self-similarity condition of the original equations (18)–(21) (in dimensional form for
the case of ψ = 0).

In terms of self-similar variables (62)–(65) and (67), the equations (18)–(21) can be written as:

(u – δ)
d ln σ
d ln λ

+
du
d ln λ

+ (2 – kd)u = 0, (68)

(u – δ)
du
d ln λ

+ u(u – 1) +
w
λ3

(
d ln σ
d ln λ

+
d lnw
d ln λ

– kd – 1
)
–

– (μ2 – kd – 1)
Λ2

λ3
+ (1 – ξ)

μ
2

λ3
= 0, (69)

(u – δ)
d lnΛ
d ln λ

+
u
2
= 0, (70)

(u – δ)
d lnw
d ln λ

+ (γ – 1)
du
d ln λ

+ (2γ – 3)u = 0. (71)

All dimensional coefficients are completely reduced in the case of δ = 2/3.
The shock wave front in the self-similar solution corresponds to a constant value of the

self-similar variable λs = const. It follows that the position of the shock wave

rs = λsr∗
(
t
t∗

)δ
∝ tδ, (72)
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and its velocity

D =
drs
dt

= δ
rs
t
∝ tδ–1. (73)

The Hugoniot conditions must be performed on the shock wave, which connecting the value before
the discontinuity (we mark it with index 1) and after the discontinuity (we mark it with index 2). A
simple analysis leads to the following relations for self-similar functions:

σ2V2 = σ1V1, (74)

Λ2 = Λ1, (75)

V2 =
γ – 1
γ+ 1

1

V1

(
V21 +

2

γ – 1
W1

)
, (76)

W2 =

(
γ – 1
γ+ 1

)2 1

V21

(
V21 +

2

γ – 1
W1

)(
2γ

γ – 1
V21 –W1

)
, (77)

where the notation for auxiliary values is used

V = u – δ, W =
γw
λ3
. (78)

From these conditions, in particular, it follows that the mass flow density j = σ V and the angular
momentum Λ remain continuous when passing through the front shock wave. Since j 6= 0 on shock
waves, u cannot equal δ either to the left or to the right of the discontinuity, u 6= δ. Moreover, all shock
waves in the disk propagate from the center to the periphery. Hence, j < 0 and therefore should be
u < δ.

From the self-similar equations (68)–(71), two algebraic integrals can be obtained that express the
laws of conservation of angular momentum and entropy. These integrals have the following form:

σ|u – δ|
Λ2(2–kd)

= const, (79)

σ
2γ–3

w2–kd
|u – δ|kd(γ–1)–1 = const. (80)

Since the values σV and Λ remain continuous on shock waves, the integration constant in the first
algebraic integral (79) has the same value in the entire computational domain. Using the values of
self-similar functions σ = 1, u = 0, Λ = 1 in the limit at λ→ 1, we find that this constant is equal to
the self-similarity index δ. So we can write

Λ2(2–kd) =
σ

δ
|u – δ|. (81)

This algebraic integral expresses the law of conservation of angular momentum in a self-similar form.
It allows to express explicitly the Λ function via the σ and u functions. In contrast to the law of
conservation of angular momentum, the law of conservation of entropy holds only in the smoothness
region of the solution, since when passing through the shock wave front, as follows from the Hugoniot
conditions (74)–(77), the entropy of the gas is not conserved. Therefore, the integration constant in
(80) will be different in each smoothness region. In the outer region of smoothness (before the first
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shock wave), the integration constant can again be determined using the limit values at λ → ∞ of
self-similar functions. It turns out to be equal δkd(γ–1)–1. So we can write:

w2–kdδkd(γ–1)–1 = σ2γ–3|u – δ|kd(γ–1)–1. (82)

This relation in self-similar form is the algebraic integral of adiabaticity. It allows (in the outer region
of the perturbed disk) to express explicitly the function ε via the functions σ and u.

The self-similar solution allows to find the asymptotic behaviour of self-similar functions in the
limits at λ → ∞ and at λ → 0. The first asymptote describes the growth of perturbations in the
accretion disk at small times. On the other hand, it corresponds to the state of the disk at any time
at large distances r � r∗ from the central object. The analysis shows (Bisikalo & Zhilkin 2020) that in
the limit at λ→ ∞ functions

u =
ξμ

2

λ3
, σ = 1 +

1

2
(kd + 1)

ξμ
2

λ3
. (83)

In the dimensional values, we find:
vr = ξGM

t
r2
, (84)

ρ – ρ0
ρ0

=
1

2
(kd + 1)ξGM

t2

r3
. (85)

In other words, velocity perturbations grows linearly (proportional to t), and density perturbations
does according to the quadratic law (proportional to t2). At this moment, the rate of growth of
perturbations is directly proportional to the value ξ. The corresponding expressions for the functions
Λ and w can be obtained from here using the algebraic integrals of angular momentum (81) and
adiabaticity (82).

The second asymptote of self-similar functions in the opposite limit at λ → 0 describes the
transition of a perturbed accretion disk to a new stationary state at large times t � t∗. On the other
hand, due to the self-similar nature of the solution, it corresponds to the state of the disk close to the
central object at any time. Let’s assume that in the limit at λ → 0, the self-similar functions u → 0,
σ→σ0, w → w0, Λ → Λ0. Then from the equation (69), we can obtain the relation

(kd + 1)w0 + (μ2 – kd – 1)Λ
2
0 = (1 – ξ)μ2. (86)

The algebraic integral of angular momentum (81) allows to write an expression

Λ2
0 = σ

1/(2–kd)
0 . (87)

From these two equations, w0 can be expressed in term of σ0. The remaining parameter σ0 cannot be
found analytically directly from the self-similar solution due to the presence of shock waves in it. But
it is not difficult to determine it from the numerical solution of self-similar equations.

We built a self-similar solution using the following methodology. First, for a sufficiently large value
of the self-similar variable λ = λmax, the values σ(λmax) and u(λmax) were calculated by the formula
(83), describing the asymptotes of these quantities in the limit at λ → ∞. Values of w(λmax) and
Λ(λmax) were calculated using the algebraic integrals (82) and (81). These values were used as initial
conditions. Next, by setting a certain (in general case, it can be a variable) step of the self-similar
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variable ∆λ < 0, using the Runge-Kutta numerical scheme of the 4th order, we can find the values for
all quantities for λ < λmax.

The number of shock waves and the positions of their fronts λs, where the index s determines
the shock wave number, cannot be found from the self-similar solution itself. However, this necessary
information about shock waves can be taken from the corresponding numerical solution. As soon as
in the process of numerical integration of self-similar equations, the self-similar variable λ becomes
equal to λ1, the value of the functions at the point λ+∆λ is calculated using the Hugoniot conditions
(74)–(77). After this, the integration procedure continues until the next shock wave.

RESULTS OF CALCULATIONS

Numerical simulation

As an example, we present the results of numerical calculation for a model with the parameter
μ = 100. This model we was considering in (Bisikalo & Zhilkin 2020), as one of the physical models
corresponding to the GW170814 event. In this case, the dimensionless accretion rate ṁ = 0.05, and the
characteristic radius r∗ was considered as the internal radius of the disk rd = 6Rg. If the turbulence
parameter α = 0.01, then from the model of Shakura & Sunyaev (1973) we can find the following
parameters at a radius of r∗: density ρ∗ = 1.03 g/cm3, temperature T∗ = 5.65 · 107 K, speed of
sound c∗ = 9.66 · 107 cm/s, characteristic time t∗ = 1.01 s. The initial state of the accretion disk
was determined by power distributions of density and temperature (2) with indices kd = 33/20 and
kt = 9/10, which correspond to zone B. The relative change in the mass of the central object as a
result of merging black holes was set to equal ξ = 0.05. The calculation was performed for a mesh
with the number of cells N = 5000. As mentioned above, to increase the accuracy of calculation in
the central regions of the disk, the mesh step in mass Lagrangian coordinates was set to that the
distances between neighboring nodes were the same on a logarithmic scale.
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Figure 1. Radial density distribution ρρρ (left) and temperature TTT (right) at two time moments t = 7.84t∗t = 7.84t∗t = 7.84t∗ and t = 31.4t∗t = 31.4t∗t = 31.4t∗.
Initial distributions are shown as a dotted line.

In Fig. 1–4 numerical distributions of density ρ, temperature T , radial vr , and azimuthal vϕ
velocities, coefficient ψ, half-thickness of the diskH and coefficient η at twomoments of time t = 7.84t∗
and t = 31.4t∗ are presented. Dotted lines show the corresponding initial distributions of values. As
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Figure 2. Radial distribution of the radial vrvrvr (left) and azimuthal vϕvϕvϕ (right) velocities at two time moments t = 7.84t∗t = 7.84t∗t = 7.84t∗
and t = 31.4t∗t = 31.4t∗t = 31.4t∗. Initial distributions are shown as a dotted line.
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Figure 3. Radial distribution of the coefficient ψψψ (left) and the half-thickness of the disk H (right) at two time
moments t = 7.84t∗t = 7.84t∗t = 7.84t∗ and t = 31.4t∗t = 31.4t∗t = 31.4t∗. Initial distributions are shown as a dotted line.
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Figure 4. Radial distribution of the coefficient ηηη at two time moments t = 7.84t∗t = 7.84t∗t = 7.84t∗ and t = 31.4t∗t = 31.4t∗t = 31.4t∗. The initial
distribution is shown as a dotted line.
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we can see from the figures, merging black holes and mass loss of the central object leads to a
perturbation of the accretion disk. This disturbance first occurs at the inner edge of the disk, and
then propagates radially to its outer parts. The spatial perturbation profile has a complex structure
and consists of a number of strong non-linear waves, some of which are shock waves. The profile
analysis allows to identify at least two shock waves of sufficiently high intensity for this calculation
run. It is interesting to note that the azimuthal velocity distribution vϕ (see the right panel in Fig. 2)
and, consequently, the local specific angular momentum l = rvϕ, practically does not change.

In the region of perturbation, the disk structure becomes significantly non-stationary. The
distribution of the radial velocity vr has an oscillatory nature and it changes sign many times (see
the left panel in Fig. 2). This means that some parts of the disk move outward (vr > 0), while others
move inward (vr < 0). The vertical structure of the disk experiences strong variations. The coefficient
ψ, which determines the vertical velocity (see the equation (9)), changes rapidly over time with a
pronounced oscillatory nature (see the left panel in Fig. 3). This leads to quasi-periodic changes in
the half-thickness of the disk H (see the right panel in Fig. 3), the amplitude of which gradually decays.
After the passage of non-linear and shock waves, a new stationary state is formed in the disk, in which
the radial and vertical velocities are zero. This new state is characterized by a lower density, higher
temperature, and increased disk thickness. Analysis of the radial distribution of the coefficient η (see
Fig. 4) allows to conclude that as a result of the vertical expansion of the disk, the density in the plane
of symmetry drops by more than 2 times compared to the situation when this effect is not taken into
account (ψ = 0).

The passage of shock waves in the disk leads to heating of matter. A new stationary state of
the disk that begins to form in its internal part behind the shock waves is characterized by a higher
temperature. As a result, the luminosity of the accretion disk increases dramatically. This phenomenon
can be consider as an electromagnetic response of the object to the effect of merging black holes and
loss of mass due to the radiation of gravitational waves.

The bolometric luminosity of an accretion disk (when viewed from one side) can be calculated
using the expression

L(t) = 2π2
∞∫
rd

dr rσSBT4eff(r, t), (88)

where σSB — the Stefan–Boltzmann constant, Teff — local (at a given radius r) effective temperature.
Effective temperature Teff is not equal to the temperature in the plane of symmetry T , because the
accretion disk in zone B is optically thick and therefore radiation comes from the surface layer. In
this case, we can assume that the radiation of the disk in zone B has the Planck’s spectrum. The
temperature of matter in this surface layer is determined by the processes of heat energy transfer in
the vertical direction from the plane of symmetry of the disk to its surface.

In a geometrically thin accretion disk, a simple approximation can be used to estimate the
effective temperature, in which it is assumed that Teff = fT , where the coefficient f is determined
by a specific process of heat transfer in the vertical direction (Bisikalo et al. 2019, Bisikalo et al. 2019).
If the heat energy transfer is carried out by radiant heat conduction, then it can be assumed that the
coefficient f = 0.1. If the energy transfer in vertical direction is determined by convection, then the
temperature difference can be estimated by f = 0.5.
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Figure 5. Dependence of bolometric luminosity on time L(t)L(t)L(t) (left). Electromagnetic radiation spectra FνFνFν for radiative
(thin lines) and convective (bold lines) disks. Solid lines describe the spectra of disturbed disks (at time t = 31.4t∗t = 31.4t∗t = 31.4t∗),
and dotted lines show the corresponding spectra of undisturbed disks.

The light curve L(t), calculated numerically under these assumptions, is shown on the left panel
of Fig. 5. Scale factor

L∗ = 2π2f 4r2∗σSBT4∗ (89)

is determined by the type of heat transfer process. In this version of the calculation (parameter μ =
100), the bolometric luminosity of the disturbed disk increases by about three orders of magnitude
compared to the luminosity in the undisturbed one. The luminosity grows very quickly, in a time of
the order of 0.1t∗, which for this model corresponds to the time of 0.1 s. Therefore, this process has a
flare nature.

Due to the processes of radiative cooling, the heatedmatter of the disturbed disk should gradually
cool down, which will lead to a slow decrease in luminosity. We did not take this process into account
in the hydrodynamic model. The characteristic cooling time of the accretion disk can be estimated as
follows. The volumetric cooling coefficient in the diffusion approximation of radiation transfer can be
written as

Λcool =
4σSBT4

3κρH2
, (90)

where κ is the opacity coefficient, which in zone B is determined by the Thomson scattering. Therefore,
the typical cooling time

tcool =
ρε

Λcool
. (91)

From the obtained numerical results, it follows that at the point r = r∗ the characteristic cooling time
tcool is several units of t∗ and in this area cooling occurs quickly enough. However, as the distance
increases, the cooling time tcool becomes large. For example, at a distance of r = 20r∗, the cooling
time is several hundred times greater than the typical time scale of the problem t∗. In future works,
we plan to take these processes into account more accurately in our numerical model.

The spectral density of the radiation flux from one side of the disk in a perpendicular direction

Fν(t) = 2π2
∞∫
rd

dr rBν(Teff(r, t)), (92)
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defined by the Planck function

Bν(T) =
2hν3

c2

(
e
hν
kBT – 1

)–1
, (93)

where ν — frequency, h — the Planck constant. The obtained electromagnetic radiation spectra at the
time t = 31.4t∗ are presented on the right panel in Fig. 5. The spectra for radiative disks are shown by
thin lines, for convective disks — by bold lines. At the same time, solid lines describe the spectra of
disturbed disks, and the dotted ones correspond to the spectra of undisturbed disks. The values of
the Fν threads are given in the absolute units.

The main radiation energy is concentrated in the range from 1 keV to 100 keV, which corresponds
to soft and hard X-rays. In addition, a significant portion of the radiation energy comes in the gamma
range (hν ≥ 100 keV). In both cases (radiative and convective disks), the maximum radiation flux
during the flare increases by two orders of magnitude. At the same time, the frequency at which the
maximum is reached practically does not shift. In the case of convective disks, the radiation flux is
two orders of magnitude greater than that from radiative disks. In addition, the maximum value of
the flow from convective disks in comparison with radiative disks is shifted to the region of hard X-ray
radiation.

Self-similar solution

Self-similar solutions describing the accretion disk perturbation that occurs as a result of black hole
merging and mass loss are presented in our paper (Bisikalo & Zhilkin 2020). To complete the picture,
we calculated the models with different values of the parameter μ, lying in a fairly wide range of
2 ≤ μ ≤ 200. In this paper, for example, we describe only one model that corresponds to the value of
the parameter μ = 100.

The self-similar functions u(λ), σ(λ), w(λ) and Λ(λ), obtained for this solution, shown in Fig. 6 and
7. As we can see from these figures, for this version of solution, three shock waves are formed in the
disk, following each other. The first (external) wave has the highest intensity, and the third (internal)
has the lowest one. The positions of shock waves are determined by the values of the self-similar
variable λ1 = 5.905, λ2 = 4.249, λ3 = 3.628. Note that the self-similar function Λ(λ), describing the
profile of the local specific angular momentum, changes continuously on shock waves in accordance
with the Hugoniot conditions (75). A non-linear precursor propagates before the external shock wave,
the position of which can be determined by a local maximum at the point λ ≈ 14. In the limit at λ→ 0,
the function w(λ) tends to a constant value of w0 = 11.256. This value determines the temperature
of the disk in the region behind the shock waves. The corresponding limit value of the σ(λ) function
equal to σ0 = 0.982.

Using the constructed self-similar solution, it is possible to estimate the luminosity of a perturbed
accretion disk. To do this, again assume that the effective temperature Teff(r, t) = fT(r, t), where
the coefficient f is determined by the type of heat transfer process in the vertical direction. The
temperature in the plane of symmetry of the disk in a self-similar solution is defined by the expression

T(r, t) = T∗
r∗
r
w(λ). (94)
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Hence, the bolometric luminosity of (88) can be represented as

L(t) = 2πf 4σSBT4∗ r
2
∗

(
t∗
t

)4/3 ∞∫
(t∗/t)2/3

w4(λ)dλ
λ3

, (95)

where we set rd = r∗. The integral over the self-similar variable λ can be split into the sum of two
integrals over the intervals (t∗/t)2/3 ≤ λ ≤ 1 and 1 ≤ λ ≤ ∞. In the first integral, the function w(λ)
with good accuracy, can be replaced with its limit value w0 at λ→ 0:

1∫
(t∗/t)2/3

w4(λ)dλ
λ3

=
w4
0

2

[(
t
t∗

)4/3
– 1

]
. (96)

The second integral Iμ does not depend on time and can be calculated based on the obtained
self-similar solution. Its specific value is determined by the parameter μ. In the case of μ = 100,
it turns out to be equal to Iμ = 7789.75. As a result, we find the following expression

L(t) = 2πf 4σSBT4∗ r
2
∗

(
t∗
t

)4/3{w4
0

2

[(
t
t∗

)4/3
– 1

]
+ Iμ

}
. (97)

This function increases monotonically over time and tends to a constant value in the limit t � t∗. In
this limit, the bolometric luminosity of the perturbed accretion disk is described by the expression

Lmax = πw4
0f

4
σSBT4∗ r

2
∗ . (98)

The dependence L(t), obtained in the self-similar solution for the parameter μ = 100, normalized
to the limit value Lmax, is shown on the left panel of Fig. 8. Analysis of this light curve allows to
conclude that the luminosity of the disturbed disk reaches a constant value of Lmax in the order of
several characteristic times t∗ (for the model μ = 100 this is a few seconds). The increase in luminosity
is determined by the factor w4

0 , which for the model μ = 100 is equal to approximately 16000. In other
words, the luminosity of the disk increases by more than 4 orders of magnitude. This is about 20
times more than in the numerical solution discussed in the previous section. However, we recall that
in the self-similar solution, we did not take into account the effect of vertical expansion of the disk,
which leads to adiabatic cooling of the perturbed region. With further evolution the heated matter
will gradually cool down due to radiative cooling and the luminosity of the disturbed disk will slowly
decrease. Characteristic cooling time tcool can be evaluated in the way described in the previous
section (see the expressions (90) and (91)).

The spectral density of the electromagnetic radiation flux Fν(t) can be calculated using the
formula (92). Corresponding spectra are shown on the right panel Fig. 8. Thin lines correspond to
spectra of radiative disks, and bold lines correspond to convective disks. At the same time, solid
lines show the spectra of perturbed disks, and dotted lines the corresponding spectra of undisturbed
disks are shown. The nature of the spectra fully corresponds to what we obtained in the numerical
solution (see right panel of Fig. 5). As in the numerical solution, the main energy of radiation turns
out to be concentrated in the range of soft and hard X-rays, in which quantum energy 1 keV ≤ hν ≤
100 keV. However, unlike numerical solution, the maximum radiation flux in both cases (radiative and
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convective disks) increases by four orders of magnitude during the flare. In this case, the frequency
at which the maximum is reached is slightly shifted to the side of higher energy. The radiation flux
from convective disks exceeds the flux from radiative ones more than two orders of magnitude, and
the maximum the value of the flow from the convective disks is shifted to the hard X-ray radiation.

Thus, in the self-similar solution, we got a stronger (approximately by one-two orders of
magnitude) electromagnetic response compared to numerical solution. As noted above, this is due to
the fact that in the self-similar solution we did not take into account the effect of vertical expansion
of the disk. From here it can be conclude that adiabatic cooling is an important effect, and if it is not
taken into account it leads to underestimation of bolometric luminosity and the spectral radiation
flux density by approximately one to two orders of magnitude. This should be kept in mind when
evaluating the electromagnetic response using the self-similar solution.

SUMMARY

We have considered one possibility of an electromagnetic response from the merging of two black
holes. The scenario is based on the assumption that a binary black hole is surrounded by an accretion
disk. When black holes merge, the mass of the product decreases due to the radiation of gravitational
waves. As a result, the accretion disk receives some additional energy, enough to bring it out of
equilibrium. Perturbations of the disk leads to the formation of non-linear and high-intensity shock
waves propagating from the central region to the periphery. Shock waves heat the matter, which leads
to a sharp increase in the flux of electromagnetic radiation from the disk. Within this model, it is
possible to calculate the light curve, the spectral density of the radiation flux, as well as to estimate
the characteristic duration of the flare. Calculation results shown that in the case of object GW170814,
the burst of luminosity from the accretion disk may be quite sufficient to register this response by
modern observation tools.

Accompanying the registration of gravitational-wave events with observations in the
electromagnetic channel corresponds to ”multi-messenger” approach to the study of astrophysical
objects. Obviously, this allows to get a much larger amount of useful information, and with the help
of such methods, we can achieve a deeper understanding of the nature of the phenomena under
study. Such approaches have far reaching prospects and should be fully developed.

In the paper we presented the numerical and analytical solutions describing the perturbation
of the accretion disk caused by black hole merging and mass loss. We considered the structure of
the perturbed disk in the region (the so-called zone B), which is dominated by gas pressure, and
the radiation pressure was neglected. In this case, the opacity of matter in the studied region of the
disk is determined by the processes of Thomson scattering of electrons. In contrast to the analytical
solution, in the numerical model we took into account the effect of vertical expansion of the disk,
resulting in adiabatic cooling of matter heated by shock waves. The analytical model is based on a
self-similar solution described in our recent paper (Bisikalo & Zhilkin 2020). The analysis of self-similar
equations allows us to obtain algebraic integrals of angular momentum and adiabaticity that express
the corresponding laws of conservation. In addition, we can find asymptotic relations for self-similar
functions that describe the development of the initial perturbation and the transition of the disk to
a new stationary state.
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The use of the analytical model allows us to approximate the magnitude of the electromagnetic
response of a gravitational-wave event without performing time-consuming numerical calculations.
However, as shown by comparison with the results of a more complete numerical model, these
estimates overstate the intensity of the electromagnetic response by about one or two orders of
magnitude. This is due to the fact that the self-similar solution used does not take into account the
effects of vertical expansion of the disk, which leads to adiabatic cooling of matter behind the shock
waves.

The results of the research presented in this paper show that electromagnetic radiation resulting
from the merging of black holes in the framework of the considered scenario is possible and can be
observed by the existing tools. However, for the correct interpretation of the received electromagnetic
responses it is necessary to get a self-consistent solution that takes into account the entire complex of
physical processes. Unfortunately, self-similar solutions can be obtained only in a simpler statement
of the problem. Therefore, it is necessary to develop appropriate numerical models.

A comparison of the results of numerical simulation with the self-similar solution presented
in the paper shows that the numerical model used adequately reflects the physical processes that
occur when a binary black hole merges. Therefore, it seems appropriate to develop the presented
numerical model. This development can be related to an increase in the dimension of the problem
(two-dimensional and three-dimensional approximation), and taking into account additional physical
processes.
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