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ABSTRACT

Proteolytic enzymes have a fundamental role in many biological processes and are associated with multiple patholog-

ical conditions. Therefore, targeting these enzymes may be important for a better understanding of their function and

development of therapeutic inhibitors. Fluorescence Resonance Energy Transfer (FRET) peptides are convenient tools

for the study of peptidases specificity as they allow monitoring of the reaction on a continuous basis, providing a rapid

method for the determination of enzymatic activity. Hydrolysis of a peptide bond between the donor/acceptor pair

generates fluorescence that permits the measurement of the activity of nanomolar concentrations of the enzyme. The

assays can be performed directly in a cuvette of the fluorimeter or adapted for determinations in a 96-well fluorescence

plate reader. The synthesis of FRET peptides containing ortho-aminobenzoic acid (Abz) as fluorescent group and

2,4-dinitrophenyl (Dnp) or N-(2,4-dinitrophenyl)ethylenediamine (EDDnp) as quencher was optimized by our group

and became an important line of research at the Department of Biophysics of the Federal University of São Paulo.

Recently, Abz/Dnp FRET peptide libraries were developed allowing high-throughput screening of peptidases substrate

specificity. This review presents the consolidation of our research activities undertaken between 1993 and 2008 on the

synthesis of peptides and study of peptidases specificities.

Key words: continuous recording assay, fluorescence resonance energy transfer, FRET substrates, proteolytic enzymes,

angiotensin I-converting enzyme, neprilisin.

INTRODUCTION

Proteolytic enzymes have a fundamental role in multi-
ple biological processes and are associated with several
pathological conditions (for review, see López-Otín and
Overall 2002, Turk 2006, Vasiljeva et al. 2007). For this
reason, the interest in defining the role of proteases and,
more specifically, their involvement in pathophysiolog-
ical conditions emphasize the importance of the devel-
opment of selective substrates and practical methods to
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follow the enzyme activity. Colorimetric, fluorimetric
and radiolabelled assays using synthetic substrates have
been described to monitor catalytic activity of several en-
zymes. However, all these techniques have limitations,
such as laborious procedures, low sensitivity or the use
of radiolabelled substrates. Thus, Fluorescence Energy
Resonance Transfer (FRET) peptides are an excellent al-
ternative for enzyme kinetic studies and for analysis of
the enzymatic activity in biological fluids, crude tissue
extracts or on the surface of cells in culture. This assay
has the advantage of being rapid, extremely sensitive and
uncomplicated. Conceptually, a fluorescent donor group
attached to one of the amino acid residues of the pep-
tide transfers energy to a quenching acceptor attached to
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another residue in the sequence following the resonance
mechanism described by Foster (1948). This process oc-
curs whenever the emission spectrum of the fluorophore
overlaps with the absorption spectrum of the acceptor
(reviewed by Sapsford et al. 2006). The FRET peptides
exhibit internal fluorescence quenching when intact, but
cleavage of any peptide bond between the donor/acceptor
pair liberates fluorescence that can be detected continu-
ously, allowing a quantitative measurement of the en-
zyme activity.

The first internally quenched fluorescent peptide re-
ported was a substrate for angiotensin I-converting en-
zyme (ACE), namely Abz-Gly-Phe(NO2)-Pro where the
fluorescence of the N-terminal ortho-amino benzoic
acid (Abz) was quenched by the p-nitro-phenylalanine
[Phe(NO2)] group (Carmel and Yaron 1978). However,
the use of this compound for ACE measurements has
not gained much success due to inadequate sensitivity.
In addition, the inefficient quenching of the Phe(NO2)
group resulted in high background fluorescence. This is
due to the absence of the spectral overlap required for
the FRET mechanism in the Abz/Phe(NO2) pair and di-
rect intramolecular interaction between the two groups
(Carmel and Yaron 1978).

A new generation of fluorescence-quenched sub-
strates was developed one decade later in our laboratory.
Chagas et al. (1991), using the FRET peptide concept
described substrates for tissue and plasma kallikrein con-
taining Abz as the fluorescent group and EDDnp (2,4-
dinitrophenyl ethylenediamine) as the quencher group
(Fig. 1). The use of Abz/EDDnp as donor/acceptor pair
allowed an excellent energy overlap, and a high effi-
ciency of fluorescence quenching wish does not change
with pH. Peptides up to 20 residues can provide sig-
nificant increases in florescence (de Souza et al. 2000),
allowing the measurement of the enzymatic activity on
continuous base. The FRET peptides introduced by
Chagas et al. (1991) was a breakthrough in the study of
proteases’ specificity, and the synthesis of different Abz-
peptidyl-EDDnp sequences provided the opportunity for
us to study the activity of various endopeptidases such
as human renin (Oliveira et al. 1992), kallikreins (Cha-
gas et al. 1995, Del Nery et al. 1995, 1999, Portaro et
al. 1997, Angelo et al. 2006), cathepsin G (Réhault et
al. 1999, Korkmaz et al. 2008), cathepsin D (Pimenta

et al. 2000), pro hormone convertase (Johanning et al.
1998), lysosomal cathepsins (Portaro et al. 2000, Alves
et al. 2003, Puzer et al. 2004) and neprilysin (Medeiros
et al. 1997).

Despite being very helpful in endopeptidases’ spe-
cificity studies, the FRET peptides containing Abz at-
tached to the N-terminal amino group and EDDnp (2,4-
dinitrophenyl ethylenediamine) to the C-terminal car-
boxyl group were limited in terms of their substrate suit-
ability for carboxypeptidases or aminopeptidases. To
overcome this limitation, we developed FRET peptides
containing a free C-terminal (Araujo et al. 2000) or N-
terminal group (Molinaro et al. 2005) which are used
as substrates for angiotensin I-converting enzyme and
aminopeptidase P, respectively. In both cases, Abz was
used as the fluorescent group, and 2,4-dinitrophenyl
(Dnp) incorporated to the ε-NH2 of a Lys residue of the
peptide sequence as the quencher group. FRET pep-
tides were also developed for the screening of the car-
boxypeptidases such as the lysosomal cysteine protease
cathepsin X (Puzer et al. 2005). More recently, we de-
veloped a series of Abz/Dnp peptides that were used in
neprilysin carboxydipeptidase specificity studies (Barros
et al. 2007).

The increase in demand for FRET Abz/EDDnp sub-
strates led our group to introduce several changes in the
synthesis strategies. The adaptation of the methodology
of peptide synthesis, in solid phase to a parallel-phase
solid phase, allowed the rapid preparation of a large num-
ber of substrates in small quantities (Hirata et al. 1994).
Significant improvement in the study of substrate pep-
tidase specificity was achieved with the development of
libraries of peptides that allow the screening of billions
of structures. A plethora of methodologies to obtain
the substrate libraries have been described and they may
be conveniently obtained by either biochemical or syn-
thetic procedures. Recently, we developed Positional-
Scanning Synthetic Combinatorial (PS-SC) libraries of
FRET peptides, in which Abz was used as the fluores-
cent group and Dnp coupled to the ε-NH2 of a Lys as
a quencher. In these libraries, each position in the pep-
tide sequence is occupied in turn by a single amino acid
residue. The other positions are randomly occupied by
one of 20 natural amino acids. This concept was also
employed for the study of carboxydipeptidase specificity
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Fig. 1 – Schematic representation of the FRET peptide mechanism with Abz/EDDnp donor/acceptor pair. Fluorescence is released upon cleavage

of any peptide bond within the amino-acid sequence. According to Schechter and Berger (1967), P1, P2, P3 and P4 are designed for amino acids

residues in the N-terminal direction, and P1′, P2′ and P3′ in the C-terminal direction from the scissile bond.

of cathepsin B (Cotrin et al. 2004) and for the evalu-
ation of substrate specificity of the two active sites of
ACE, defining the requirements for C-domain specificity
(Bersanetti et al. 2004). Another important contribution
of our group was the development of a PS-SC FRET pep-
tide library that allowed us to define, in vitro, the sub-
strate specificity of PHEX (Phosphate-regulating gene
with homologies to endopeptidases on the X chromo-
some), an enzyme related to X-linked hypophosphatemia
in humans whose endogenous substrate(s) remain(s) un-
known. Our data clearly show an unequivocal preference
of PHEX for cleavage at the amino-terminus of acidic
amino acid residues (Asp or Glu), with a strong bias for
Asp residues (Campos et al. 2003). In addition, we have
developed an enzymatic assay for PHEX using FRET
substrates that can be helpful to develop inhibitors, better
characterize the enzyme and understand its physiologi-
cal role (Campos et al. 2003). More recently, synthetic
support-bound peptide libraries have been prepared by
the process of split-combination synthesis, which results
in a single peptide sequence on each of the resin beads.
Using this random synthetic library approach, we im-
proved the specificity studies of Dengue 2 virus NS2B-
NS3 protease and human cathepsin S (Alves et al. 2007).

As an example of our line of research, in the present
review we focus on FRET substrates recently developed

for the measurement of the catalytic activity of two
metallopeptidases directly involved in pathological pro-
cesses, namely angiotensin I-converting enzyme (ACE)
and neprilysin (NEP).

A CONTINUOUS FLUORESCENCE RESONANCE ENERGY

TRANSFER (FRET) ANGIOTENSIN I-CONVERTING

ENZYME ASSAY

Angiotensin I-converting enzyme (ACE) (EC 3.4.15.1)
is a zinc- carboxydipeptidase involved in several physio-
logical and pathophysiological conditions. The enzyme
plays an important role in blood pressure regulation by
converting the inactive decapeptide angiotensin I to the
potent vasopressor angiotensin II (Skeggs et al. 1956)
and inactivating the vasodilator bradykinin (Yang et al.
1970). The enzyme is also able to hydrolyze other natu-
rally occurring peptides, such as N-Acetyl-Seryl-Aspar-
tyl-Lysyl-Proline (Rousseau et al. 1995), substance P
(Skidgel et al. 1984) and luteinizing hormone-releasing
hormone ( Skidgel and Erdos 1985). ACE is expressed
as a somatic isoform (150-180 kDa) in endothelial, ep-
ithelial and neuroepithelial cells and as a smaller isoform
(90-110 kDa) only in germinal cells in the testes. The
somatic ACE is composed of two highly homologous do-
mains, N- and C-domains, both possessing a functional
active site (Soubrier et al. 1988). The germinal form
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of ACE contains a single active site and corresponds to
the C-domain of the somatic form (Ehlers et al. 1989).
Plasma or soluble ACE is derived from proteolytic shed-
ding of the ACE ectodomain from the cell membrane
(Wei et al. 1991). The C- and N-domains of ACE are
functional and share a high degree of homology, partic-
ularly at the active centers, but they differ in substrate
specificities, inhibitor and chloride profiles (Wei et al.
1991, 1992). The active sites of both domains cleave
angiotensin I, substance P and bradykinin with similar
efficiency (Jaspard et al. 1993) while the natural circulat-
ing tetrapeptide N -Acetyl-Seryl-Aspartyl-Lysyl-Proline
(Rousseau et al. 1995) is a specific substrate for the N-
domain catalytic site.

The interest in defining the role of the enzyme and,
more specifically, of its N- and C-domain active sites
in different biological processes, accentuates the impor-
tance of the development of domain selective substrates.
Using the FRET concept, we developed analogues of the
ACE N-domain-specific substrate Ac-SDKP-OH con-
taining Abz/Dnp as the donor/acceptor pair (Dnp = 2,4-
dinitrophenyl), resulting in the highly N-domain-selec-
tive substrate Abz-SDK(Dnp)P-OH that was practically
resistant to hydrolysis by the C-domain (Araujo et al.
2000). We also described the substrate Abz-FRK(Dnp)P-
OH, which is hydrolyzed by wild-type ACE at the Arg-
Lys(Dnp) bond, with a kcat/Km value of 52.6μM–1.s–1.
This peptide can be classified as one of the best ACE
substrates since the previously reported kcat/Km values
for the hydrolysis of bradykinin, angiotensin I and
Hippuryl-His-Leu were 61.0μM–1.s–1, 2.5μM–1.s–1 and
0.26μM–1.s–1, respectively (Soubrier et al. 1988, Wei
et al. 1992).

The use of positional-scanning synthetic combina-
torial (PS-SC) libraries of Abz/Dnp FRET peptides al-
lowed the evaluation of substrate specificity for the
two active sites of ACE and defined requirements for C-
domain specificity (Bersanetti et al. 2004). This study re-
sulted in the design of the substrate Abz-LFK(Dnp)-OH,
which demonstrated a high selectivity for the recombi-
nant ACE C-domain (kcat/Km = 36.7μM–1.s–1) compared
to the N-domain (kcat/Km = 0.51μM–1.s–1).

The FRET peptides developed by our group can
be employed for ACE measurement in human plasma,
serum and tissues (Alves et al. 2005). Abz-FRK(Dnp)P-

OH was used as substrate to quantify ACE activity in
human plasma. The fluorescence appeared after the
cleavage of the Arg-Lys(Dnp) bond as determined by
HPLC analysis and amino acid sequencing of the reac-
tion products. The assay required as little as 1μL of
plasma in a final volume of 1 mL, and a linear rela-
tionship between the rate of the hydrolysis and the vol-
ume of human plasma added was observed in the in-
vestigated range (Fig. 2). Regression analysis was per-
formed on data from 80 healthy patients using Hip-His-
Leu and Abz-FRK(Dnp)P-OH as substrates, as shown
in Figure 3. The paired Student’s t-test indicated that
the obtained results correlated closely and are consid-
ered significant (r = 0.90, P < 0.001). The specificity
of the assay was demonstrated by the complete inhibi-
tion of hydrolysis by 0.5μM lisinopril or captopril. The
use of Abz-FRK(Dnp)P-OH was also validated for the
measurement of ACE activity in rat lung, kidney and
heart homogenates (Alves et al. 2005), and for determi-
nation of ACE activity directly on the surface of intact
CHO cells (Sabatini et al. 2007). A protocol with de-
tails of the use of the substrates Abz-FRK(Dnp)P-OH,
Abz-SDK(Dnp)P-OH and Abz-LFK(Dnp)-OH for ACE
activity determinations was recently described by Car-
mona et al. (2006).

NEPRILYSIN CARBOXYDIPEPTIDASE SPECIFICITY

STUDIES AND IMPROVEMENT OF ITS DETECTION

WITH FLUORESCENCE RESONANCE ENERGY

TRANSFER PEPTIDES

Neprilysin (NEP; EC 3.4.24.11) is a zinc metallopepti-
dase from M13 family that was first isolated from renal
brush border membrane of rabbit (Kerr and Kenny 1974).
Neprilysin (NEP) is able to hydrolyze several peptides
with important biological activities, such as natriuretic
atrial factor, enkephalins, substance P, bradykinin and
amyloid beta-peptide (reviewed by Roques et al. 1993).
Thus, it has been suggested possible role(s) for NEP
as a therapeutic target in important physiological and
pathological conditions as hypertension (Molinaro et al.
2002), Alzheimer’s disease (Iwata et al. 2001) and anal-
gesia (Whitworth 2003). NEP is also known as enkepha-
linase, neutral endopeptidase and CD10, and has been
used as a biological marker of a type of child leukemia
called CALLA (Letarte et al. 1988). The detection of
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Fig. 2 – Linear relationship between the velocity of hydrolysis of 10μM of Abz-FRK(Dnp)P-OH and different amounts of added human plasma.

In the inset, continuous fluorescence recording of the substrate hydrolysis by plasma: 1μl (I), 2μl (N), 5μl (�), 10μl (•) and 10μl + 0.5μM

lisinopril (♦). The slope was converted into μmol of substrate hydrolyzed/minute based on a calibration curve obtained from the complete

hydrolysis of Abz-FRK(Dnp)P-OH (slope = 4600 AFU/μM of Abz-FR). Each measurement was made in duplicate (Alves et al. 2005).

NEP in endometrial stromal cells has been proposed as
a helpful tool in diagnosis of endometriosis (Groisman
and Meir 2003). The involvement of the enzyme in
the hydrolysis of the vasoactive intestinal peptide (VIP)
was the basis for a recent study that resulted in the de-
velopment of very selective inhibitors for NEP, which
can be used in the treatment of female sexual arousal
disorder (Pryde et al. 2006). It was suggested that,
by selective NEP inhibition, VIP levels could increase
thereby enhance VIP-induced increase in vaginal blood
flow (Pryde et al. 2006).

NEP is widely distributed and is present in the en-
dothelial surface of several tissues where other important
related peptidases are also located, such as angiotensin
I-converting enzyme (ACE). Therefore, the selective de-
tection of NEP can be important for determination of
the enzyme levels in normal and pathological conditions.
Several methods have been described for assaying NEP
activity. However, each of these techniques has its own

limitations, like being overly laborious and requiring two
steps, not selective or not sufficiently sensitivity (Flo-
rentin et al. 1984, Malfroy and Burnier 1987, Goudreau
et al. 1994, Medeiros et al. 1997).

NEP has a clear substrate specificity cleaving pep-
tide bonds at the N-terminus of aromatic and bulky hy-
drophobic amino acid residues (Hersh and Morihara
1986). Although the enzyme has been first described as
an endopeptidase (Kerr and Kenny 1974), in vitro stud-
ies have shown that NEP has better carboxydipeptidase
than endopeptidase activity when the two situations of
cleavage are possible (Malfroy and Schwartz 1982, 1985,
Dion et al. 1997).

Recently, our group studied in detail the S1 and S2

subsites requirements [according to the nomenclature of
Schechter and Berger (1967)] for the carboxydipeptidase
activity of a recombinant soluble form of NEP (Barros
et al. 2007). For this purpose, we synthesized two se-
ries of FRET peptides namely Abz-RXFK(Dnp)-OH and

An Acad Bras Cienc (2009) 81 (3)



“main” — 2009/7/27 — 13:55 — page 386 — #6

386 ADRIANA K. CARMONA, MARIA APARECIDA JULIANO and LUIZ JULIANO

Activity upon Hip-His-Leu (mU/mL)

0 20 40 60 80

A
ct
iv
ity
 u
po
n 
A
b
z-
F
R
K
(D
np
)P
 - 
O
H

(m
U
/m
L)

2

4

6

8

10

12

Fig. 3 – Linear regression analysis of paired data of angiotensin I-

converting enzyme activity in the plasma of 80 normal patients using

Hip-His-Leu (x) and Abz-FRK(Dnp)P-OH (y) as substrates. In the

Friedland and Silverstein (1976) method, ACE activity was measured

in 10μL, with 5 mM Hip-His-Leu as substrate, in a final volume of

250μL. In our method, 5μL of plasma were incubated with 10μM

of Abz-FRK(Dnp)P-OH in a final volume of 1.0 mL (r = 0.90). The

assays were performed in duplicate. (Alves et al. 2005).

Abz-XRFK(Dnp)-OH (Abz = ortho-aminobenzoic acid;
Dnp = 2,4-dinitrophenyl; X = different natural amino
acids), in which the cleavage occurred at the X-Phe and
Arg-Phe bonds, respectively. In both series, the primary
specificity was consistent with hydrolysis at the amino
side of hydrophobic residues. Our results indicated that
the subsite S1 has a broad specificity, being with Gly the
best-accepted residue in the P1 position. The substrate
Abz-RGFK(Dnp)-OH was hydrolyzed with the highest
catalytic efficiency (kcat/Km = 3514 mM–1.s–1) among
all the tested peptides in our study. The S2 subsite was
more restrictive, presenting low susceptibility to pep-
tides containing hydrophobic and negatively charged
residues. The substrate Abz-RRFK(Dnp)-OH contain-
ing Arg in P2 was hydrolyzed with the highest kcat/Km

value (kcat/Km = 2011 mM-1.s-1) in the series. We also
examined the importance of a free terminal carboxy-
late of FRET peptides for NEP hydrolysis assaying the
amidated analogues Abz-RGFK(Dnp)-NH2 and Abz-
RRFK(Dnp)-NH2. Both peptides showed a decrease in
apparent affinity and in catalytic constant, which reflect
a lower susceptibly to hydrolysis when compared to the
free-carboxylate analogues.

We extended the NEP carboxydipeptidase and en-
dopeptidase activities studies using as substrates brady-
kinin (RPPGFSPFR) and its fluorogenic derivative Abz-
RPPGFSPFRQ-EDDnp [EDDnp = N -(2,4-dinitrophe-
nyl)-ethylenediamine] that contains a blocked C-terminal
carboxyl group (Barros et al. 2007). In this FRET pep-
tide, the EDDnp group was attached to a glutamine as a
necessary result of the solid phase synthesis strategy em-
ployed (Hirata et al. 1994). NEP hydrolyzed bradykinin
(BK) simultaneously at the Pro-Phe and Gly-Phe bonds
(Fig. 4-A), generating the fragments RPPGFSP and
RPPG with marked differences in the relative rate of hy-
drolysis, being the Pro-Phe bond cleaved preferentially
over the Gly-Phe bond in a ratio of 9:1 (Fig. 4-B). Thus,
in BK, the free carboxyl group at the C-terminus seems
to be a key feature in directing NEP S2’specificity. On
the other hand, when the C-terminus was blocked as in
the fluorogenic derivative Abz-RPPGFSPFRQ-EDDnp,
NEP showed an opposite pattern of cleavage being the
peptide hydrolyzed at the Gly-Phe in preference to the
Pro-Phe bond at a rate of 9:1 (Fig. 4-C). In this substrate,
in the absence of a free carboxyl group to promote the
stabilization of the enzyme-substrate interaction, a Gly
in P1 defined the specificity profile. The shift of the pre-
ferred scissile bond in the fluorescent analogue of BK
clearly demonstrated the important contribution of the
free carboxyl group in defining enzyme specificity.

In spite of the more efficient NEP catalytic activ-
ity on the carboxyl-free substrates than on the blocked
terminus peptides, the former have the disadvantage of
being hydrolyzed by other carboxypeptidases, mainly
angiotensin I-converting enzyme (ACE) that coexists
with NEP in various tissues. To overcome this limita-
tion, we explored NEP endopeptidase activity and ob-
tained sensitive and selective NEP substrates. Previ-
ously, a work from our group (Medeiros et al. 1997) de-
scribed the FRET peptide Abz-rRL-EDDnp (r = DArg) as
very selective for NEP, being resistant to ACE and other
peptidases activity. However this compound had a low
kcat/Km (32 mM–1.s–1) mainly due to the low kcat value
(0.088 s–1), restricting its use for NEP determinations on
continuous basis mainly when the enzyme concentration
is low. In order to improve NEP detection, a Gly residue
was introduced in P1 position, resulting in the substrate
Abz-rGL-EDDnp which was hydrolyzed with a kcat/Km
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Fig. 4 – Recombinant NEP cleavage sites (arrows) on BK and Abz-RPPGFSPFR-EDDnp (4-A). Percentage of RPPGFSP (open boxes) and

RPPG (dark boxes) generated in different times of incubation of BK with recombinant NEP (4-B). Percentage of Abz-RPPGFSP (open boxes)

and Abz-RPPG (dark boxes) fragments formation in different times of incubation of Abz-RPPGFSPFR-EDDnp with recombinant NEP (4-C). The

percentage of hydrolysis was calculated by the estimation of the peak area of the formed fragment, taken the substrate totally hydrolyzed as 100%

(Barros et al. 2007).

= 3514 mM–1.s–1 due to a high kcat value of 49.2 s–1

and being resistant to other peptidases, such as ACE,
trypsin like enzymes and arginil hydrolases present in
homogenates of several tissues (Barros et al. 2007). In-
deed, the catalytic constants obtained with the substrates
containing a free C-terminus were better than those ob-
tained with Abz-peptidyl-EDDnp derivatives. However,
the former are better NEP substrates for assays with puri-
fied enzyme, while the later are more specific substrates
for the enzyme detection in crude enzyme preparations
and in tissue homogenates. Figure 5 shows the sensitivity
and the specificity of the assay using Abz-rGL-EDDnp
as substrate for NEP detection in rat kidney and lung.
The selectivity of the assay was demonstrated by us-
ing the specific NEP inhibitor thiorphan that completely
abolished the hydrolysis of Abz-rGL-EDDnp in crude
extracts of rat tissues. The kidney was chosen because it
is the organ with the highest NEP content (Ronco et al.
1988), being also rich in ACE (Welsch et al. 1989). On
the other hand, the lung is the tissue that has the highest
ACE content (Cushman and Cheung 1971) also with a
considerable amount of NEP (Ronco et al. 1988). The
results demonstrated that we have an important tool for
NEP detection on continuous basis, even in tissues with
a low amount of enzyme.
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RESUMO

As enzimas proteolíticas têm um papel fundamental em mui-

tos processos biológicos e estão associadas a vários estados

patológicos. Por isso, o estudo da especificidade das pepti-

dases pode ser importante para uma melhor compreensão da

função destas enzimas e para o desenvolvimento de inibidores.

Os substratos com supressão intramolecular de fluorescência

constituem uma excelente ferramenta, pois permitem o moni-

toramento da reação de forma contínua, proporcionando um

método prático e rápido para a determinação da atividade en-

zimática. A hidrólise de qualquer ligação da cadeia peptídica

entre o grupo doador e o grupo supressor gera fluorescência

que permite detectar concentração nanomolar de enzima. Os

ensaios podem ser acompanhados diretamente na cubeta ou

adaptados para determinações de fluorescência em leitoras de

placa. A síntese dos peptídeos com supressão intramolecu-

lar de fluorescência contendo o grupo fluorescente Abz (orto-

aminobenzóico) e o grupo supressor EDDnp (N-[2,4-dinitro-
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Fig. 5 – Effect of the protein concentration on the hydrolytic activity of rat kidney (A) or rat lung (B) homogenates upon Abz-rGL-EDDnp (10μM).

Inset: continuous fluorescence recording of the Abz-rGL-EDDnp hydrolysis by 10μg of rat kidney (A) or rat lung (B) in absence (•) or in presence

(o) of 0.05μM of thiorphan. The assays were performed in Tris-HCl buffer containing 0.2 M of NaCl, pH 7.0 (Barros et al. 2007).
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fenil]-etilenodiamino ou Dnp (2,4-dinitrophenyl) foi otimizada

pelo nosso grupo e tornou-se uma importante linha de pesquisa

no Departamento de Biofísica da Universidade Federal de São

Paulo. Recentemente, foram desenvolvidas bibliotecas de pep-

tídeos fluorogênico contendo Abz/Dnp como grupo doador/su-

pressor trazendo um grande avanço no estudo de especificidade

das peptidases. Esta revisão apresenta o trabalho desenvolvido

pelo nosso grupo entre 1993 e 2008 sobre a síntese de peptídeos

e o estudo da especificidade de peptidases.

Palavras-chave: ensaios contínuos, substratos com supres-

são intramolecular de fluorescência, substratos fluorogênicos,

enzimas proteolíticas, enzima conversora da angiotensina I,

neprilisina.
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