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ABSTRACT

We establish a sufficient condition for injectivity in a class of mappings defined on open connected subsets
of Rn , for arbitrary n. The result relates solvability of the appropriate vector fields with injectivity of the
mapping and extends a result proved by the first author for n ≤ 3. Furthermore, we extend the result to
connected paracompact smooth oriented manifolds and show that the convexity condition imposes strong
topological restrictions on the manifold.
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INTRODUCTION

Let � be an open connected subset of Rn , and consider 8(�) = {F ∈ C∞(�,Rn) : det(DF)(x) 6= 0 ∀x}.

We denote an element of 8(�) by F = (f1, . . . , fn). A very basic problem in Mathematical Analysis is

to determine additional conditions under which F is injective. The most famous related problem is the

so called Jacobian Conjecture, which states that for a polynomial mapping on Cn no additional condition

is necessary, see (Bass et al. 1982). For applications and related bibliography see (Santos Filho 2004).

As in Santos Filho, for each i ∈ {1, 2, . . . , n}, we consider VF,i the real vector field defined by

VF,i (φ)(x) = det(DFi,φ)(x)), for all φ ∈ C∞.

Here the mapping Fi,φ is given by: Its j-component is equal to f j if j 6= i and its i-component is

equal to φ. It follows that the non-empty connected components of {x ∈ �; f j (x) = c j , j 6= i},

where c1, . . . , ci−1, ci+1, . . . , cn ∈ R, defines a smooth one-dimensional foliation of �. This foliation is

precisely that one of the characteristic curves of VF,i , because each f j is a first integral of VF,i , if

j ∈ {1, . . . , n} with j 6= i . In order to characterize solvability of linear partial differential operators

Correspondence to: José R. dos Santos Filho
E-mail: santos@dm.ufscar.br

An Acad Bras Cienc (2010) 82 (3)



“main” — 2010/7/26 — 12:28 — page 556 — #2

556 JOSÉ R. DOS SANTOS FILHO and JOAQUIM TAVARES

on a manifold, in (Malgrange 1956), B. Malgrange introduced a notion of convexity, namely the condition

(a)(2) of Theorem 2.1 below. As in (Santos Filho 2004), a similar notion is in order.

DEFINITION 1.1. Let F ∈ 8(�). We say that � is F-convex if there are an open set of �1 of Rn ,

G1 ∈ 8(�1) with G1(�1) = �, and G2 ∈ 8(F(�)) where, for j = 1, 2, each G j is a diffeomorphism over

its image such that there are n − 1 different indices i1, . . . , in−1 ∈ {1, . . . , n} where�1 is VF1,i j -convex for

j ∈ {1, . . . , n − 1} and F1 = G2 ◦ F ◦ G1.

For n = 2, 3 it was proved in Theorems 0.1 and Theorem 0.2 of (Santos Filho 2004), that: If � is

F-convex then F is injective. Also � is simply connected when n = 2.

Here we give a full generalization of these results. We mean not only for arbitrary dimensions,

but also for the smooth category of oriented manifolds too. Our main goal is to generalize, for higher

dimensions and arbitrary manifolds, those results. First we address the euclidean case as a introduction in

Theorem 1.1 and then we furnish the needed tools for the general case in Theorem 2.2 below.

THEOREM 1.1. Let � be an open connected subset of Rn and F ∈ 8(�). If � is F-convex then F is

injective.

EXAMPLE. Consider the smooth mapping of the plane given by F(x, y) = (x, y exp x−2) for x 6= 0 and

F(0, y) = (0, 0) if x = 0. Then VF,2 = ∂/∂y, so R2 is F-convex. Moreover det(D F(x)) = exp(x−2) > 0

if x 6= 0, so is positive except at a closed set of null Lebesgue measure, in the other hand F is not injective.

So the condition of F ∈ 8(R2) in Theorem 1.1 can not be in this fashion.

This paper is organized in the following way: First we prove Theorem 1.1, then extend it for connected

paracompact smooth oriented n-dimensional manifold M and finally show that M must be contractible if

M is F-convex for some F ∈ 8(M,Rn). We conclude by making some remarks regarding the results.

PROOFS OF THE RESULTS AND REMARKS

Before we prove our theorems we recall part of Theorem 6.4.2 of Duistermaat and Hörmander, in

(Duistermaat and Hörmander 1972), this result characterizes global solvability of vector fields considered

as partial differential operators:

THEOREM 2.1. Let L be a smooth real vector field of a C∞ manifold M , the following conditions (a)

and (b) below are equivalent:

(a) (1) No complete integral curve of L is contained in compact subset of M .

(2) For every compact subset K of M there exists a compact subset K ′ of M such that every compact

interval of an integral curve with end points in K is contained in K ′.

(b) There exists a manifold M0 and an open neighborhood M1 of M0 × {0} in M0 × R which is convex in

the R direction, and a diffeomorphism from M → M1 which carries L into the operator ∂/∂ t if points

of M0 × R are denoted by (y0, t).

In the first subsection we prove Theorem 1.1, in the second subsection we state and prove an extension

of it. Then a topological consequence, as corollary, is deduced and remarks are made.
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PROOF OF THEOREM 1.1

Without loss of generality we can assume that �1 = � and i j = j for j = 1, . . . , n − 1. Our proof

follows by a finite induction argument once we prove injectivity for appropriate restrictions of F . Let

j an integer, 1 ≤ j ≤ n − 1, and (c1, . . . , cn) ∈ Image(F), consider M j be a connected component of

∩ j
i=1f−1

i ({ci }). From the hypotheses, it follows that for each j M j is a C∞ submanifold of dimension

n − j of �, which is invariant by the flow of of VF,i , for j + 1 ≤ i ≤ n.

Let j ∈ {1, 2, . . . , n}, since VF, j ( fi ) = det(D F(x))δi j where δi j is the Kronecker symbol, we have

that both ω-limit and α-limit of characteristic curves of VF, j are empty. Hence condition (a)(1) of Theo-

rem 2.1 is true for L = VF, j , if j ∈ {1, . . . , n − 1}. Therefore, in our case, condition (a) of Theorem 2.1 is

equivalent (a)(2), which it is exactly the meaning of � be VF,i j -convex. So from Theorem 1.1 we have that

(b) holds, that is:

For each 1 ≤ j ≤ n − 1, the following holds

(∗) j There exist a manifold M0, j , an open neighborhood M1, j of M0,i × {0} in M0, j × R which is convex

in the R direction, and a diffeomorphism � → M1, j which carries each VF, j into the operator ∂/∂ t if

points in M0, j × R are denoted by (y0, j , t).

The next step of the proof is to show that we can take M0, j so that its image on �, by the diffeo-

morphism of (∗) j , is equal to a connected component of a level set of f j . In order to prove this, consider

Xi = (det(F′(x))−1VF,i , for i = 1, . . . , n, so [Xi , X j ](fk) = 0 for all i, j and k, therefore by the Inverse

Function Theorem we have that [Xi , X j ] = 0 for all i and j . Moreover, the orbits of Xi , for 1 ≤ i ≤ n

are equal to the corresponding VF,i .

So for 1 ≤ j ≤ n − 1 (∗) j holds for X j as well. From Frobenius Theorem, since the X j ’s commute,

the image on � of M0, j by the diffeomorphism must be orthogonal to X j . Therefore it is a connected

component of a pre-image of f j , and the same holds for VF, j .

Assume that there are two points p1 and p2 of M such that F(p1) = F(p2), in particular we have that

f1(p1) = f1(p2). Clearly if the characteristic curves of VF,1 passing through each pi are the same then we

have that p1 = p2, because VF,1(f1) 6= 0. So we assume that the above curves are different connected

components of {x; f j (x) = f j (p1), for j 6= 1}.

Identifying M0,1 with its image by the diffeomorphism given in (∗) j , by the above it must be equal to

a connected component of f−1
1 (c1)(= M0,1), for some real c1. Furthermore, since {VF,i ; 2 ≤ i ≤ n} are

tangent to f−1
1 (c), we reduce to prove the theorem for F|M0,1 ∈ 8(M0,1,Rn−1).

We apply the argument above until we get the restriction of F to a component connected of

∩1≤ j≤n−1f−1
j (c j ), but on this curve the restriction of F is equal to fn . So F must be injective there by

using that VF,nfn 6= 0. Concluding the proof of Theorem 0.1.

EXTENSION OF THEOREM 1.1

Now we consider an extension of Theorem 1.1 for a connected paracompact smooth oriented n-dimen-

sional manifold (M, ω), where ω is a globally defined non-vanishing smooth n-form. We refer to (Warner

1983) for details.
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Suppose that F = (f1, . . . , fn) : M → Rn is a smooth mapping with injective derivative at any point

of M . As before such a mapping is said to belong to 8(M) = 8(M,Rn). From the hypothesis on M

we have that there is (Um, ϕm)m∈Z+ a coordinate system for M so that Um is pre-compact for each m.

Take (ψm)m∈Z+ to be a partition of unity associated to (Um). Furthermore, we can assume that the

restriction of F on Um is a diffeomorphism over its image.

Let 1 ≤ j ≤ n consider the vector field V j defined as follows, let g ∈ C∞(M), take:

V j (g) = coeff
[
(−1)n− j df1 ∧ . . . ∧ (df j )

v ∧ . . . ∧ dfn ∧ d(g) in terms of ω
]
.

It is a routine computation to show that V j is a derivation, then it defines a vector field on M .

Now we will see that these vector fields generalize for M the vector fields considered before on the

the euclidean context. In fact, let g ∈ C∞(M) and write g = 6mψng, therefore the support of ψm g is

contained on Um . Since the restriction of F to Um is a diffeomorphism we can find a gm ∈ C∞
c (F(Um))

such that ψm g = gm ◦ F. So g = 6m gm ◦ F. Then

[
(−1)n− j df1 ∧ ∙ ∙ ∙ ∧ (df j )

v ∧ ∙ ∙ ∙ ∧ dfn ∧ d(g)
]

= 6m∂ngmdf1 ∧ ∙ ∙ ∙ ∧ dfn .

Defining Det(DF(x)) to be the coefficient of df1 ∧ ∙ ∙ ∙ ∧ dfn in terms of ω, we have that

V j (g) = 6m∂ngmDet(DF(x)) .

As before we have that f j , for j 6= i , is a first integral of Vi . Also the vector fields are in involution.

We consider an extension of Definition 1.1:

DEFINITION 2.1. Let F ∈ 8(M). We say that M is F-convex if there are an smooth manifold M1,

G1 ∈ 8(M1,M) with G1(M1) = M and G2 ∈ 8(F(�)) where, for j = 1, 2, each G j is a diffeomor-

phism over its image such that there are n − 1 different indices i1, . . . , in−1 ∈ {1, . . . , n} where M1 is

VF1,i j -convex for j ∈ {1, . . . , n − 1} and F1 = G2 ◦ F ◦ G1.

From inspection on the proof of Theorem 1.1 we have:

THEOREM 2.2. Let M be a connected paracompact smooth oriented manifold and F ∈ 8(M). If M is

F-convex then F is injective.

Theorem 2.2 could be used to decide whether a local parametrization of a manifold, defined glob-

ally, is a global parametrization. The result below extends for arbitrary dimension Theorem 0.3 of

(Santos Filho 2004):

COROLLARY 2.1. Let M be be a connected paracompact smooth oriented manifold and F ∈ 8(M) so

that � is F-convex. Then M is contractible.

We observe from the proof of Theorem 1.1 that M is a diffeomorphic image of γ × Rn−1 where

γ is a smooth curve which is diffeomorphic to an interval. Then the conclusion of the corollary follows.
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REMARKS.

1) The proof that each pair of VF, j ’s is in involution can also be proved without normalizing them.

That is without considering the X ′
j s. In fact, let VF, j1 and VF, j2 , with j1 6= j2, then VF, ji ( f j ) = 0

if j 6= ji for i ∈ {1, 2}. Therefore [VF, j1,VF, j2] at any point is linear combination of VF, j1 and

VF, j2 , proving the assertion.

2) From Theorem 2.1, we can not have a vector field globally solvable on a compact manifold without

boundary. Otherwise the manifold would be a diffeomorphic image of a cylinder M0 × R, where M0

is a n − 1 dimensional manifold, therefore imposing a strong restriction on the topology of M .
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RESUMO

Nós estabelecemos uma condição suficiente para injetividade numa classe de aplicações definidas em subconjuntos

abertos conexos de Rn , para n arbitrário. O resultado relaciona resolubilidade de campos de vetores apropriados

com injetividade da aplicação e estende o resultado demonstrado pelo primeiro autor quando n ≤ 3. Além disso,

nós estendemos o resultado para variedades suaves orientadas e para-compactas e mostramos que a condição de

convexidade impõe fortes restrições topológicas na variedade.

Palavras-chave: campos, injetividade, aplicações, resolubilidade, vetores.
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