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ABSTRACT

In this note, we obtain a Chung’s integral test for self-normalized sums of i.i.d. random variables. Further-
more, we obtain a convergence rate of Chung law of the iterated logarithm for self-normalized sums.
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1 INTRODUCTION

Let X, X1, X2, . . . be i.i.d. random variables with mean zero and variance one, and set

Sn =
n∑

k=1

Xk, Mn = max
1≤k≤n

|Sk | and V 2
n =

n∑

k=1

X2
k , n ≥ 1.

Also let log x = ln(x ∨e), log2 x = log(log x). Then by the so-called Chung’s law of the iterated logarithm

we have

lim inf
n→∞

√
log2 n/nMn = π/

√
8 a.s. (1.1)

This result was first proved by Chung (1948) under E|X |3 < ∞, and by Jain and Pruitt (1975) under the sole

assumption of a finite second moment. Einmahl (1989) obtained the Darling Erdös theorem for sums of

i.i.d. random variables. Griffin and Kuelbs (1989) got Self-normalized laws of the iterated logarithm. Grif-

fin and Kuelbs (1991) obtained some extensions of the laws of the iterated logarithm via self-normalized.

Lin (1996) got a self-normalized Chung-type law of iterated logarithm. Einmahl (1993) obtained the fol-

lowing integral test refining (1.1) under the minimal conditions.

THEOREM A. Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables with EX = 0, EX2 = 1 and

EX2 I
{
|X | ≥ t

}
= O

(
(log2 t)−1

)
as t → ∞. (1.2)
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Then for any eventually non-decreasing function φ : [1, ∞) → (0, ∞),

P(Mn ≤
√

n/φ(n) i.o.) = 0 or 1

according as J (φ) :=
∫ ∞

1

φ(t)2

t
exp

(
− π2φ(t)2/8

)
dt < ∞ or = ∞.

(1.3)

Einmahl (1993) showed that if (1.2) is not true, Theorem A is false. We thus see that condition (1.2) is

sharp. However, if we use Vn to replace
√

n, we can eliminate the condition (1.2) in Theorem A. Explicitly,

we get the following theorem.

THEOREM 1.1. Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables with EX = 0, EX2 = 1.

Then for any eventually non-decreasing function φ : [1, ∞) → (0, ∞),

P(Mn ≤ Vn/φ(n) i.o.) = 0 or 1

according as J (φ) :=
∫ ∞

1

φ(t)2

t
exp

(
− π2φ(t)2/8

)
dt < ∞ or = ∞.

(1.4)

Our next theorem gives a result on a convergence rate of (1.1).

THEOREM 1.2. Let {X, Xn; n ≥ 1} be a sequence of i.i.d. random variables with EX = 0, EX2 = 1.

Then for any b > −1, we have

∞∑

n=1

(log2 n)b

n log n
P

(
Mn ≤ ε

√
π2V 2

n /(8 log2 n)

)
< ∞, ∀ε > 0. (1.5)

Throughout this note, let C denote a positive constant, whose values can differ in different places.

2 PROOF

PROOF OF THEOREM 1.1. It is enough to prove the result for eventually non-decreasing function φ :

[1, ∞) → (0, ∞) satisfying

1

2
(log2 t)1/2 ≤ φ(t) ≤ (log2 t)1/2, t ≥ 1 (2.1)

(See Einmahl 1993). Let

X1 j = X j I
{
|X j | ≤

√
j/(log2 j)2

}
, j ≥ 1

B2
n =

n∑

i=1

EX2
1i and 4n =

∣
∣
∣
∣

Mn

Bn
−

Mn

Vn

∣
∣
∣
∣, n ≥ 1.

Observe that by (2.1)

P(Mn ≤ Vn/φ(n) i.o.)

≤ P(Mn ≤ Vn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) + P(Mn ≤ Vn/φ(n), 4n ≤ (log2 n)−3/2 i.o.)

≤ P(Mn ≤ Vn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) + P(Mn/Bn ≤ φ(n)−1 + (log2 n)−3/2 i.o.)

≤ P(Mn ≤ Vn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) + P(Mn ≤ Bn/9(n) i.o.),

(2.2)
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where 9(t) = φ(t)3/(1 + φ(t)2), t ≥ 1, and similarly,

P(Mn ≤ Vn/φ(n) i.o.)

≥ P(Mn/Bn ≤ φ(n)−1 − (log2 n)−3/2 i.o.) − P(Mn ≤ Bn/φ(n), 4n ≥ (log2 n)−3/2 i.o.)

≥ P(Mn ≤ Bn/9
′
(n) i.o.) − P(Mn ≤ Bn/φ(n), 4n ≥ (log2 n)−3/2 i.o.),

(2.3)

where 9
′
(t) = φ(t)3/(φ(t)2 − 1), t ≥ 1. It is easily checked that J (φ) < ∞ implies J (9) < ∞ and

J (φ) = ∞ implies J (9
′
) = ∞, and by Theorem 1 of Einmahl (1993), we have

J (9) < ∞ H⇒ P(Mn ≤ Bn/9(n) i.o.) = 0

and

J (9
′
) = ∞ H⇒ P(Mn ≤ Bn/9

′
(n) i.o.) = 1.

Now by Lemma 2.2 below,

P(Mn ≤ Vn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) = 0

and

P(Mn ≤ Bn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) = 0.

From these equations and (2.2), (2.3), hence we see that Theorem 1.1 holds true. �

We now present two lemmas used in the main proof of Theorem 1.1.

LEMMA 2.1. For any x > 0 there exist positive constants η = η(x) and A = A(x) such that

P
(

Mn ≤ x
√

n/ log2 n
)

≤ A(log n)−η.

PROOF. See the Lemma 2(b) of Einmahl (1993). �

LEMMA 2.2. We have

P(Mn ≤ Vn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) = 0 (2.4)

and

P(Mn ≤ Bn/φ(n), 4n ≥ (log2 n)−3/2 i.o.) = 0. (2.5)

PROOF. Let

X2 j = X j I
{√

j/(log2 j)2 < |X j | ≤
√

j
}
, X3 j = X j − X1 j − X2 j , j ≥ 1

and

V1n =
n∑

k=1

(
X2

1k − EX2
1k

)
, V2n =

n∑

k=1

X2
3k, n ≥ 1.
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First using EX2 = 1, we have

∞∑

n=1

(log2 n)4

n2
E

(
X2

1n − EX2
1n

)2
≤ 2

∞∑

n=1

(log2 n)4

n2
EX4 I

{
|X | ≤

√
n/(log2 n)2

}

= 2
∞∑

k=1

EX4 I
{√

k − 1/
(

log2(k − 1)
)2

< |X | ≤
√

k/(log2 k)2
} ∞∑

n=k

(log2 n)4

n2

≤ C
∞∑

k=1

EX2 I
{√

k − 1/
(

log2(k − 1)
)2

< |X | ≤
√

k/(log2 k)2
}

≤ CEX2 < ∞

and
∞∑

n=1

P(X3n 6= 0) =
∞∑

n=1

P(|X | >
√

n) ≤ CEX2 < ∞.

Thus, it follows by applying Corollary 3.1 of Lin et al. (1999, P.95) and Borel-Cantelli lemma that

(log2 n)2

n
V1n → 0 a.s. and V2n = O(1) a.s. (2.6)

Using strong law of large numbers and Hartman-Wintner LIL, we have

lim
n→∞

V 2
n

n
= 1 a.s. and lim sup

n→∞

Mn√
2n log2 n

≤ 1 a.s.

Thus, by EX2 = 1, we obtain that for large n,

4n =

∣
∣
∣
∣

Mn(V 2
n − B2

n )

BnVn(Bn + Vn)

∣
∣
∣
∣

≤
3
√

log2 n

n

(
|V1n| + V2n +

n∑

j=1

X2
2 j

)

≤
3
√

log2 n

n

(
|V1n| + V2n +

√
n

n∑

j=1

|X2 j |
)

a.s.

(2.7)

Recalling that B2
n ≤ n, n ≥ 1 and limn→∞ V 2

n /n = 1 a.s., in order to prove (2.4) and (2.5), by (2.1),

(2.6) and (2.7), it suffices to show that

P
(

Mn ≤ 2
√

n/ log2 n,

n∑

j=1

|X2 j | ≥
1

4

√
n/(log2 n)2 i.o.

)
= 0. (2.8)

Now, set m(n) :=
[
n/(log2 n)9

]
, n ≥ 1. By EX2 = 1, we have

n∑

j=1

E|X2 j | ≤
n∑

j=1

E|X j |I
{
|X j >

√
j/(log2 j)2|

}
≤

n∑

j=1

(log2 j)2

√
j

≤ C
√

n(log2 n)2.
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Applying Kolmogorov’s LIL and EX2 = 1, we have

lim sup
n→∞

∑n
j=1(|X2 j | − E|X2 j |)

√
2n log2 n

≤ 2 a.s.

it easily follows from above inequalities that

m(n)∑

j=1

|X2 j | = o
(√

n/(log2 n)2
)

a.s. (2.9)

Hence observe that on account of (2.9) it is enough to show that

P
(

Mn ≤ 2
√

n/ log2 n,

n∑

j=m(n)+1

|X2 j | ≥
1

5

√
n/(log2 n)2 i.o.

)
= 0. (2.10)

Let nk = 2k and mk =
[
2k/(log k)10

]
, k ≥ 0, for large enough k,

nk⋃

n=nk−1+1

{
Mn ≤ 2

√
n/ log2 n,

n∑

j=m(n)+1

|X2 j | ≥
1

5

√
n/(log2 n)2

}

⊆
{

Mnk−1 ≤ 2
√

2nk−1/ log2 nk−1,

nk∑

j=mk+1

|X2 j | ≥
1

10

√
nk/(log2 nk)

2

}
.

Thus, in order to prove (2.10), it suffices to show that

P
(

Mnk−1 ≤ 2
√

2nk−1/ log2 nk−1,

nk∑

j=mk+1

|X2 j | ≥
1

10

√
nk/(log2 nk)

2 i.o.

)
= 0. (2.11)

Let

Mnk−1, j = M j−1 ∨ max
j<n≤nk−1

|Sn − X j |, 1 ≤ j ≤ nk−1 and n
′

k = nk−1 − 1.

Notice that

Mnk−1, j ≤ Mnk−1 + |X j | ≤ 3Mnk−1, 1 ≤ j ≤ nk−1.

Using the independence and Lemma 2.1, it is clear that for some constant η > 0 and large enough k,

P
(

Mnk−1 ≤ 2
√

2nk−1/ log2 nk−1,

nk∑

j=mk+1

|X2 j | ≥
1

10

√
nk/(log2 nk)

2

)

≤ P
( nk⋃

j=mk+1

{
|X j | >

√
j/(log2 j)2, Mnk−1 ≤ 2

√
2nk−1/ log2 nk−1

}
)

≤
nk−1∑

j=mk+1

P
(
|X j | >

√
j/(log2 j)2, Mnk−1 ≤ 2

√
2nk−1/ log2 nk−1

)

+
nk∑

j=nk−1+1

P
(
|X j | >

√
j/(log2 j)2, Mnk−1 ≤ 2

√
2nk−1/ log2 nk−1

)
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≤
nk−1∑

j=mk+1

P
(
|X j | >

√
j/(log2 j)2, Mnk−1, j ≤ 6

√
2nk−1/ log2 nk−1

)

+
nk∑

j=nk−1+1

P
(
|X j | >

√
j/(log2 j)2)P

(
Mnk−1 ≤ 2

√
2nk−1/ log2 nk−1

)

≤
nk−1∑

j=mk+1

P
(
|X j | >

√
j/(log2 j)2

)
P

(
Mn

′
k
≤ 9

√
n

′

k/ log2 n
′

k

)

+
nk∑

j=nk−1+1

P
(
|X j | >

√
j/(log2 j)2

)
P

(
Mnk−1 ≤ 3

√
nk−1/ log2 nk−1

)

≤ Ck−η

nk∑

j=mk+1

P
(
|X | >

√
j/(log2 j)2

)
.

Finally, By Lemma 4 of Einmahl (1993), we have

∞∑

k=1

P
(

Mnk−1 ≤ 2
√

2nk−1/ log2 nk−1,

nk∑

j=mk+1

|X2 j | ≥
1

10

√
nk/(log2 nk)

2

)

≤ C
∞∑

k=1

k−η

nk∑

j=mk+1

P
(
|X | >

√
j/(log2 j)2

)
< ∞

and hence we obtain (2.11) from the Borel-Cantelli lemma. �

PROOF OF THEOREM 1.2. For each n ≥ 1 and 1 ≤ i ≤ n, we have

X̄ni = Xi I
{
|Xi | ≤ n1/2(log n)−1/3

}
, V̄ 2

n =
n∑

j=1

X̄2
nj and B̄2

n =
n∑

j=1

Var(X̄nj ).

By EX2 = 1, it is easy to show that B̄2
n ≤ n. Hence for some 1

7 < δ < 1 and any ε > 0

P
(
Mn ≤ ε

√
π2V 2

n /(8 log2 n)
)

≤ P
(
Mn ≤ ε

√
π2(1 + δ)B̄2

n/(8 log2 n)
)
+ P

(
V 2

n ≥ (1 + δ)B̄2
n

)

≤ P
(
Mn ≤ ε

√
π2(1 + δ)/8

√
n/ log2 n

)
+ P

(
V̄ 2

n ≥ (1 + δ)B̄2
n

)

+ P
( n⋃

j=1

{
|X j | > n1/2(log n)−1/3

}
)

:= I1 + I2 + I3.

In order to prove (1.5), it suffices to show that for any b > −1

∞∑

n=1

(log2 n)b

n log n
Ii < ∞, ∀ε > 0, i = 1, 2, 3. (2.12)
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By Lemma 2.1, there exists a positive constant η such that

∞∑

n=1

(log2 n)b

n log n
I1 ≤ C

∞∑

n=1

(log2 n)b

n log n
(log n)−η < ∞, ∀ε > 0.

Since EX = 0 and EX2 = 1, there exists a positive integer n0 such that for all n ≥ n0

EX̄2
n1 ≥

3

4
and EX̄n1 ≤

1

4
.

Hence using the Bernstein inequality, there exists a positive constant β < 1/3000 such that

∞∑

n=1

(log2 n)b

n log n
I2 ≤ C +

∞∑

n=n0

(log2 n)b

n log n
P

(
V̄ 2

n ≥ (1 + δ/2)nEX̄2
n1

)

≤ C +
∞∑

n=n0

(log2 n)b

n log n
(log n)−β

< ∞.

Finally, by EX2 = 1, we have

∞∑

n=1

(log2 n)b

n log n
I3 ≤

∞∑

n=1

(log2 n)b

log n
P

(
|X | > n1/2(log n)−1/3

)
≤ CEX2 < ∞.

Thus, (2.12) holds true. �
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RESUMO

Nesta nota, obtemos um teste integral de Chung para somas auto-normalizadas de variáveis aleatórias i.i.d. (indepen-

dentes e identicamente distribuídas). Além disso, obtemos uma taxa de convergência da lei de Chung do logaritmo

iterado para somas auto-normalizadas.

Palavras-chave: teste integral de Chung, somas auto-normalizadas, taxa de convergência.
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