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ABSTRACT

In this paper, we obtain vanishing theorems and finitely many ends theorems of complete Riemannian
manifolds with weighted Poincaré inequality, applying them to minimal hypersurfaces.
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INTRODUCTION

Li and Wang (2001) proved a vanishing theorem for L?> harmonic one-forms on M under the assumption
of the Ricci curvature bounded from below in terms of A;(M), which is the greatest lower bound of the
spectrum of the Laplacian acting on L? functions. Lam (2010) generalized this result to the manifold
satisfying a weighted Poincaré inequality. Recalling that in Li and Wang (2006), a complete Riemannian
manifold (M, ds?) is said to satisfy a weighted Poincaré inequality with a non-negative weighted function

p if the inequality
/p¢2s/ VoP (11)
M M

holds for all compactly supported piecewise smooth function ¢ € Ci(M). (M, ds?) is is said to satisfy
the property (P,) if M satisfies a weighted Poincaré inequality with p and pds? is complete. If M is a
complete manifold with property (7,), Li and Wang (2006) -Theorem 5.2- gave a rigidity theorem under the
assumption of the Ricci curvature bounded from below in terms of p. Cheng and Zhou (2009) generalized
this result and applied to minimal hypersurfaces. Lam (2010) also obtained a result similar to Theorem 5.2
in Li and Wang (2006) by relaxing Ricci curvature to be only satisfied outside a compact set of M.

In this paper, on the one hand, we obtain vanishing theorems of two classes of complete manifolds that
satisfy weighted Poincaré inequalities (Theorems 2.2 and 2.7). At the same time, we apply Theorem 2.2 to
minimal hypersurfaces (Corollaries 2.4 and 2.5). On the other hand, we also obtain two results on finitely
many ends of complete manifolds (Theorems 3.1 and 3.6). As an application, we obtain that finitely many
ends of minimal hypersurfaces in non-positively curved manifolds (Corollaries 3.7 and 3.9).

AMS Classication: 53C21, 54C42.
E-mail: zhupeng@yzu.edu.cn

An Acad Bras Cienc (2013) 85 (2)
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2 VANISHING THEOREMS

In this section, we study H'(L*(M)), the space of L? integrable harmonic 1-forms. The following lemma is
due to Lam (Lam 2010):

Lemma 2.1. Suppose that o € H'(L*(M)) and h = |w| satisfies that
hAh > — ah®+b|Vh|?,

for a function a on M and some positive constant b. Then, for any ¢ € Cy(M) and 0 <e <1+ b~ the
following inequality holds

(b(1- €)+% V)P < (bc ™ ~1)+1) A 12V + /4 af? I

Theorem 2.2. Suppose that M is an n-dimensional complete non-compact Riemannian manifold satisfying the
weighted Poincareé inequality with a non-negative weight function p (n > 2). Assume the Ricci curvature satisfies

Ricy,(x) > ’nnj p(x) + o (x), (2.1)

for a non-negative continuous function o (o # 0). If p(x)=0(r>"%), where 1y(x) is the distance function from
x to some fixed point p, for some 0 < o < 2, then H'(L*(M)) = {0}.

Proof. If o € H'(L>(M)), then h = |w| satisfies a formula (Li and Wang 2006):
hAh > Ricy (x) (w,0) + (n—1)"|ARK[%. (2.2)
By Lemma 2.1 withb=(n—1)"and a = (b + 1)p — 6, we obtain that

(b(1- €)+% P& 12 < (b(1 —0)+1) A (k)P

5(b(e‘1—1)+1)/ h2v¢|2+/ ad’h?,
M M

that is,

(n—l)/ o> h> <(n—2+ e')/ h2|V¢>2+€/ ph? ¢, (2.3)
M M M
for any 0 <e<nand ¢ € C; (M). Choose € = R¥?2 (R sufficient large) and

) 1 onB(R),
¢= 0 onM\B(2R),
such that

V@< CR
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1 HARMONIC FORMS AND FINITENESS OF ENDS 459
on B(2R) \ B(R). By (2.3) and p(x) = O(r}~ ), we obtain that

(n—l)/ oh* < C((n—2) R2+R “/2) h.
B(R) B(2R)

Let R— +oco. We obtain that

/0h2 <0,
M

since h € L*(M). By assumption, there exist py € M and r, > 0 such that ¢ > 0 on B(py, ). Thus,

/ oh*=0.
B(py, 10)

It implies that @ = 0 on B(py, ry). Therefore, w = 0 on M, by uniqueness of expanding theorem of harmonic forms.

Remark 2.3. When o is equal to a positive constant and cp for some positive constant ¢ and a positive weight
function p, respectively, Theorem 2.2 is just Theorem 3.4 and Theorem 3.5 in Lam (2010), respectively. We
should also point out that Carron (2002) gave a very nice survey about L* harmonic k-forms on non-compact
Riemannian manifolds.

Let M" be a minimal hypersurface of R"*!. v denotes the unit normal vector field of M. |4| is the normal of
the second fundamental form A. A minimal hypersurface M" C N"+1 is called §-stable if, for each ¢ € Cy (M),

5 L A2 ¢2< L Vol 2.4)

_1\2
Corollary 2.4. Suppose that M" (n > 2) is a complete minimal d-stable (6 > £’1,1—21L) hypersurface in R™!. If
|A| = O(rl%*“ ), for some 0 < a. < 2, then H'(L*(M)) = {0}.

Proof. First, a complete minimal hypersurface in R"*! is non-compact. For any point p € M and any unit
tangent vector v € T,M, we can choose an orthonormal frame {e), e,, . . ., e,} on M at p such that ¢; = v.
Since M is a minimal hypersurface, there has the following inequality:

n 32)2 n n
A2 > h?, +;LJLZIH2_}’1 +z; hi; zn%;h%i. (2.5)

The Gauss equation implies that
Ricy (v, v) = X, (hihy = hi)) == hi;. (2.6)
=1 i=1

From (2.5) and (2.6), we obtain that (2.1) holds, where

p(x) =dlAP
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and

—1\2
o) == (@=L 1ap),

Since M is d-stable, (1.1) holds. If |4] = 0 then H'(L*(M)) = {0}. Otherwise, by Theorem 2.2, we have
H'(L2(M)) = {0}.

If M" is a minimal hypersurface in R"*! (n > 3), then each end of M is non-parabolic and the number of
non-parabolic end of M is bounded from above by dim H'(L*(M)) +1 (Li and Wang 2002). Thus, Corollary
2.4 implies that:

Corollary 2.5. Suppose that M" (n > 3) is a complete minimal J-stable (0 > (";1)) hypersurface in R™!.

n2

If it has the bounded norm of the second fundamental form, then M has only one end.

Remark 2.6. Cheng and Zhou (2009) proved that: let M be an % -stable complete minimal hypersurface
R™! (n > 3). If it has bounded norm of its second fundamental form, then M either has only one end or is
a catenoid. In Cheng et al. (2008), it was proved that a complete oriented weakly minimal hypersurface in
R™ (n > 3) must have only one end. It was shown that in Cheng (2008) one end theorem holds for complete
noncompact stable minimal hypersurfaces in general manifolds and the method is different from above.

If M is a quaternionic manifold and w € H'(L*(M)), then h = |w| satisfies (Kong et al. 2008):
hAh > Ricy (@,0) + 5|VA[

Using the similar method as proof of Theorem 2.2, we also can obtain:

Theorem 2.7. Suppose that M is a 4n-dimensional complete non-compact quaternionic manifold
satisfying the weighted Poincaré inequality with a nonnegative weight function p(x). Assume the Ricci
curvature satisfies

Ricy (x) == 5 p(x)To(x),

for a positive function o. If
px) =0, ),

for some 0 < a <2, then H(L*(M)) = {0}.

Remark 2.8. If we choose o is equal to positive constant and p = J,(M) > 0, Theorems 2.7 is Theorem 4.3
in Lam (2010).

3 FINITENESS OF ENDS

In this section, we study complete Riemannian manifolds with a weighted Poincaré inequality, giving two
results on finitely many ends of complete manifolds. Then, we apply one of the results to hypersurfaces in
manifolds with non-positive sectional curvature. First, following the idea of Cheng and Zhou (2009) with
some changes of technique, we obtain that:
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> HARMONIC FORMS AND FINITENESS OF ENDS 461

Theorem 3.1. Let M be a complete n-dimensional manifold with property (P,) (n = 3). Suppose that the
Ricci curvature of M satisfies that

Ricypo(x)>—(n— D1 (x) +e,x € M,

for a constant ¢ > 0 and Q is a compact subset of M, where the non-negative function T (x) satisfies Poincaré

(n—% < A V6P,

S(R) = sup  (Np(x)NT(x)).

inequality

for all pe C3 (M\ Q). Set

XEB,(R)
If p and T satisfy the growth estimates
li]r?n inf S(R) exp(—((n —3)/(n —2))R)=0, for n >4,
lim inf S(R)R™' =0, forn =3,

R—sco

then M has only finitely many non-parabolic ends.

Remark 3.2. If 7= n’%z then Theorem 3.1 is just Theorem 0.2 in Lam (2010).

Now we prove Theorem 3.1. A theory of Li-Tam (Li and Tam 1991) gives the number of non-parabolic
ends of M. More precisely, suppose that M has at least two non-parabolic ends £, and E,. There exists a non-
constant harmonic function f; with finite Dirichlet integral by taking a convergent subsequence of harmonic
functions f; as R — oo, satisfying A fz = 0 in B(R) with boundary conditions that fr = 1 on 6B(R) N E; and
fr=0o0n 0B(R)\ E;. It follows from the Maximum Principle that 0 < fz <1 for all R and hence 0 <f; < 1.
For each non-parabolic ends E;, we can construct a corresponding fi by the above method. Let /C°(M) be
the linear space containing all f;’s constructed as above. Thus, the number of non-parabolic ends of M is
dim KCO(M). The following lemma is due to Li (Li 1993):

Lemma 3.3. Suppose that H. is a finite dimensional subspace of L* 1-forms defined over a set D C M". Then
there exists wy € H such that

aim 3 ol <n¥ (D) sup o
D D

where V (D) is the volume of the set D.

Let

IC={df: f€ K (M)}
Obviously,

dim KC°(M) = dim C+ 1.
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In order to estimate dim /C, by Lemma 3.3, it is suffice to choose a suitable subset D = B(R) of M and
prove that

sup |Vf2<C / P, 3.1)
B(Ry)

B(Rq)

for each non-constant bounded harmonic function /'€ }C°(M). Next, we will prove (3.1) by Lemmas 3.4 and
3.5. For convenience, we replace ¢ by Z :;

3.1, we obtain that, on M\ Q,

&. By (2.2) and the assumption of the Ricci curvature in Theorem

L VIVFIPE

B &
Set h = |Vf |% . Inequality (3.2) becomes
Ah+(n—2)7th > ¢ch (3.3)
on M\ Q. For each ¢ € Cy(M\ Q), we have
(n 2)/T(¢h)2 s/ |V(¢h)|*= / \Voh|* hz—/ *hAh.
M M M M

Combining with (3.3), we obtain that

& / o*h? < / G*h(Ah+(n—2) Th) < / |Voh|* h?. (3.4)

M M M

Let B(R) be the geodesic ball of radius R for some fixed point p. Since Q is compact, we can choose a
positive R, (to be fixed in Lemma 3.4) such that

QCUyen Bp(x: 1) € B(Ry—1).
Let R > 0, such that

B(Ry)) C B,(R—1).

Lemma 3.4. Under the assumption of Theorem 3.1, there exists a constant C depending on n and

P / Ww<C / W
M\B(Ry) B(Ry)\B(Ry — 1)

Supp(r,) p such that

Proof. From (3.4), we have
: / P < / VoL, (3.5)
B,(R)\B (Ro— 1) B,(R)\B (R, 1)
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> HARMONIC FORMS AND FINITENESS OF ENDS 463

forall ¢ € C§" (B,(R) \ B(Ry — 1)). Choose ¢ = 1\, where 1 and x will be chosen later. Then
/ Vo2 <24+ 2B, (3.6)
B,(R)\B (Ry— 1)

where
A= |V I2x2
B/,(R)\B (R07 1)

and

B= Vx|? 1.
BAR)\B (R~ 1)

For n > 4. Choose v, x as follows,

0 on B(Ry—1),
on B, (R—1)\ B(Ry),
~ 7, on B,(R)\B,(R—1),
0 on M\ B, (R).

P(x) =

Foro € (0, 1) and € € (0, %), we define x on the levels sets of f:

0 on £(0, oc) U L(1 —o¢, 1),
o (f- o) on L(oe, )N M\Ey,
X =Y (= ooy (1~ f=06) on £(1—€ 1-00)NE),

1 otherwise,

where,

L(a, b) = {x € M|a<fix)<b)}.

From the definition of ¢, we obtain
A= A1+A2, (37)

where

Aﬁ/ VPRI
B,(R)\B,(R— 1)

and

Af/ VP 2,
B(Ro)\ B(Ro— 1)

First, consider

A= At+A,,
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where

Ay = / VYRR
(B,(R)\ B,(R— 1)NE,

and

Apy = / VPRI
(By(R)\ B,(R— 1))N(M\ E))

Denote the set

Q= E, N (B,(R)\ B,(R—1)) N (L(0€, 1 = 0¢)).
Note that

Vr,|2(x) = p(x).
So

VP < p
on B,(R)\ B,(R —1). Thus, by the definition of y and the Holder inequality, we obtain that

2(n-2) (n—2) L
Ay < / PIVIT < ( / VAT ( / oy, (3.8)
Q] QI Ql

Recall that, under the assumption of complete manifold M with the property (P,), the growth estimate for
V£l (Li and Wang 2006, Corollary 2.3):

/ V2 < Cexp (- 2R) (3.9)
B,(R+ 1)\ B,(R)

and the decay estimate for f(Li and Wang 2006, (2.10)):

/ p(1=1)<Cexp (- 2R). (3.10)
(By(R+ 1)\ B,(R)E,

From the definition of S(R), we obtain that
[ rs@pr [ <o i [ ooy
Q, Q, Q,
< C(0€) X(S(R))*" 2 exp(—2R), (3.11)

where the second inequality holds because (c€) 2(1— f)*> > 1 on Q, and the last one holds because of (3.10).
From (3.8), (3.9) and (3.11), we obtain
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Ay < C (0€) 2 DS(R))22VmD exp(—2R). (3.12)
Now, we consider 1. Let
Bi=[ 1P,
E)
and
Bi= [ wxre
M\E,
then
B<B,+ B,,
Now, we only consider ;. Suppose that
Ricy(x) > — (n— Di(x),
where / is a non-negative function on M. Set
_ 1
px) =5 (p(x) + (n = 2)l(x)),

x € M. Then

Under the assumption of
Ricy (x) == (n — Di(x),
Cheng and Yau (1975) gives a local gradient estimate for positive harmonic functions:

V] (X)SC< sup \/5+R_‘) [f ()], (3.13)
y € B(x,R)
for any R > 0. Fix x € M and consider the function
n(r)=2r —( S(up)\/ﬁ)’l-
B(x,r

Obviously, 7(r) tends to a negative number as » — 0 and tends to +e as » — +eo. Thus, there exists a rg
depending on x such that \2rq = (supp, ) Vp) . Combining with (3.13), we obtain that

Vi) =C ( sup \/5) ()l (3.14)

B(x,r)

For any y € B(x, ry), let y(s) s € [0, b] be a minimizing geodesic with respect to the background metric ds’
jointing x and y. Then

b b
d, ) = [ N G =2 [ N3G = sup N1,

B(x,rg)
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which implies that B(x, ))C B, (x, 1). Hence, for any x € M, there is
IVi(x) <C ( s?p)ﬁ) [f(x)l. (3.15)
B, (x,1

Since the Ricci cuvature has low bound only on M\ Q, we can choose R such that, for every x € B,(R) \
B(Ry— 1), B,(x, 1) N Q= @. Therefore,

IV/1(x) = C (S(R+1)) [f(x)],
for x € B,(R) \ B(Ry—1). Replacing f by 1 — 1, we obtain that

V1) = C(S(RFD) [ T = f(x)], (3.16)

for x € B,(R) \ B(Ry—1). Thus, from the definition of x, we have

B]S/ |VX|2‘Vf‘2(n_2)/(n_l)
E\N(B,(R)\B(Ro — 1))

<(e— ae)‘2 / |Vf|2(" =2)/(n—1)+2
E\N(B,(R)\B(Ry— 1)) N L(1 - €,1 - €0)

< C(€ — 0¢) 2S(R+1)22/ (7D

| V(LD ),
ENB,(R)BRy— 1)) N L(1 - €,1 — €0)

where the second inequality holds because, on £, N L(1 — €,1 — €0), | Vx| < (€ — g€)' |Vf] and the last one
holds because of (3.16). Lemma 5.1 in Li and Wang (2006) implies the integral of V/ on the level set
L()= {x € M|f(x) =}, 0 <t <1 is independent of ¢ and bounded. By the co-area formula, we obtain

/Em(B;(R)\B(Ro “ynci-61-eo| VP (1) 2/ 7D

1—0¢
< / (1- 22 (1) / |Vf|dAdt
1—¢ L(t) N E, N (B,(R)\B(R,—1))

< C/ ‘Vf|dA(1_O'2(n =2)/(n —l)+l) c 2(n—=2)/(n —1)+]’
L(b)

for any level b. Thus,
Bl <C (1 _ O') —ZE(n—S)/(n—l)(l _ 02(n—2)/(n—1)+1)S(R 4 1)2(n—2)/(n—1)‘

Replacing f by 1 —f, similar to the above argument, we have that
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Ay < C (0€) Y D(S(R)2 /D) exp(—2R)
B,<C(1-0) —2€(n—3)/(n—1)(1 — O.2(n—2)/(n—1)+1)S(R + 1)2@,—2)/(,,_1)'

Seto= % and ¢ =exp(—2R). We obtain that A; — 0 and B — 0, as R — +e. Combining with (3.5)~(3.7), we have

€ / W<cC / h2.
M\B(R,) B(R,)\B(R~1)

For n =3, we may choose 9 as above and x to be

0 on L£(0,0¢) U L(1 — o€, 1),
(~log o) (log - log(¢)) on L(oe, ) N M\E,,

XD = Clog o) log (1 - /) ~Togto1 — ) on L(1 —¢, 1 —ae) N B,
1 otherwise.

By an argument similar to the above one for #» > 4 and the corresponding estimate in reference (Li and Wang
2006), we have

Alb ./412 <CS (R) o (0'6)”’1 exp(—2R)
and
By, B, < CS (R + 1)(—log o),
where C is independent of R. Choose
o=¢c=exp(—R\q(R))

with

g(R) =+S(R+1)/R
As R — +oo, we also have A, B — 0. Thus, for n > 3, the desired result is obtained.
Lemma 3.5. supp, | V/]> < C (n, B, &, v.Rg) -[B(R(,) V1%
Proof. Since the function /4 satisfies the differential inequality

Ah > ph,

where

By the mean value inequality of Li and Tam (1991), for any x € B(p,R,), there is

W (x) < C(n, B, v) W < C(n, 5, v) h?,
B(x, Ry) B(p, 2Ry)
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where v = inficp(, p)Vx(Ro). From Lemma 3.4, we obtain

/ R<Cme [ W (3.17)
B(2R,) B(R)
Thus,
sup > < C (n, B, &, v,Ry) h?. (3.18)
B(Ry) B(Ry)

By the Schwarz’s inequality, we have

/ s ( / VAP R
B(Ry) B(Ry)

Together with (3.18), we obtain the desired result.
Now, we give finite ends theorem when a weighted Poincaré inequality and the Sobolev inequality hold
outside a compact subset.

Theorem 3.6. Let M” (n > 3) be a complete Riemannian manifold. Suppose that
Ric(x) >— 7 (x)

and T is a non-negative function satisfying

/T¢2§/ VoL, (3.19)
M\Q M\Q

forall p € Cy(M\Q), where 2 is a compact subset of M. If M satisfies the Sobolev inequality

16112+ ) < CIIVS 0y (3.20)
forall p € Cy(M\Q), then M has finitely many non-parabolic ends.

Proof. Suppose that Q C B(R,), where B(R,) is a geodesic ball center at p € M of radius R,. Let w €
H'(L*(M)). Then & = || satisfies Li and Wang (2006):

gy VR
Ahz=Th+ e (3.21)

Thus, for ¢ € C5° (M\B(Ry)),

L 6 < A V(gh)= A I /4 ¢* hh

1
< [ W3|Vo|*+ 2 W2 ———— ?|Vh]?). 3.22
Awﬁ Aw — ¢V (3.22)
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From (3.20) and (3.22), we have
2 o 2 2 2
163122 oy < CIV(GM) I, ) < 20C L ”2|VoP. (3.23)

Choose ¢ as follows (R > Ry + 1):

{ 0, on B(Ry),

¢=17 1. on BR)\B(Ry+1),
0, on M\B(2R),
such that
Vo|<C
on B(Ry+ 1)\ B(Ry) and
|Vo| < CR™!

on B(2R) \ B(R), where C > 0. Thus, by (3.23), we have

2 o 2 5, 2 2
Hh| ‘LE(B(R)\B(RO-H))S ||¢h||Lﬁ(A/I) S ZnC[lh |V¢‘

<C / K2 +CR™ / .
B(Ry~1)\B(R,) B(2R)\B(R)

Let R — +o. Then
2 4 2
[IA] ‘Lﬁ(M\B(ROH))S CA(ROH)\B(RU)}I : (3.24)

The Schwarz inequality implies that

/ W< V?(B(R0+2))< / h_)
B(R+2)\ B(Ry+1) B(R+2)\B(Ry+1)

Combining with (3.24), we obtain that

/ 1< C(Ry) / 7. (3.25)
B(Rg+2) B(Rg+1)

By (3.21) and Li (1993) -Lemma 11.1-, we obtain that

n=2
2n

W x) < C (n, sup 7) h?,
B(1) B(1)

For each x € B(Ry + 1). Thus, Combining with (3.25), we obtain that
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sup ’<C(n, sup 7) W< C(n, Ry, sup T7) / h?.
B(Ry+1) B(Ry+2) B(Ry+2) B(R,+2) B(Ry+1)

Choose D = B(Ry + 1), by Lemma 3.3, we obtain the desired result.

Let N"*! be a Riemannian manifold and X, Y two orthonormal tangent vectors. Then the bi-Ricci curvature
in the directions X, Y is defined as Cheng (2000)

b —Ric(X, Y )= Ric(X) + Ric(Y) - K(X, Y).

As an application of Theorem 3.6, we obtain that

Corollary 3.7. Let N"*! be a complete simply connected manifold with non-positive sectional curvature. Let
M?" be a complete minimal finite index hypersurface in N**' (n >3). If

b — Ric(X, Y)+% AP >0,
Jor all orthonormal tangent vectors X, Y in T,N, p € M, then M must has finitely many ends.

Proof. Fix a point p € M and a local orthonormal frame field {e;, e5, - - - , ¢,,, v} such that {e;, e5, - - -, e,}
are tangent fields and v is unit normal vector at p on M. The Gauss equation implies that

Ric(er, e)) = Ricler, e) = Ker,v) + Y. & it hy= 1)
=1

n

L.

Zle—ic(elael)_l?(el,v)—'_ n

Since M has finite index, it implies that there exists a compact set Q such that

/ (Ric(v,y) + |AP)¢? < / VP2,
M M

forall ¢ Cy (M\Q). Since N is a complete simply connected manifold with non-positive sectional curvature,
there is the following Sobolev inequality (Hoftman and Spruck 1974):

18112y < CIVEl

for all ¢ Cy (M). Set

n—1
n

7=—Ric (e, e1) K (e}, v) + |4]2.

Obviously, 7> 0. Thus,

¢2§ R_ , +14 2 ¢2§ V¢ 2’
KJ\QT K/I\Q( “ (v V) | | ) /M\Q| ‘
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Combining Theorem 3.6 with Proposition 2.3 in Cheng et al. (2008), we obtain the result.
From Corollary 3.7, we obtain the following results directly:

Corollary 3.8. Li and Wang (2002) Let M" be a complete minimal finite index hypersurface in R"™" (n > 3).
Then M must has finitely many ends.

Corollary 3.9. Let M" be a complete minimal finite index hypersurface in ' '(=1) (n > 3). If |A]> > 2n> — n,
then M must has finitely many ends.
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RESUMO

Neste artigo, obtemos teoremas de anulamento e de numero finito de extremidades sobre variedades
Riemannianas completas com desigualdade de Poincaré ponderada, aplicando-os a superficies minimas.

Palavras-chave: extremidade, superficie minima, desigualdade de Poincaré ponderada, formas L’
harmonicas, variedades completas.
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