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ABSTRACT

Strong laws are established for linear statistics that are weighted sums of a random sample. We

show extensions of the Marcinkiewicz-Zygmund strong laws under certain moment conditions on

both the weights and the distribution. These not only generalize the result of Bai and Cheng (2000,

Statist Probab Lett 46: 105– 112) to ρ∗-mixing sequences of random variables, but also improve

them.
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1 INTRODUCTION

As Bai and Cheng (2000) remarked, many useful linear statistics based on a random sample are

weighted sums of i.i.d. random variables. Examples include least-squares estimators, nonparamet-

ric regression function estimators and jackknife estimates, among others. In this respect, studies of

strong laws for these weighted sums have demonstrated significant progress in probability theory

with applications in mathematical statistics. But a random sample is often dependent. So we want

to know if the results obtained for i.i.d. random variables are still true for ρ∗-mixing sequences of

random variables.

Let S, T ⊂ N be nonempty and define FS = σ(Xk, k ∈ S), and the maximal correlation

coefficient ρ∗
n = sup corr( f, g) where the supremum is taken over all (S, T ) with dist (S, T ) ≥ n

and all f ∈ L2(FS), g ∈ L2(FT ) and where dist (S, T ) = inf x∈S,y∈T |x − y|.
A sequence of random variables {Xn, n ≥ 1} on a probability space {�,F, P} is called

ρ∗-mixing if

lim
n→∞ ρ∗

n < 1. (1.1)
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As for ρ∗-mixing sequences of random variables, one can refer to Bryc and Smolenski (1993),

who found bounds for the moments of partial sums for a sequence of random variables satisfying

(1.1), and to Peligrad (1996) for CLT, Peligrad (1998) for invariance principles, Peligrad and Gut

(1999) for the Rosenthal type maximal inequality, Utev and Peligrad (2003) for invariance principles

of nonstationary sequences. The main purpose of this paper is to establish the Marcinkiewicz-

Zygmund strong laws for linear statistics of ρ∗-mixing sequences of random variables. The results

obtained (see Theorem 2.1 and Corollary 2.1) not only generalize the result of Bai and Cheng

(2000) to ρ∗-mixing sequences of random variables, but also improve them. In Theorem 2.2 of Bai

and Cheng (2000), they believe the choice of bn can hardly be improved in view of Cuzick (1995,

Lemma 2.1), but now we improve the choice of bn using a new method.

2 THE MARCINKIEWICZ-ZYGMUND STRONG LAWS

Throughout this paper, C will represent a positive constant though its value may change from one

appearance to the next, and an = O(bn) will mean an ≤ Cbn .

In order to prove our results, we need the following lemma.

LEMMA 2.1. (Utev and Peligrad, 2003). Let {Xi , i ≥ 1} be a ρ∗-mixing sequence of random

variables, E Xi = 0, E |Xi |p < ∞ for some p ≥ 2 and for every i ≥ 1. Then there exists

C = C(p), such that

E max
1≤k≤n

|
k∑

i=1

Xi |p ≤ C

{ n∑
i=1

E |Xi |p +
( n∑

i=1

E X2
i

)p/2}
.

THEOREM 2.1. Let {X, Xi , i ≥ 1} be a ρ∗-mixing sequence of identically distributed random

variables, Tn =
n∑

i=1
ani Xi , n ≥ 1, where the weights {ani , 1 ≤ i ≤ n, n ≥ 1} are random variables

which are independent of {Xi , i ≥ 1} (the case of deterministic weights is included). Suppose that

for some α with 0 < α < 2 we have that
∑n

i=1 |ani |α = O(n) almost surely. If 1 < α < 2, we

assume additionally that E X = 0. Set bn = n
1
α (log n)

1
γ . We assume that for some h, γ > 0, we

have

E exp(h|X |γ ) < ∞. (2.0)

Then

∀ε > 0,

∞∑
n=1

n−1 P
(

max
1≤ j≤n

|Tj | > εbn

)
< ∞. (2.1)

PROOF. ∀i ≥ 1, define X (n)
i = Xi I (|Xi | ≤ bn), T (n)

j =
j∑

i=1

(
ani X (n)

i − Eani X (n)
i

)
, then ∀ε > 0,
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we have

P

(
max

1≤ j≤n
|Tj | > εbn

)

≤ P

(
max

1≤ j≤n
|X j | > bn

)
+ P

(
max

1≤ j≤n
|T (n)

j +
j∑

i=1

Eani X (n)
i | > εbn

)

≤ P

(
max

1≤ j≤n
|X j | > bn

)
+ P

(
max

1≤ j≤n
|T (n)

j | > εbn − max
1≤ j≤n

|
j∑

i=1

Eani X (n)
i |

)
.

(2.2)

First we show that

b−1
n max

1≤ j≤n

∣∣∣∣
j∑

i=1

Eani X (n)
i

∣∣∣∣ → 0, as n → ∞. (2.3)

By
∑n

i=1 |ani |α = O(n) and Hölder inequality, ∀1 ≤ k < α, then

n∑
i=1

|ani |k ≤
( n∑

i=1

|ani |k α
k

) k
α
( n∑

i=1

1

) α−k
α

≤ Cn. (2.4)

When 1 < α < 2, using E X = 0, (2.4), Markov inequality and (2.0), when n → ∞, then

b−1
n max

1≤ j≤n
|

j∑
i=1

Eani X (n)
i |

≤ b−1
n

n∑
i=1

E |ani Xi |I (|Xi | > bn)

= b−1
n

n∑
i=1

|ani |E |X |I (|X | > bn)

≤ Cb−1
n nE |X |I (|X | > bn)

= Cb−1
n n

∞∑
k=n

E |X |I (bk < |X | ≤ bk+1)

≤ Cb−1
n n

∞∑
k=n

bk+1 P(|X | > bk)

≤ Cb−1
n n

∞∑
k=n

bk+1
E exp(h|X |γ )

exp(hbγ

k )

≤ Cb−1
n n

∞∑
k=n

(k + 1)
1
α (log(k + 1))

1
γ k−hkγ /α

≤ Cn− 1
α (log n)

− 1
γ nn−1

= Cn− 1
α (log n)

− 1
γ → 0.

(2.5)
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∑n
i=1 |ani |α = O(n) implies that max1≤i≤n |ani | = O(n

1
α ). By this and Hölder inequality, ∀k ≥ α,

then
n∑

i=1

|ani |k =
n∑

i=1

|ani |α|ani |k−α ≤ Cnn
k−α
α = Cn

k
α . (2.6)

When 0 < α ≤ 1, using (2.6), Markov inequality and (2.0), when n → ∞, then

b−1
n max

1≤ j≤n

∣∣ j∑
i=1

Eani X (n)
i

∣∣

≤ b−1
n

n∑
i=1

E |ani Xi |I (|Xi | ≤ bn)

= b−1
n

n∑
i=1

|ani |E |X |I (|X | ≤ bn)

≤ Cb−1
n n

1
α E |X |I (|X | ≤ bn)

= Cb−1
n n

1
α

n∑
k=2

E |X |I (bk−1 < |X | ≤ bk)

≤ Cb−1
n n

1
α

n∑
k=2

bk P(|X | > bk−1)

≤ Cb−1
n n

1
α

n∑
k=2

bk
E exp(h|X |γ )

exp(hbγ

k−1)

≤ Cb−1
n n

1
α

n∑
k=2

k
1
α (log k)

1
γ (k − 1)−h(k−1)γ /α

≤ Cn− 1
α (log n)

− 1
γ n

1
α

= C(log n)
− 1

γ → 0.

(2.7)

From (2.5) and (2.7), Hence (2.3) is true.

From (2.2) and (2.3), it follows that for n large enough

P
(

max
1≤ j≤n

|Tj | > εbn
) ≤

n∑
j=1

P
(|X j | > bn

) + P
(

max
1≤ j≤n

|T (n)
j | >

ε

2
bn

)
.

Hence we need only to prove that

I =:
∞∑

n=1

n−1
n∑

j=1

P
(|X j | > bn

)
< ∞,

I I =:
∞∑

n=1

n−1 P
(

max
1≤ j≤n

|T (n)
j | >

ε

2
bn

)
< ∞.

(2.8)
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From the fact that E exp(h|X |γ ) < ∞, it follows easily that

I =
∞∑

n=1

n−1n P(|X | > bn)

=
∞∑

n=1

P(|X | > bn)

≤
∞∑

n=1

E exp(h|X |γ )

exp(hbγ
n )

≤ C
∞∑

n=1

1

nhnγ/α
< ∞.

(2.9)

By Lemma 2.1, it follows that for q ≥ 2

I I ≤ C
∞∑

n=2

n−1b−q
n E max

1≤ j≤n
|T (n)

j |q

≤ C
∞∑

n=2

n−1b−q
n

{ n∑
j=1

E |anj X (n)
j |q +

( n∑
j=1

E |anj X (n)
j |2

)q/2}

=: I I1 + I I2.

(2.10)

Let max(2, α, γ + 1) ≤ q, using (2.6), we have

I I1 = C
∞∑

n=2

n−1b−q
n

n∑
i=1

|ani |q E |X |q I (|X | ≤ bn)

≤ C
∞∑

n=2

n−1b−q
n n

q
α E |X |q I (|X | ≤ bn)

= C
∞∑

n=2

n−1b−q
n n

q
α

n∑
k=2

E |X |q I (bk−1 < |X | ≤ bk)

≤ C
∞∑

k=2

∞∑
n=k

n−1+ q
α n−q/α(log n)−q/γ bq

k P(|X | > bk−1)

≤ C
∞∑

k=2

bq
k

E exp(h|X |γ )

exp(hbγ

k−1)

≤ C
∞∑

k=2

k
q
α (log k)

q
γ (k − 1)−h(k−1)γ /α

< ∞.

(2.11)
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By 0 < α < 2, (2.6) and q ≥ (γ + 1), we have

I I2 = C
∞∑

n=2

n−1b−q
n

( n∑
i=1

|ani |2
)q/2(

E |X |2 I (|X | ≤ bn)
)q/2

≤ C
∞∑

n=2

n−1b−q
n

(
n

2
α

)q/2(
E |X |2 I (|X | ≤ bn)

)q/2

= C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

E |X |2 I (bk−1 < |X | ≤ bk)

)q/2

≤ C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

b2
k P(|X | > bk−1)

)q/2

≤ C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

b2
k

E exp(h|X |γ )

exp(hbγ

k−1)

)q/2

≤ C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

k
2
α (log k)

2
γ

exp(h(k − 1)γ/α log(k − 1))

)q/2

= C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

k
2
α (log k)

2
γ (k − 1)−h(k−1)γ /α

)q/2

≤ C
∞∑

n=2

n−1(log n)−q/γ

( n∑
k=2

k−2

)q/2

≤ C
∞∑

n=2

n−1(log n)−q/γ < ∞.

(2.12)

Putting (2.11) and (2.12) into (2.10) yields I I < ∞. Now we complete the prove of Theorem 2.1.

COROLLARY 2.1. Under the conditions of Theorem 2.1, then lim
n→∞

|Tn |
bn

= 0 a.s.

PROOF. By (2.1), we have

∞ >

∞∑
n=1

n−1 P
(

max
1≤ j≤n

|Tj | > εbn
)

=
∞∑

i=0

2i+1−1∑
n=2i

n−1 P
(

max
1≤ j≤n

|Tj | > εn
1
α (log n)

1
γ
)

≥ 1

2

∞∑
i=1

P
(

max
1≤ j≤2i

|Tj | > ε2
i+1
α (log 2i+1)

1
γ
)
.

By Borel-Cantelli Lemma, we have

P

(
max

1≤ j≤2i
|Tj | > ε2

i+1
α (log 2i+1)

1
γ , i.o.

)
= 0.
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Hence

lim
i→∞

max
1≤ j≤2i

|Tj |

2
i+1
α (log 2i+1)

1
γ

= 0 a.s.

and using

max
2i−1≤n<2i

|Tn|
bn

≤ 2
2
α

max
1≤ j≤2i

|Tj |

2
i+1
α (log 2i+1)

1
γ

(
i + 1

i − 1

) 1
γ

,

We have

lim
n→∞

|Tn|
bn

= 0 a.s.

REMARK 2.1. Corollary 2.1 generalizes the Theorem 2.2 of Bai and Cheng (2000) to ρ∗-mixing

sequences of random variables and the restricton of bn in Corollary 2.1 is weaker than the restricton

of bn in Theorem 2.2 of Bai and Cheng (2000).
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RESUMO

Leis fortes são estabelecidas para estatísticas lineares que são somas ponderadas de uma amostra aleatória.

Mostramos extensões das leis fortes de Marcinkiewicz-Zygmund sob certas condições tanto nos pesos quanto

na distribuição. Estas últimas não só generalizam o resultado de Bai e Cheng (2000, Statist Probab Lett 46:

105-112) para sequências aleatórias “ ρ∗-mixing” como também o melhoram.

Palavras-chave: “ ρ∗-mixing”, Marcinkiewicz-Zygmund leis fortes, somas ponderadas.
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