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ABSTRACT

In this note we present a method for constructing constant mean curvature on surfaces in hyper-

bolic 3-space in terms of holomorphic data first introduced in Bianchi’s Lezioni di Geometria

Differenziale of 1927, therefore predating by many years the modern approaches due to Bryant,

Small and others. Besides its obvious historical interest, this note aims to complement Bianchi’s

analysis by deriving explicit formulae for CMC-1 surfaces and comparing the various approaches

encountered in the literature.

Key words: Constant mean curvature one surfaces, congruence of spheres, rolling of surfaces,

Weierstrass representation.

1 INTRODUCTION

It is generally accepted that the theory of surfaces in hyperbolic 3-spaceH
3
(−1) with constant

mean curvature equal to one (CMC-1 surfaces, for short) started with a seminal paper by R. Bryant

(Bryant 1987), where he derives a representation for such surfaces in terms of holomorphic data

in analogy with the well-known Weierstrass representation for minimal surfaces inR
3 (Lawson

1980).

After the appearance of Bryant’s investigation, many other researchers contributed to the sub-

ject. For example, M. Umehara and K. Yamada (Umehara and Yamada 1993) refined substantially

Bryant’s approach and were able to construct a varied class of examples of CMC-1 surfaces, besides

developing many interesting global aspects in the theory. On the other hand, A. J. Small (Small
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1994) reinterpreted CMC-1 surfaces in terms of twistors, providing in particular a Weierstrass for-

mula for such surfaces involving algebraic operations on the derivatives up to second order of a

pair (f, g) of holomorphic functions (see (8) below).

Consensual as it may be, the above account is not entirely correct and the main purpose of

this note is to stress that in Bianchi’s Lezioni di Geometria Differenziale (Bianchi 1927), we may

find a recipe for constructing CMC-1 surfaces from holomorphic data. However, the motivation

for writing this note goes beyond this historical curiosity, for it seems that there are at least two

other reasons for exhibiting this old method to a wider audience.

The first one is that the method allows one to start with an arbitrary holomorphic mapf = f (z)

defined in a region� ⊂ C and, elaborating upon Bianchi’s ideas, to end up with explicit formulae

for a CMC-1 surface. More precisely, if we use the upper half-plane model forH
3
(−1) with

Cartesian coordinates(x1, x2, x3) so that the boundary at infinity is given byx3 = 0, we have

Theorem 1.1. In the above situation, the parametrization of a CMC-1 surfaces in terms of f is

given by

x1 = Re f −
∣∣f ′∣∣2Re (f ′z

)+ 1+|z|2
2 Re

(
(f ′)2f̄ ′′)

|f ′|2 + Re
(
f ′f̄ ′′z̄

)+ |f ′′|2(|z|2+1)
4

,

x2 = Imf −
∣∣f ′∣∣2 Im(f ′z)+ 1+|z|2

2 Im
(
(f ′)2f̄ ′′)

|f ′|2 + Re
(
f ′f̄ ′′z̄

)+ |f ′′|2(|z|2+1)
4

, (1)

x3 =
∣∣f ′∣∣3

|f ′|2 + Re
(
f ′f̄ ′′z̄

)+ |f ′′|2(|z|2+1)
4

.

Moreover, this mapf has an immediate geometric interpretation: it is simply the parametrized

hyperbolic Gauss map, or in other words, the expression for the hyperbolic Gauss map in terms

of a local complex parameterz on�. In fact, and this is an important issue here, our formulae

coincide with Small’s if the pertinent transformation between models forH
3
(−1) is carried out

(see Section 3).

The second reason is that in his way toward the construction of CMC-1 surfaces, Bianchi

translates to hyperbolic geometry the solution of a strictly Euclidean-geometric problem involving

the rolling of a pair of isometric surfaces, thereby establishing a surprising linking between these

two geometries.

This article is organized as follows. In Section 2 we review some classical concepts in order to

describe the rolling problem in Euclidean geometry. In particular we derive, following Bianchi, the

so called Calò’s formulae. In Section 3 we relate the solution of the Euclidean problem involving

rolling of surfaces of Section 2 to the construction of CMC-1 surfaces inH
3
(−1) and we sketch

the proof of Theorem 1.1 above, besides exhibiting some simple examples constructed via the

Bianchi-Calò method.
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2 CONGRUENCE OF SPHERES AND ROLLING OF SURFACES

Here is the first classical concept we shall meet. Acongruence of spheres is a smooth two-parameter

family of spheres inR3, that we will suppose parametrized by coordinates(u, v). To each such

congruence we may associate a functionR = R(u, v), theradius function, describing the radii of

the spheres in the congruence. We also assume that the vector functionX = X(u, v) describing

the centers of the spheres defines a regular surface which we call thesurface of centers.

Generically there are two surfaces, the so-calledenvelopes, associated to a given congruence.

In effect, a pointp ∈ R
3 belongs to an envelopeξ if p ∈ S for some sphereS in the congruence

and moreoverTpξ = TpS. If a congruence of spheres has two distinct envelopes we then have

a natural correspondence between their points, namely, points on distinct envelopes correspond

if they are the contact points of the envelopes with a given sphere of the congruence. The next

proposition gives the expression for the envelopes in terms of the unit normal vectorN = N(u, v)

and the metric of the surface of centers.

Proposition 2.1. In coordinates (u, v),

ξ = X − R
(
�(X, R)±√

1 −�1RN
)
, (2)

where

�(X, R) = (RuA11 + RvA12)Xu + (RuA21 + RvA22)Xv, (3)

and

�1R = R2
uA11 + 2RuRvA12 + R2

vA22. (4)

Here, the matrixA = [Aij ] is the inverse of the matrix defined by the metric in the given coordinates.

We now describe the rolling of isometric surfaces. Consider a pair(S, S̃) of isometric surfaces

in R
3, and letp ∈ S andp̃ ∈ S̃ be points corresponding under the isometry. SupposeS is fixed

in space and consider the two-parameter family of positions of congruent copies ofS̃ such that

to eachp ∈ S we consider a rigid motion ofR3 (call it Hp) sendingp̃ to p, Tp̃S̃ to TpS, and

further adjusted so that the differential of the isometry composed withHp is the identity map. This

two-parameter family of positions for copies ofS̃ is called therolling of S̃ overS. The surfacẽS

is called therolled surface andS thesupport surface.

Now fix a pointO ∈ R
3 and consider its image under the two-parameter family of rigid motions

associated to the rolling of̃S overS. In the generic case, the motion ofO defines a surface� called

therolling surface with respect to thesatellite point O.

The crucial point now is that the two concepts introduced so far, namely congruence of spheres

and rolling of surfaces, share a close relationship. More precisely, we have

Proposition 2.2. Given a rolling of S̃ over S as above, the rolling surface � can be viewed

as an envelope of a congruence of spheres having S as its surface of centers and the sizes of the

corresponding line segments joining points of S̃ to O as radii.
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We are now in a position to formulate the problem in Euclidean geometry whose solution will

lead us, according to Bianchi, to a method for constructing CMC-1 surfaces inH
3
(−1):

Find pairs (S, S̃) of isometric surfaces such that, for a convenient satellite point O, the rolling

surface � is contained in a plane.

Surprisingly enough, assuming that the plane in question is{x3 = 0} and moreover that the

satellite pointO is the origin of our coordinate system, this problem admits a neat solution in terms

of an arbitrary holomorphic functionf = f (z). More precisely, the radius functionR is given by

R = 1 + |z|2
2

∣∣f ′(z)
∣∣ , (5)

and the solution to our problem, namely, the coordinates ofS̃ andS are respectively given in terms

of the holomorphic data as

x̃ = ∣∣f ′(z)
∣∣ z+ z̄

2
, ỹ = ∣∣f ′(z)

∣∣ z− z̄

2i
, z̃ = ∣∣f ′(z)

∣∣ |z|2 − 1

2
, (6)

and

x = Ref (z), y = Imf (z), z = ∣∣f ′(z)
∣∣ |z|2 + 1

2
. (7)

The above expressions are calledCalò’s formulae since they have been originally published

by B. Calò in 1899 (Calò 1899) in another context involving isometric surfaces.

3 THE BIANCHI-CALÒ METHOD

In the last section, starting with a holomorphic mapf , we have determined a pair of isometric

surfaces such that one of the envelopes of the associated congruence of spheres was a plane. Now, in

principle we could also determine the second envelope of the congruence associated to the rolling,

which is then also contained in the upper half-space. It can be shown that the correspondence

between the envelopes of the congruence associated to the Calò’s pair(S, S̃) considered in the

last section is a conformal map. This is proved in Bianchi’s Lezioni when he considers Darboux

congruencies and is one of the ingredients in the proof of the following central result, also due to

Bianchi.

Theorem 3.1. To each pair (S̃, S) of isometric surfaces such that the rolling surface � of the

rolling of S̃ over S is a plane there corresponds a CMC-1 given by the second envelope of the

associated congruence of spheres considered as a surface in the standard upper half-space model

of H
3
(−1).

For the proof, look at the spheres of our congruence as horospheres by using the upper half-

space containing the surface of centers as a model forH
3
(−1). One may check thatz is a conformal

parameter for both envelopes, and thatf is the corresponding expression for the hyperbolic Gauss
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mapG, which is precisely the correspondence between the envelopes. On the other hand,G is

known to be conformal, exception made for totally umbilical surfaces, exactly when the surface is

a CMC-1 surface (see (Bryant 1987) or (Bianchi 1927)), and this concludes the proof.

Although Bianchi indicates how one can find CMC-1 surfaces starting with an arbitrary holo-

morphic mapf via Theorem 3.1, he does not complete his analysis by deriving explicit formulae.

However, this can be carried out very simply: we use Calò’s formulae (5) and (7) to compute the

surface of centersS and the radius functionR, then we calculate, by means of (2), the envelopes of

this congruence of spheres, one of them being a piece of the plane{z = 0} and the other one being

our CMC-1 surface given by (1). This ends the sketch of the proof of Theorem 1.1.

Remark 3.2. It is easy to check thatf = G ◦X, whereX = (x, y, z) is given by (1) andG is the

hyperbolic Gauss mapG of the corresponding CMC-1 surface.

Now we briefly indicate how Small’s result, obtained by using a heavy algebraic-geometric

machinery, relates to the one presented here. Small works in the so-called hermitian model for

H
3
(−1) and introduces, via twistor theory, a Gauss transform�S = (f, g) of a null curveS ⊂

SL(2,C), whereSL(2,C) is the orientation preserving isometry group ofH
3
(−1), in terms of

a pair(f, g) of holomorphic functions. His main result is thatS can be recovered from�S after

applying dualization. After doing this, one realizes thatS is given by the mapω : M → SL(2,C),

ω =
(
α β

γ δ

)
=
(
(f ′)1/2 − 1

2f (f
′)−3/2f ′′ f

(
(f ′)−1/2 + 1

2g(f
′)−3/2f ′′)− g(f ′)1/2

−1
2(f

′)−3/2f ′′ (f ′)−1/2 + 1
2g(f

′)−3/2f ′′

)
,

(8)

wheref ′ = df/dg andf ′′ = d2f/dg2. The expression for the CMC-1 surface in terms of the

hermitian model is given byωωt , but in order to compare this with (1) one has to perform the

transformation to the upper half-space model. In terms of the entries ofω, this is given by

x1 + ix2 = αγ + βδ

|γ |2 + |δ|2 , x3 = 1

|γ |2 + |δ|2 .

We now takeg = zand Small’sf to be ourf . A straightforward computation yields the equivalence

between the methods.

We illustrate the method by retrieving two well-known examples. First, if we takef (z) = z2,

substitution in (1), after writingz = reiθ , yields

X =
(

−r2 (cos 2θ)
5r2 + 3

7r2 + 1
,−r2 (sin 2θ)

5r2 + 3

7r2 + 1
,

8r3

7r2 + 1

)
.

This is acatenoid cousin.

Now letf (z) = ln z.Again, substitution in (1) yields

X =
(

ln r − 2
(r − r−1)

(r + r−1)
, θ,

4

(r + r−1)

)
.
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Or, writing r = es ,

X =
(
s − 2 tanhs, θ,

2

coshs

)
.

This is a ruled example.

RESUMO

Nesta nota apresentaremos um método para construir superfícies de curvatura média constante um no 3-

espaço hiperbólico, a partir de funções holomorfas. Tal método foi introduzido nas Lezioni di Geometria

Differenziale de Bianchi em 1927, antecedendo, portanto, em muitos anos, os pontos de vista mais modernos

de Bryant, Small e outros. Além do seu óbvio interesse histórico, o objetivo da nota é complementar a análise

de Bianchi, obtendo fórmulas explícitas para as superfícies de curvatura média constante um, e comparar os

vários pontos de vista encontrados na literatura.

Palavras-chave: Superfícies de curvatura média constante um, congruência de esferas, rolamento de super-

fícies, representação de Weierstrass.

REFERENCES

Bianchi L. 1927.Lezioni di Geometria Differenziale, Terza Edizione, Nicola Zanichelli Editore, Bologna.

Bryant R. 1987. Surfaces with constant mean curvature one in hyperbolic space, Astérisque 154-55:

321-347.

Calò B. 1899. Risoluzione di alcuni problemi sull’applicabilità delle superficie, Annali di Matematica IV.

Lawson HB. 1980. Lectures on minimal submanifolds I. Mathematics Lecture Series 9, Publish or Perish.

Small AJ. 1994. Surfaces of constant mean curvature one inH
3 and algebraic curves on a quadric, Proc.

of the A.M.S. 122: 1211-1220.

Umehara M and Yamada K. 1993. Complete surfaces of constant mean curvature 1 in the hyperbolic

3-space, Ann. of Math. 137: 611–638.

An. Acad. Bras. Cienc., (2002)74 (1)


