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ABSTRACT
In this note, we obtain a Chung’s integral test for self-normalized sums of i.i.d. random variables. Further-
more, we obtain a convergence rate of Chung law of the iterated logarithm for self-normalized sums.
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1 INTRODUCTION

Let X, X, X5, ... beii.d. random variables with mean zero and variance one, and set
n n
S, = ZXk, M, = max |S;| and Vn2 = E X2 n>1.
k=1 tksn k=1

Also letlogx = In(x Ve), log, x = log(logx). Then by the so-called Chung’s law of the iterated logarithm
we have

liminf \/log, n/nM, = n/v/8 a.s. (1.1)
n— o0

This result was first proved by Chung (1948) under E| X|* < oo, and by Jain and Pruitt (1975) under the sole
assumption of a finite second moment. Einmahl (1989) obtained the Darling Erdos theorem for sums of
i.i.d. random variables. Griffin and Kuelbs (1989) got Self-normalized laws of the iterated logarithm. Grif-
fin and Kuelbs (1991) obtained some extensions of the laws of the iterated logarithm via self-normalized.
Lin (1996) got a self-normalized Chung-type law of iterated logarithm. Einmahl (1993) obtained the fol-
lowing integral test refining (1.1) under the minimal conditions.

THEOREM A. Let {X, X,; n > 1} be a sequence of i.i.d. random variables with EX = 0, EX?=1and

EX*I{|1X| >t} = O((log,©)™") as t — oo. (1.2)
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Then for any eventually non-decreasing function ¢ : [1, co) — (0, 00),
PM, <Vn/¢p(m) io)=0 or 1

2
¢(tt) exp(— n2¢(t)2/8)dt <00 or = Q.

(1.3)

according as J(¢) ::/
1

Einmabhl (1993) showed that if (1.2) is not true, Theorem A is false. We thus see that condition (1.2) is
sharp. However, if we use ¥, to replace /n, we can eliminate the condition (1.2) in Theorem A. Explicitly,

we get the following theorem.

THEOREM 1.1. Let {X, X,;n > 1} be a sequence of i.i.d. random variables with EX = 0, EX* = 1.

Then for any eventually non-decreasing function ¢ : [1, oo) — (0, 00),

P(M, < V,/¢p(n) io)=0 or 1

2
¢(;) exp (— ¢ (1)*/8)dt < 00 or = oco.

(1.4)

according as J(¢) :=f
1

Our next theorem gives a result on a convergence rate of (1.1).

THEOREM 1.2. Let {X, X,;; n > 1} be a sequence of i.i.d. random variables with EX = 0, EX* = 1.
Then for any b > —1, we have

o]

1 b
yolomn)p (Mn <em2V2/@® 1og2n)> <00, Ve>0. (1.5)
— nlogn

Throughout this note, let C denote a positive constant, whose values can differ in different places.

2 PROOF

PROOF OF THEOREM 1.1. It is enough to prove the result for eventually non-decreasing function ¢ :
[1, 00) — (0, 00) satisfying

1
5(1og2 D2 <¢@t) < (og,H)'?, t>1 2.1)
(See Einmahl 1993). Let
Xy = X111 = Vi/og, ). =1

M, M,
B,V

, n>1.

By =) EX}, and A, = '
i=1

Observe that by (2.1)

P(M, V,/¢@m) i.0.)
<PM, < V,/p(n), A, = (log,n)*?* i.0) + P(M, < V,/p(n), A, < (log,n)>? i.0.)
<P(M, < V,/¢ (), &, > (logyn)>"? i.0) +P(M,/B, < ¢(n)~" + (log, n) >/ i.0.)

<PM, < V,/pn), A, > (log,n) > i.0.) +P(M, < B,/¥(n) i.0.),

IA

A

(2.2)

IA
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where W(¢) = ¢ (t)3/(1 + ¢(1)?), t > 1, and similarly,

PM, <V,/¢(n) i.o.)

> P(M,/B, < ¢(n)"" — (logyn)™>? i.0) — P(M,, < B,/p(n), &, > (log, ) > i0)  (2.3)
> P(M, < B,/ ¥ (n) i.0.) —P(M, < B,/p(n), A, = (log,n)™>? i.0.),

where W' (1) = o) /(p()*> — 1), t > 1. It is easily checked that J(¢) < oo implies J(¥) < oo and
J(¢) = oo implies J (V') = 00, and by Theorem 1 of Einmahl (1993), we have

J(W¥) < 00 = P(M, < B,/V(n) i.0.) =0

and
J(W) =00 = P(M, < B,/¥ (n) i.o)=1.

Now by Lemma 2.2 below,
P(M, < V,/p(n), A, > (log,n)>? i.0)=0

and
P(M, < B,/¢(n), A, > (log,n)/? i.0.) = 0.

From these equations and (2.2), (2.3), hence we see that Theorem 1.1 holds true. O

We now present two lemmas used in the main proof of Theorem 1.1.

LEMMA 2.1. For any x > 0 there exist positive constants n = n(x) and A = A(x) such that
P (M,, < x4/n/log, n) < A(logn)™".

PROOF. See the Lemma 2(b) of Einmahl (1993). O

LEMMA 2.2. We have

P(M, < V,/¢(n), A, > (logyn)/* i.0) =0 (2.4)
and
P(M, < B,/¢(n), A, > (log,n)/? i.0.) = 0. (2.5)
PROOF. Let
Xoy = X 1{/j/(ogy j)* < 1X;| < Vjh Xsj = X; — X1 — Xoy, j =1
and

n

Vin= (X1, —EX{). Van =Y X3, n>1.
k=1 k=1
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First using EX? = 1, we have

© 4
Z(loi;z”)lz( —EX2) <2Z (logzn) 282 EX*T{1X] < V/n/(log, n)?)
n=1 n=1
e 4 P ) nd (log, n)*
=2> EX*I{Vk—1/(logy(k — 1)) < |X| < Vk/(log, £)*} Y —
k=1 n=k
< CZEle{«/k —1/(log, (k — 1))2 < |1X| < Vk/(log, k)*}
k=1
< CEX? < o0

and

Y P, #£0) = Y P(X] > V) < CEX? < .
n=1 n=1

Thus, it follows by applying Corollary 3.1 of Lin et al. (1999, P.95) and Borel-Cantelli lemma that

(log, )
n

Vi =0 as. and Vy, = O(1) a.s. (2.6)

Using strong law of large numbers and Hartman-Wintner LIL, we have

2
. . M,
lim %~ =1 a.s. and limsup ————= <1 a.s.
n—»oo n m»xPl¢§;TS§;; o
Thus, by EX? = 1, we obtain that for large n,
B2
A, —")
B, Vu(By + Vi
3,/log, n ‘
< TZ<|V1n| + Van + ZXij) 2.7)

J=1

3./log, n
vy 6P (|Vln|+V2n+«/_Z|X2]) a.s.

Recalling that B> < n, n > 1 and lim,_ V?/n = 1 as., in order to prove (2.4) and (2.5), by (2.1),
(2.6) and (2.7), it suffices to show that

. 1
P<M1 <24/n/log,n, Z | X2;1 = Z«/E/(l()gz n)? i-0-> = 0. (2.8)
j=1

Now, set m(n) := [n/(log,n)’], n > 1. By EX? = 1, we have

n

1 2
ZEIXQJI < S EUGI{1Y, = Vi /o, ) = > BB < citon

j 1 j:l
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Applying Kolmogorov’s LIL and EX? = 1, we have

> i1 (X0 = E[X;0) <5

lim su a.s.

n»oop ,/21’1 logzn
it easily follows from above inequalities that

m(n)

> 1Xo;l = o(Vn/(logyn)*)  a.s. (2.9)

j=1
Hence observe that on account of (2.9) it is enough to show that

- 1
P(Mn <2,/n/log,n, Z | X2 > gﬁ/(log2 n)? i.o.) =0. (2.10)

J=m(n)+1

Let ny = 2F and my = [Zk/(log k)lo], k > 0, for large enough £,

ng

“ 1
U {Mnfz,/n/logzn, > |X2j|z§ﬁ/(1og2n)2}

n=ny_1+1 Jj=m(n)+1

ng 1
- {Mnk_1 <2/2ni_1/log, ni_1, Z | X2;] > l—Ox/nk/(Ing nk)z}-

J=mi+1

Thus, in order to prove (2.10), it suffices to show that

ng 1
P(Mn,r_l <22 /logynicr, Y 1Xajl = o/ (logy mi? i.o.) =0. (2.11)
J=mi+1
Let
M, ;= M;,_v max |S,—X;|, 1 <j<mn_ and n}c = ny_1 — L.
J<n=<nj_i
Notice that
Mnk_],j =< Mnk—l + |XJ| =< 3Mnk_1s 1 =< ,] < Mj_q.

Using the independence and Lemma 2.1, it is clear that for some constant n > 0 and large enough £,

ny 1
P<Mnk] <2\2m/logymr, Y 1 Xogl = 1o Vil (logy nk)z)

J=mp+1

ng
S P( U {lX]| > \/7/(10g2 j)za M}’lk,l S 2\/2nk71/10g2 nk1}>
Jj=mp+1
ng—1
= Z P(lXJ| > \/;/(logZ j)z’ Mnk—l =< 2\/2nk—1/10g2 nk_l)

J=mp+1

ng

+ Y P> Vi/(og, /), My, <2251/ log, ni—1)

Jj=ng—1+1
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Ng—1

Y P(X;1 > Vj/(logy j)*, My, ; < 6/2n4 1/ logy i)

J=mp+1

IA

+ Z (1X;1 > /j/(logy )*)P(My,_, < 2/2n4—1/log, ni—1)

J=ng-1+1
Ng—1
< Y P(X1>Vi/(ogy jY')P(M, < 9y/n;/logy n)
j:m]\-i—l
+ Z P(1X;1 > Vj/(log, j)*)P(M,, , <3y/nx1/logy 1)
Jj=nk—1+1
n
<Ck™ ) P(X] > /j/(og, j)°).
Jj=mip+1

Finally, By Lemma 4 of Einmahl (1993), we have

o0 R 1
Z P<Mnk_1 < 2/2n4_1/ logy ng_1, Z | X2 > l—Ox/n_k/(logz ”k)z)
=1 J—

nj

<CY k" Y P(XI>j/(log, j)?) < o0
+1

k=1 Jj=mi+

and hence we obtain (2.11) from the Borel-Cantelli lemma.

PROOF OF THEOREM 1.2. Foreachn > 1and 1 <i < n, we have

X, = Xi1{1X;] < n'*(logn)~'3} Z and B? = ZVar()_(nj)

By EX? = 1, it is easy to show that B2 < n. Hence for some 3 < § < 1 and any ¢ > 0

P(M, < 8\/7'[2 V2/(8log, n))

P(M, < 8\/712(1 +8)B2/(8log, n)) + P(VZ > (1 +8)By;)

IA

IA

P(M, < ey/72(1 + 8)/8y/n/log, n) + P(V? = (1 + §)B?)

+ P(U {|Xj| > nl/z(logn)_m})

j=1

=L+ 5L+ 5.

In order to prove (1.5), it suffices to show that for any b > —1

o0
1 b

ZM@ <00, Ve=0, i=123.
nlogn

An Acad Bras Cienc (2008) 80 (3)

(2.12)



ON THE OTHER LIL FOR SELF-NORMALIZED SUMS 417

By Lemma 2.1, there exists a positive constant 7 such that

0 o0
1 b 1 b
§ Mﬁ <C E M(logn)*" <00, Ve>0.
~ n logn —~n logn

Since EX =0 and EX? = 1, there exists a positive integer n¢ such that for all n > ng
_ 3 - 1
EXﬁ1 > 7 and EX, < 7

Hence using the Bernstein inequality, there exists a positive constant 8 < 1/3000 such that

00 b
yolomnly oy BB o e

= nlogn s nlogn
o0
(log, n)” _
< C —== p
- +r;;0 nlogn (logm)
< 0.

Finally, by EX? = 1, we have

nlogn o logn

Thus, (2.12) holds true. O
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RESUMO

Nesta nota, obtemos um teste integral de Chung para somas auto-normalizadas de variaveis aleatorias i.i.d. (indepen-
dentes e identicamente distribuidas). Além disso, obtemos uma taxa de convergéncia da lei de Chung do logaritmo

iterado para somas auto-normalizadas.

Palavras-chave: teste integral de Chung, somas auto-normalizadas, taxa de convergéncia.
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