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Intelligent Supernovae Classification Systems in
the KDUST context
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Abstract:With the advent of large astronomical surveys plus multi-messenger astronomy,
both automatic detection and classification of Type Ia supernovae have been addressed
by different machine learning techniques. In this article we present three solutions aimed
at the future spectrometer of the KDUST project, within a scope of benchmark, considering
three different methodologies. The systems presented here are the following: CINTIA
(based on hierarchical neural network architecture), SUZAN (which incorporates the
solution known as fuzzy systems) and DANI (based on Deep Learning with Convolutional
Neural Networks). The characteristics of the systems are presented and the benchmark
is performed considering a data set containing 15.134 spectra. The best performance is
obtained by the DANI architecture which provides 96% accuracy in the classification of
Type Ia supernovae in relation to other spectral types.

Key words: Deep Learning, Artificial Intelligence, Supernovae, Type Ia Supernova,
Classification.

INTRODUCTION

One of the most important types of extreme
cosmic events is the Supernovae (SNe)
explosions. According to Filippenko (1997) and
Horvath (2011) the supernovae represent the
explosive ending of a star and it releases
vast amounts of energy and luminosity in
the process (as bright as the host galaxy).
Regarding the importance of these explosions,
we highlight the thermonuclear supernovae
called Type Ia Supernovae (SNIa) (Filippenko
1997). Actually, the automatic search of SNIa is
feasible because both the total luminosity of the
explosion and the spectral data follows typical
patterns. Moreover, these characteristics make
this object a standard candle for measurements
of cosmological distances (Perlmutter et al. 1999,
Riess et al. 1998).

Other classic types of SNe are related to
the core-collapse of massive stars, they are
classified as Type Ib Supernovae (SNIb), Type
Ic (SNIc), and Type II (SNII) (Filippenko 1997,
Horvath 2011, Blondin et al. 2012). The difference
between SNIa and the other types, in addition
to the explosion mechanism, is the presence
of Hydrogen (H) or Helium (He) in the spectral
data, which is observed only in the spectra of
core-collapse supernovae.

The study of SNe involves also the
understanding of the accelerated expansion of
the universe. Some important works that are
related to it are the Dark Energy Survey (Brenna
2005), Supernova Legacy Survey (Astier et al.
2006), and the ESSENCE (Wood-Vasey et al. 2007).
For these parameters to be improved, structures
are required that involve instruments with a high
capacity for detecting extreme cosmic events
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and data analysis models that accurately identify
these events.

Important Instruments like Large Synoptic
Survey Telescope (LSST) (Huber et al. 2019) and
Kunlun Dark Universe Survey Telescope (KDUST)
(Li et al. 2019) will have the ability to produce
a significant amount of data, producing about
Terabytes of data per hour (Graham et al. 2019).
A such amount of data requires computational
solutions for data science based on machine
learning approaches.

The KDUST telescopes (Yuan et al. 2012,
Burton et al. 2016) to be installed in 2022-2025 at
the Chinese Antarctic Kunlun Station, located on
the Antarctic plateau, has as one of its research
focuses on the detection and analysis of extreme
cosmic events (Yuan et al. 2012, Burton et al.
2016) based on machine learning solutions. This
telescope has as one of its main objectives the
study of SNIa to provide new insights into the
dark energy research.

The KDUST will have a good capacity
for observations ranging from optical to
infrared & sub-mm wavelengths. Regarding its
instrumentation, this telescope has a proposed
diameter of 2.5 m. KDUST will adopt an innovative
optical system that can deliver very good image
quality over a 2 square degree flat field.

In this work we address the development
of a technique based on Deep Learning, for
identification, treatment, and classification of
SNe automatically into the context of KDUST
telescopes. We present CINTIA and SUZAN
systems that classify SNe using using machine
learning solutions and we propose a new model
that uses a deep learning solution.

The proposed model attempts to evaluate
SNe data with an adaptation of Convolutional
Neural Networks (CNN) for mapping spectral
features and thus allowing a more accurate and
consistent analysis. The model was named DANI

acronym for Deep Architecture for superNovae
Identification.

Data from different collections were
submitted to DANI system, such as the collection
of the Online Supernova Spectrum Archive
(Richardson et al. 2002), the Open Supernova
Catalog (Guillochon et al. 2017) and the CfA
Supernova Archive (CfA 2018) resulting in the
amount of 15.134 spectra of the classic types of
SNe. Concerning the concept of multi-messenger
astrophysics, we briefly present a data structure
that deals with multiple sources from extreme
cosmic events.

The manuscript is organized as follows.
In the section Machine Learning Solutions, we
detail some concepts about the supernovae
classification and present the machine learning
solutions for SNe classification. In the section
Deep Learning Solutions, we detail some
concepts about deep learning methods and
outline the DANI system algorithm. Next
we discuss a data analysis for the spectral
data and present a data structure for
Multi-Messenger Astronomy. In the Results
section, we describe the benchmark results
regarding the performance of DANI, CINTIA, and
SUZAN systems. The last section presents the
main concluding remarks of this study.

MACHINE LEARNING SOLUTIONS

Supernovae Classification

The evolution of the supernova stage can be
verified in a deep analysis of the data collected
after the explosion of a star that corresponds to
either the radiation flux spectrum and the light
curve.

This analysis results in the verification of
the type of explosion that can be thermonuclear,
so that, related to the mass accretion reactions
in white dwarfs or by the core collapse of
massive stars. The Figure 1 shows the data of an
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Figure 1. 3D Representation for a SNIa. Adapted from Coelho et al. (2014).

SNIa indicating in a space of 3 dimensions the
luminosity, wavelength, and radiation flux as a
function of time, showing both the light curves
and the light spectra of this object.

Thermonuclear supernovae are generated
by explosions related to mass accretion
reactions in white dwarf stars (composed
essentially of Carbon and Oxygen in degenerate
conditions), this type of reaction occurs in
multiple systems where a white dwarf absorbs
mass from a companion (which can be a star at
the main sequence, red giants or white dwarfs).
At a certain point in the process, when the white
dwarf reaches the mass of ≈1.4M�, the star
collapses, triggering thermonuclear reactions
that destroy the star, this explosion is called
thermonuclear supernovae, classified as SNIa
(Filippenko 1997, Horvath 2011).

The stars have a mechanism that allows
the balance between the hydrogen fusion
processes and the gravitational force. When a
star consumes a large part of Hydrogen (fuel for

internal fusion processes), instability is created
between pressure (caused by nuclear fusion) and
gravitational force, contributing to the expulsion
of matter in space and the fusion of other
elements such as Helium, Carbon, Oxygen until
it reaches the Iron core (Horvath 2011).

When the fusion process of the Iron core
is started, the star collapses exploding. This
process is irreversible and the entire envelope
of the star (outer layers composed by Hydrogen,
Helium, Carbon, Oxygen, etc.) collides against
its core, which in turn ricochets all matter into
space. This type of explosion is called core
collapse supernovae and occurs inmassive stars.
Core collapse supernovae are classified into
three main types: SNIb, SNIc, SNII (Filippenko
1997, Blondin et al. 2011, Modjaz et al. 2014).

Intelligent Systems for SNe Classification

In this section, we present some works that
played an important role in the development
of the DANI supernovae classifier system. These
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works are part of an important initiative by INPE
and the Institute for Advanced Studies (IEAv) in
the development of autonomous and intelligent
systems to classify SNe. CINTIA (counting its
respective versions, CIntIa and CINTIA 2) (Módolo
et al. 2015, do Nascimento et al. 2019) and
SUZAN (Arantes Filho et al. 2019, 2020) systems
were developed following differentmodels in the
Artificial Intelligence field. CINTIA (an acronym
for Classificador Inteligente de superNovas Tipo
Ia, in English Intelligent Classifier of Type Ia
Supernovae) and SUZAN (an acronym for Sistema
fUZzy Avaliador de superNovas, in English Fuzzy
System for Supernovae Evaluation) were based
on the Artificial Neural Networks and Fuzzy Logic
paradigms respectively.

CINTIA. This system uses 4 artificial neural
networks to classify SNIa, SNIb, SNIc, and
SNII (do Nascimento et al. 2019). CINTIA
has more diversity in its learning, provided
by a hierarchical learning structure that
connects Artificial Neural Networks in an
integrated system that allows a more secure
and unambiguous classification. CINTIA has
a computational improvement that includes
a new approach to filtering and processing
spectral data, the Double Filtering System
SDF-SG (Arantes Filho et al. 2019), ensuring a
better quality of the information to be trained
on the neural networks. CINTIA classified about
9000 SNe spectra from several databases and
reach good precision and accuracy scores.

SUZAN. This system evaluates the supernovae
spectrum identifying in the spectrum the basic
chemical elements that allow the classification
of classic types of supernovae. This system
explores the spectral lines of absorption and
emission for the elements Silicon, Sulfur,
Hydrogen, Helium, Iron, Oxygen, etc. to separate
the thermonuclear SNIa and core collapse SNe.
SUZAN can simulate a specialist astronomer
who deals with the classification of supernovae

as explained by (Turatto et al. 2007), using
Fuzzy rules to identify in the spectral lines its
corresponding elements. All the parameters
(intensity of spectral lines and equivalent width)
found by SUZAN can be modeled by fuzzy
functions and all classic types can be classified
by their chemical elements (Arantes Filho et al.
2019, 2020). SUZAN classifies about 3082 SNe
spectra, obtaining more expressive results for
SNIa classification for spectra near the time of
the maximum luminosity of the explosion. Like
CINTIA, SUZAN also uses optimized spectra by
the SDF-SG system.
Double Filtering System SDF-SG. The SDF-SG
(an acronym for Sistema de Dupla Filtragem
pelo filtro de Savitzky-Golay, in English Double
Filtering System by Savtizky-Golay filter) is not
defined as a supernovae classifier, but as a step
of data optimization. The good results reached
in the SNe classification made by CINTIA and
SUZAN were improved by a previous optimization
stage done into raw spectral data. This system
can remove inconsistencies and noise from raw
spectral data performing a normalization of the
SNe spectra that consists of double filtering
by the Savitzky Golay filter (Savitzky & Golay
1964), thus, with the filtered spectrum the main
spectral lines sensitive to the classification of
SNe become more evident (Arantes Filho et al.
2019). The Figure 2 shows the optimization
process made by SDF-SG system.

Related Solutions in the Machine Learning Field

In Markel & Bayless (2019), the authors present
a method using Random Forest Algorithms to
perform a Binary classification of Supernovae,
identifying Type Ia supernovae and core collapse
supernovae by analyzing the light curve. Santos
et al. (2020) in turn seeks the exhaustive
test of several Machine Learning techniques,
analyzing supernova light curves and developing
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Figure 2. SDF-SG operation. Adapted from Arantes Filho et al. (2019). In (a) we show a raw SNIa spectrum, in (b) we
made a search for the peaks and valleys (absorption and emission lines) of this spectrum. In (c) we show a region of
this spectrum that shows a large number of peaks and valleys in a noisy area. In (d) we show this same region with
the treatment by the SDF-SG system that reveals only the real peaks and valleys of the supernova spectrum.

a decision tree method for separating the classic
types.

DEEP LEARNING SOLUTIONS

The techniques and fundamentals of Deep
Learning are related to artificial neural networks
(they are the new generation of neural
networks), to explore and amplify the power of
nonlinear data analysis using a large number of
intermediate layers of processing. This concept is
strictly related to the areas of Machine Learning
(ML) and Computational Intelligence (CI).

According to Burkov (2019) ML can
be understood as computational processes

developed to perform tasks in such a way as
to simulate the human ability to obtain the best
solution for a given problem. The techniques
related to CI are similar to ML techniques,
however, they have different inspirations,
according to Keller et al. (2016) CI techniques
are inspired by systems of nature and biological
behaviors for the development of computational
models able to performing tasks and generating
intelligent solutions for several problems.

Deep Learning can be defined as a class
of techniques in ML and CI that exploit a
non-linear analysis in many layers hierarchically.
Deep Learning methods use supervised learning

An Acad Bras Cienc (2021) 93(Suppl. 1) e20200862 5 | 18



LUÍS R. ARANTES FILHO ET AL. INTELLIGENT SUPERNOVAE CLASSIFICATION SYSTEMS

(where data are labeled and identified by
classes), unsupervised learning (where data
has no labels and are grouped by similarity
checks), and Hybrid (junction of supervised
and unsupervised learning) to perform different
learning tasks (Fausett et al. 1994, Haykin 2001,
Mohri et al. 2018, Manaswi et al. 2018).

Related Solutions in the Deep Learning field

The DASH system (Deep Automated Supernova
and Host classifier) proposed by Muthukrishna
et al. (2019), is an automatic system that seeks to
classify the type, age, redshift, and host galaxy
of supernovae. This system performs the SNe
classification based on characteristics learned
by convolutional neural networks over a set of
3899 spectra from 403 SNe. Still in the field
of CNN networks Brunel et al. (2019) present
a system adapted to classify supernovae by
their light curves inferring the classic types
of SNe. Kimura et al. (2017) in turn, follows
a line for the classification of SNe images
presenting a method for classifying SNIa simply
from single-epoch observation images without
any complex measurements into the standard
photometric approach.

Convolutional Neural Networks

Convolutional Neural Networks (CNN), are
neural networks that have a deep and
hierarchical architecture, that is, CNN networks
can extract information from raw data and
represent it at many levels of information, so
that, from the simplest representations to the
most complex. This type of neural network is
commonly applied to problems such as image
classification, object recognition, and other
problems related to computer vision.

The first networks with the concept of deep
architectures and convolution operations were
proposed by LeCun et al. (1995, 1998) and were

called LeNets. LeNets networks were developed
for the recognition of patterns in images,
specifically for the recognition of characters.
This neural network generated good results
reaching 99% precision and accuracy for the
classification of the MNIST database (Kim 2014).
The MNIST database corresponds to a sequence
of handwritten digits, so that the same character
can have several representations. The Figure 3
shows the LeNet architecture (LeCun et al. 1998)
indicating its main components.

The LeNet neural network described in
Figure 3 has a 7-layer architecture (the input
layer is not counted), with three layers for
convolution operation, two layers for sampling,
and two fully connected layers that include
the output layer. Convolutional neural networks
have similarities to the classic model of neural
networks and therefore have a final layer, called
a fully connected layer. The CNN architecture
(Figure 3) can be described in four components:

1. The input layer is defined as a
multidimensional matrix, describing the
data. This layer can hold data with 1D, 2D,
and 3D.

2. Convolutional layers (Cn) to handling
features;

3. Sampling layers (Pooling Layers) (Sn) to
reduce the features obtained by the
convolutional layers;

4. Fully Connected Layers (Fn) that receive
the information processed by the previous
layers.

Convolution Operation

The convolutional layer is responsible for
processing raw data to retrieve information from
this data, generally, this layer consists of filters
and mappings on the data, to obtain local
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Figure 3. Convolutional Neural Network Lecun Lenet. Adapted from LeCun et al. (1995).

patterns from multidimensional data (Chollet
et al. 2015).

The convolution operation can extract
features from data input preserving the spatial
relationships between pixels, learning local
patterns using small matrices of synaptic
weights (Wk) with previously defined sizes
that can extract edge information, color,
intensity, etc. These matrices are called Filters,
the Filters perform the feature mapping in
multidimensional data. Figure 4 illustrates how
Filters can perform operations on the input data.

The Figure 4 shows the input data as a
5x3x3 dimension matrix (an image with height,
width, and depth) and a 2x2x3 dimension Filter.
Convolution is performed through the scalar
product between a region of the data (with the
dimensions of the filter, that is, a region of size
2x2x3) and the Filter. Then, the Filter is moved
to another region and the scalar product is
performed again until the entire data can be
covered. The Equation 1 indicates how the scalar
product is calculated. This same operation can
be reproduced for data of different dimensions
as it is explored in this work.

A · B =
n∑
i=1

aibi = a1b1 + a2b2 + ...+ anbn (1)

Pooling Operation

The Pooling layer samples and reduces the
output values from the feature mapping made
by the convolutional layer. The purpose of this
operation is to reduce the size of the mapping
obtaining only the most important features from
the data. This operation represents a local
pattern learned in single output value.

The Max-pooling operation performs the
sampling on the map of features generated
by the convolution, partitioning it into regions
(matrices with predefined dimensions) and
calculating the maximum value for each region.
The Figure 5 shows a pooling operation
(Max-pooling) considering the result of a
convolution operation as a feature matrix of
dimensions 4x4 and a Filter with 2x2 dimension.
In each of the defined regions, the maximum
values are extracted by the application of the
maximum function Max(x) (Figure 5 (a)). In
addition to the max-pooling operation, it is also
possible to use the average function (Average
Pooling) (Figure 5(b)) (Vasilev et al. 2019).

Flatten Layer and Fully Connected Layer

After the stage of feature extraction andmapping
made by the convolutional and pooling layers,
all these learned parameters are inserted in Fully
Connected layers and Flatten layers. These layers
behave like classic neural networks.
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Figure 4. Convolutional layer and Filter operations. Adapted from Patterson & Gibson (2017).

Figure 5. Pooling Operations. Adapted from Vasilev et al. (2019).

A flatten layer collapses the spatial
dimensions of the input into the channel
dimension (Chollet et al. 2015). For example, if
the resultant of the convolutional and pooling
layers have the 2x2x2 dimension this layer
reduces the dimensionality to a 1D dimension
vector (Fausett et al. 1994, Chollet et al. 2015).

Deep Architecture for superNovae
Identification - DANI

Convolutional neural networks, as well as the
concept of Deep Learning adopted in this work,
were chosen instead of the observation made
in previous works that indicated the need to
adopt a more robust alternative than the fuzzy
logic and classical artificial neural networks.
This decision derives from how classic methods
can extract attributes from raw data and which
differs considerably from what is produced by
Convolutional Neural Networks.

The Deep Learning method was chosen
because the convolution operation made by
CNN can be more efficient than classic features
(obtained, for example, by descriptor algorithms,
clustering algorithms, independent component
analysis algorithms, and principal component
analysis algorithms) to represent the most
important characteristics in multidimensional
data (Goodfellow et al. 2016, Keller et al. 2016,
Patterson & Gibson 2017). CNN models can
extract features from the raw data allowing that
small details can be observed, which at some
point cannot be perceived by classical methods
of feature extraction. The choice of this model is
due to the automatic way in which the features
are extracted, which makes this model suitable
when there are no specialists to directly handle
the data, as they occur in autonomous stations
in inhospitable places.
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Convolutional Neural Networks for 1D data

To find alternatives to the learning of
convolutional neural networks that are operated
on image data, we explore the operation of
convolution over sequential data, that is, over
1D dimensional data. Conventional 1D models
are classically used in text and voice recognition,
achieving good results described in the literature
(Chollet et al. 2015). The choice of this alternative
came from the consideration of preserving the
original structure of the input data.

Using CNN 1D for sequential data
classification or time series classification has
relevant performance in the feature extraction
process. This type of operation can extracts
relevant information directly from the raw
data of the time series without the need
for extensive knowledge about the problem
domain. The feature extraction made by CNN
1D can be better than handcrafted features
extracted by mathematical models or specialists
since peculiarities that may go unnoticed by
specialists can be identified by models of CNN
1D neural networks. The Figure 6 shows a simple
operation for CNN 1D, these operation are similar
to CNN conventional operations.

DANI Modelling

Three learning strategies for supernovae
classification were developed, each one having
different dimensions for the convolutional
layers. The models were developed with
convolution layers for 16 points, 32 points and
64 points of the spectra, that is, different point
windows. In this way, each model can extract
features in different ways. Each model was
inserted in a single neural network model, called
Multiple Window Convolutional Neural Network,
which through matrix operations concatenates
the weight matrices generated by the other

models in a single neural network, as shown
in Figure 7.

This model is composed of 20 layers, each
layer is described in the items below:

1. Input layer with 1000 x 1 dimension, this
layer receive all 1D supernovae spectral
data;

2. 1st Window: Composed of two 1D
convolutional layers with size equal o
16 and filter with size equal to 8. Two
pooling layers with filter size equal to
2, doing the operation of Max Pooling.
Activation function ReLU (Rectified Linear
Unit (Chollet et al. 2015, Patterson & Gibson
2017)). A Flatten layer at the end of the 1st
window to reduce the dimensionality of the
product from the previous layers.

3. 2nd Window: Composed of two 1D
convolutional layers with size equal to
32 and filter with size equal to 12. Two
pooling layers with filter size equal to
2, doing the operation of Max Pooling.
Activation function ReLU (Rectified Linear
Unit (Chollet et al. 2015, Patterson & Gibson
2017)). A Flatten layer at the end of the 2nd
window to reduce the dimensionality of the
product from the previous layers.

4. 3rd Window: Composed of two 1D
convolutional layers with size equal o
64 and filter with size equal to 16. Two
pooling layers with filter size equal to
2, doing the operation of Max Pooling.
Activation function ReLU (Rectified Linear
Unit (Chollet et al. 2015, Patterson & Gibson
2017)). A Flatten layer at the end of the 3rd
window to reduce the dimensionality of the
product from the previous layers.

5. Concatenation Layer: This layer receives
as input a list of tensors (feature Maps
obtained from the previous layers), and
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Figure 6. CNN 1D operations for sequential and time series data. Adapted from Chollet et al. (2015).

Figure 7. DANI’s Multiple Window Convolutional Neural Network to spectral classification.
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returns a single tensor (Feature Map). A
tensor can be defined as an array of
n-dimensional arrays.

6. 17th Layer: Fully connected layer with 16
neurons. Activation function ReLU.

7. 18th Layer: Fully connected layer with 32
neurons. Activation function ReLU.

8. 19th Layer: Fully connected layer with 64
neurons. Activation function ReLU.

9. 20th Layer: Output layer (Fully connected
layer) with 4 neurons for multiclass
classification. Activation function Softmax
(See it in detail in (Chollet et al.
2015, Patterson & Gibson 2017)). The
output classes are the classic SN types:
SNIa,SNIb,SNIc and SNII.

SUPERNOVAE DATA ANALYSIS AND
MMA-SUPERNOVAE APPROACH

To handle the data in the collections (the
Online Supernova Spectrum Archive (Richardson
et al. 2002), the Open Supernova Catalog
(Guillochon et al. 2017), and the CfA Supernova
Archive (CfA 2018)) was developed an structure
for data organization and easy access. This
structure was called MMA-Supernovae Protocol
(Multi-Messenger Astrophysics for Supernovae
Protocol).

MMA-Supernovae protocol is attached to
the concept of Multi-Messenger Astrophysics, in
which the objective is to provide the collection
and analysis of astronomical objects and their
different sources of data. The analysis of data
information from multiple sources, obtained
through high-resolution instrumental measures,
has become a fundamental task in all scientific
areas.

As an objective, this protocol aims to obtain
different information about supernovae, collect

their several sources of events, and provide
easy access and analysis of these sources. The
motivation to create this protocol comes from
the experience obtained in analyzing data from
the works of CINTIA and SUZAN (do Nascimento
et al. 2019, Arantes Filho et al. 2020). The
Figure 8 shows the MMA-Supernovae process of
information extraction.

The MMA-Supernovae protocol approach
consists of algorithms that handle the JSON data
files available in the Open Supernova Catalog.
Each supernova available in this catalog has two
types of JSON files, one containing information
from the supernovae and the other containing
files from its different sources. Each of these
files was handled by an algorithm written in the
Python programming language that accessed the
data online and made it available in a dataframe
structure (Python tabular data structure).

The protocol structure is designed in levels.
At the first level, basic information about each
supernova is available, such as the supernova
name, the instruments, the supernova type, etc.
At the second level, information about each
supernova source is available, such as spectral
data, light curves, and other sources collected
from the SNe explosion, such as the gravitational
waves data, neutrinos, etc. The Figure 9 shows
the first level.

This structure provided an easy way to
treat the supernovae data used in DANI system,
and in this way, it was possible to access
and handle data from different collections in a
single structure. This protocol also supports the
analysis of supernovae data on the concept of
Multi-Messenger Astrophysics, allowing the use
of several data sources generated by this event.
In this work we focused essentially on spectral
data analysis, however, the analysis of multiple
sources is one of the points that we intend to
develop.
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Figure 8. MMA-Supernovae Protocol.

Figure 9. MMA-Supernova Protocol first level.
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Data Normalization

The data preparation for feeding DANI’s 1D
convolution model followed the steps:

1. Redshift Adjust (z): This adjustment was
done to evaluate the supernovae spectral
lines as if the objects were at rest. The
redshift adjustment is done to approximate
the supernovae spectral lines to the
spectral lines of chemical elements that
are obtained from the laboratory. The
redshift (z) values for each supernova are
in the collections and was inserted in the
MMA-Supernovae structure. The redshift
was done as the Equation 2.

λ0 =
λ

z + 1
(2)

where:

� λ0: wavelength of the object at rest;

� λ: observed wavelength;

� z: redshift.

2. SNe flux values normalization. This
normalization was done to put all SNe flux
values (y values) in the range of 0 to 1, as
explained by the Equation 3.

Normalization(y) =
y –min(y)

max(y) –min(y)
(3)

Where min(y) is the minimum SNe flux
value and max(y) is the maximum SNe flux
value.

3. Linear Interpolation of the spectra in 1000
points. We did this process to put all
spectra with the same size, this way all
the database spectra are adjusted with the
same number of points;

4. Application of SDF-SG this process can
be seen with major details in (Arantes
Filho et al. 2019). This step consists of two

successive filterings by the Savitzky-Golay
filter with window size equal to 71 and a
polynomial degree equal to 9.

This data normalization was similar to the
same steps made in CINTIA and SUZAN systems,
however, we do not define a range for the
wavelength of the spectra in order to observe the
characteristics of the supernovae in the region of
the Infrared spectrum. CINTIA and SUZAN used
spectra delimited in the range of wavelengths
from 4000 to 7000 angstroms. Each spectrum
trained by the DANI system has 1000 points, the
trained values correspond only to the supernova
radiation flux values (y).

RESULTS

The selected data from the catalogs indicated
26423 instances of different spectra and light
curves. These instances are associated with
5197 different supernovae. Some important
information collected from the MMA-Supernovae
are listed below:

1. Number of different SNe types : 73;

2. Number of Instruments (telescopes and
spectrographs) : 215;

3. Number of different host galaxies: 3273;

As a preliminary evaluation step, we selected
only the classic types of supernovae in the
database. It’s important to mention that we
found some types of supernovae that have been
identified with only one instance and several
others defined as peculiar. Thus, in the DANI
model, we are restricted to classic types only. The
Figure 10 shows the SNe type distribution in the
database.

The spectra distribution of the classic types
of supernovae (SNIa, SNIb, SNIc, SNII) used in
DANI is illustrated in the graph of the Figure
11. All SNe spectra of the classical types were
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Figure 10. SNe type distribution.

used for the training and validation of the
model. From 26423 initial instances analyzed,
we selected about 15134 spectra of the classic
types of SNe, 11142 of the selection correspond to
SNIa, and 3992 correspond to core-collapse SNe
(SNIb, SNIc, and SNII), thus resulting in binary
classification.

The training of the Multiple Window model
consumed 80% of the available data and covered
a total of 100 training epochs. The validation of
this model, that is, the model’s ability to classify
data that has never been seen before, is done on
the other 20% of the total data sample. The Table
I shows the performance of the DANI system for
new data samples and its performance for the
classification of the classic types of SNe. Table
I indicates the results of Precision, Recall and

F1-Score, which in turn can be interpreted as
a weighted average of the precision and recall,
where an F1 score reaches its best value at 1
and worst score at 0. The relative contribution
of precision and recall to the F1 score are equal.

Figure 11. Classical SNe Types distribution.
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Table I. Results for the validation of the DANI model for the classification of the classic types of SNe.

SNe Type Total SNe Spectra Precision Recall F1-Score

Ia 2263 0.93 0.96 0.94

Ib 174 0.58 0.64 0.61

Ic 176 0.61 0.57 0.59

II 414 0.88 0.69 0.77

To compare the approaches made in
previous works by SUZAN and CINTIA, the
capacity of the DANI system to classify SNe
was highlighted, covering the entire available
dataset. The comparison made for these systems
is important to check the ability to separate the
SNIa data from other SNe types. The Table II
shows the results for the entire dataset and
the performance comparisons with the other
systems.

We indicate that the discussed results are
from an initial version of the DANI system and
that it needs fine adjustments concerning the
choice of architectures and training parameters.
This need is reflected in the number of training
epochs, as it would be impractical to close
a model for training in many training epochs
without fine-tuning parameters. However, the
results of this model stand out, as they surpass
the predecessor systems in performance both
in the number of evaluated spectra and in
the accuracy score to separate SNIa from other
types. Table III shows the obtained results in the
classification made for all classical SNe types in
the dataset.

CONCLUSIONS

The machine learning solutions discussed in
this work, essentially DANI, present important
contributions in the treatment, identification,
and classification of supernovae data. This
computational structure shows potential

applicability in instruments and autonomous
systems such as KDUST, which requires
automatic and precise classification methods.

The spectral patterns learned by DANI
combine characteristics present in sequences of
16, 32, and 64 points of the supernova spectra.
In this way, it was possible to identify the
spectral line patterns (emission and absorption)
in different wavelengths.

The DANI performance in the classification
of SNIa and SNII are relevant, reaching a
score of 97% for correct classification on 13.299
SNe spectra. This achievement indicates that
the CINTIA, SUZAN, and DANI can precisely
distinguish the SNIa from other types. The
classification performance for SNIb and SNIc
supernovae has a deficiency when comparing
the validation data. At this point, DANI’s precision
performance is around 60%, indicating the need
to improve the training criteria for more accurate
classification of these supernovae.

An important appointment is that
the DANI, CINTIA, and SUZAN analyses
supernovae data from several instruments
(telescopes and spectrographs), that is, can
influence the learning process of the spectral
patterns, essentially for the SNIb and SNIc
supernovae, since each instrument carries its
peculiarities, such as different calibrations
or scales. Considering the SNIb and SNIc
explosion mechanisms, the conditions for the
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Table II. Benchmark for Supernovae Intelligent Classification Systems.

SNe
Classification
Systems

Total SNIa Spectra Total Non-SNIa Spectra Precision Recall Accuracy F1-Score

DANI 11142 3992 0.92 0.90 0.96 0.91

CINTIA 6644 2512 0.97 0.76 0.95 0.85

SUZAN 3082 615 0.93 0.72 0.73 0.83

Table III. Full Data Results for SNe classified by DANI.

SNe Type Total SNe Spectra Precision Recall F1-Score

Ia 11142 0.97 0.99 0.98

Ib 918 0.86 0.88 0.87

Ic 917 0.88 0.87 0.88

II 2157 0.97 0.86 0.91

core-collapse are complex, and this complexity
can influence the data.

Another appointment is the quality of the
labeled data in the catalog. Inconsistencies
and exchanged labels were pointed out by
Pruzhinskaya et al. (2019) in their studies
related to the OpenSN catalog, in which 33% of
objects are considered peculiar, and 1.4% shows
anomalies, such as wrong classifications.

Finally, we highlight that the solutions
presented in this work aimed to provide
automatic and precise classification of
supernovae, ensuring accuracy and good
performance for data from several instruments.
The initial results obtained also indicate a path
to be explored concerning intelligent classifiers
that can act as autonomous systems for survey
in remote telescopes such as KDUST.
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