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ABSTRACT

Water at normal conditions is a fluid thermodynamically close to the liquid-vapor phase coexistence and features a

large surface tension. This combination can lead to interesting capillary phenomena on microscopic scales. Explicit-

water molecular dynamics (MD) computer simulations of hydrophobic solutes, for instance, give evidence of capil-

lary evaporation on nanometer scales, i.e., the formation of nanometer-sized vapor bubbles (nanobubbles) between

confining hydrophobic surfaces. This phenomenon has been exemplified for solutes with varying complexity, e.g.,

paraffin plates, coarse-grained homopolymers, biological and solid-state channels, and atomistically resolved pro-

teins. It has been argued that nanobubbles strongly impact interactions in nanofluidic devices, translocation processes,

and even in protein stability, function, and folding. As large-scale MD simulations are computationally expensive,

the efficient multiscale modeling of nanobubbles and the prediction of their stability poses a formidable task to the

‘nanophysical’ community. Recently, we have presented a conceptually novel and versatile implicit solvent model,

namely, the variational implicit solvent model (VISM), which is based on a geometric energy functional. As reviewed

here, first solvation studies of simple hydrophobic solutes using VISM coupled with the numerical level-set scheme

show promising results, and, in particular, capture nanobubble formation and its subtle competition to local energetic

potentials in hydrophobic confinement.
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INTRODUCTION

The modeling and description of aqueous properties

such as water structure, dynamics, and eventually ther-

modynamics are obviously of fundamental interest as

water is the most abundant fluid on our planet, and gov-

erns biological evolution and geomechanical and atmo-

spheric phenomena (Ball 1999). Particularly, on micro-

scopic scales, i.e., on length scales on the order of the

size of a water molecule (∼ 3Å) to the size of a hydro-

gen-bonded network (' 1-100 nm), the structural prop-

erties of water in bulk and confinement are crucial for

the understanding of micro- to macroscale hierarchical

processes in our environment. These small length scales,
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however, are still difficult to access directly by experi-

ments, and their exploration by theoretical and compu-

tational means has become an important and necessary

branch of theoretical physical chemistry and biology in

the last few decades.

The theoretical modeling of water can be per-

formed by explicitly resolving its atomic and molecu-

lar degrees of freedom by quantum-mechanical (QM)

methods (Jensen 2006) or classical molecular dynam-

ics (MD) computer simulations (Allen and Tildesley

1987, Frenkel and Smit 1996). In the following, we

refer to this as an explicit modeling of water. Due to

the high computational cost, QM and MD methods are

restricted to small systems ranging from ∼ 100 water

molecules in QM methods to ∼ 105 molecules in MD

simulations. Although the latter number seems to be

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/21 — 12:49 — page 4 — #2

4 JOACHIM DZUBIELLA

relatively large, the accessible time scales for these

system sizes are typically too small to guarantee ergo-

dicity and good sampling of the statistical ensemble.

A typical procedure to reduce computational costs is

to integrate out the solvent degrees of freedom by in-

troducing effective interactions (“coarse-graining”), see

for instance information theory (Hummer et al. 1996),

LCW theory (Lum et al. 1999), or the string method

(Miller III et al. 2007).

An extremely coarse but efficient approach is to

model the water in a continuum manner, i.e., by de-

scribing water properties by macroscopic constants only,

such as the surface tension and dielectric constant.

Those quantities are then assumed to be locally defined

in space depending on the particular microscopic aque-

ous environment. In theoretical biochemistry, this is a

common approach to obtain quick estimates of solva-

tion or binding free energies of proteins. (Note that a

protein, or in general a solute, can be considered an

external, confining potential.) The approach is mainly

based on the so-called solvent-accessible surface (SAS)

and Poisson-Boltzmann (PB) electrostatics (Roux and

Simonson 1999). The SAS, which has to be defined be-

fore evaluating any energies, usually serves also as a

dielectric boundary. In the following we refer to the

continuum modeling of water as an implicit modeling.

Water at normal conditions (i.e., pressure P = 1

bar and temperature T = 300 K) is a fluid thermody-

namically close to the liquid-vapor phase transition and

features a relatively high surface tension. As a conse-

quence, in strong hydrophobic confinement, capillary

evaporation can be triggered – a well known phenom-

enon in the physics of phase transitions (Kralchevsky

and Nagayama 2001). Spelling it out, a stable vapor

bubble can form between the confining surfaces (Chan-

dler 2005, Rasaiah et al. 2008). The physical reason

behind that phenomenon is that the water can minimize

its free energy by evaporating and reducing unfavorable

liquid-solid interface area in the hydrophobic environ-

ment. As the surface tension of water is large, the ther-

modynamic volume (V ) work PV for evaporating plays

only a minor role on microscopic (∼ nm) scales. Some-

times in the literature the vapor bubble on these scales

is called a ‘nanobubble’. The nanobubbles in this work

however, must not be confused with aqueous surface bub-

bles (Attard 2000, Parker et al. 1994) which are due to

fluctuations and impurities close to the solid surfaces.

These fluctuations, however, may be the trigger to capil-

lary evaporation which usually comes with a nucleation

barrier (Huang et al. 2003).

Figure 1 illustrates a simple plate-like confinement

with two hydrophobic square plates (length L) in a dis-

tance D on a nanometer scale. The free energy difference

between the filled state (liquid between the two plates)

and the vapor state (nanobubble) can be estimated by

simple macroscopic arguments and is

1G ' P DL2 − 2γ L2 + 4γ L D,

where P is the liquid bulk pressure and the vapor pres-

sure is assumed to be zero. γ is the surface tension that

is assumed to be the same for all interfaces and curva-

ture effects are neglected. The first term is the thermo-

dynamic work to create a vapor hole against the liquid

pressure, while the second term is the interfacial work

gained by removing the two plate-liquid interfaces, and

the third term the interfacial work paid by forming the

four liquid-vapor interfaces. On these scales, the pres-

sure term can be neglected as the bubble volume is small

and the interfacial terms dominate. We obtain 1G '

2γ L(2D − L), showing that, for distances D . L/2,

1G < 0, the nanobubble is thermodynamically stable

and should have long life times. Given the large sur-

face tension of water, we find for the nanometer plates a

large mutual hydrophobic attraction of 1G ' γ nm2 '

20kBT in agreement with atomistic computer simula-

tions (Koishi et al. 2004). Also see Figure 4 later in

this work.

The phenomenon of nanobubble formation in hy-

drophobic confinement has been confirmed in the last

decade by a large number of explicit computer simu-

lations of, e.g., plate-like solutes (Chandler 2005), ho-

mopolymers (ten Wolde and Chandler 2002), or chan-

nels and pores (Beckstein et al. 2001, Dzubiella and

Hansen 2004b, 2005, Rasaiah et al. 2008, Vaitheesva-

ran et al. 2004). It has been suggested that nanobub-

bles can play a crucial role in protein stability, folding,

and function. Once a nanobubble is formed, it leads to

strong and long-ranged hydrophobic forces among the

“dry” regions as the system further tries to minimize

unfavorable interface area (see for instance the simple

An Acad Bras Cienc (2010) 82 (1)



“main” — 2010/1/21 — 12:49 — page 5 — #3

NANOBUBBLE MODELING 5

plate model above) and can induce quick protein fold-

ing and collapse (ten Wolde and Chandler 2002) or sta-

ble protein assemblies (Liu et al. 2005). Importantly,

the evaporation of liquid in the narrow hydrophobic

pore region of ion channel proteins (Anishkin and

Sukharev 2004, Beckstein et al. 2001, Sotomayor et al.

2007) seems to be important for the control of physio-

logical ion conductance. The presence of a vapor bub-

ble blocks ion permeation as the ion would have to de-

solvate to travel through the vapor. It has been recog-

nized that the bubble stability is sensitive to local geom-

etry and electrostatics, implying that it can play a key

role in the voltage or mechanical gating of the channel

protein, i.e., the electrostatic or geometrical control of

particle (ion) permeability (Beckstein et al. 2001, Dzu-

biella and Hansen 2004b, 2005, Sotomayor et al. 2007).

Related to this, nanobubble formation has been made

responsible experimentally to block (bio)polymer trans-

location through narrow hydrophobic solid-state nano-

pores (Smeets et al. 2006). Direct experimental evi-

dence of nanobubbles is still elusive as they are small,

soft, and transient. For this reason, the explicit and im-

plicit theoretical modeling of nanobubbles is crucial for

understanding their impact on molecular processes in

aqueous solution.
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Fig. 1 – Sketch of a hydrophobic plate-like confinement on nanometer

scales. Left: the plates trigger capillary evaporation and the region be-

tween the two plates is devoid of water (nanobubble). Right: Charging

of the plates will drag the polar water between the plates and induces

filling, i.e., bubble rupture.

It has been systematically demonstrated that the

shape and stability of the vapor bubble sensitively com-

petes with local solute geometry, dispersion, or electro-

static potentials (Dzubiella and Hansen 2003, 2004a, b,

2005, Liu et al. 2005, Vaitheesvaran et al. 2004, Zhou

et al. 2004). Figure 1 illustrates an example where the

charging of hydrophobic plates can destroy the nanobub-

ble by dragging the polar solvent into the region between

the two plates. Clearly, the stability depends on the

amount of charge and geometry of the solute that de-

termine the local electrostatic field distribution. Model-

ing and prediction of the nanobubble transition, shape,

and stability with coarse-grained models thus poses a

formidable challenge to the ‘nanophysical’ and mathe-

matical communities. Established implicit solvent mod-

els, such as those based on SAS definitions (Roux and

Simonson 1999) are not suitable, as here the solute-

solvent interface is input, i.e., is it predefined. The stabil-

ity of a nanobubble, however, is a priori not known, and

a model is required that predicts nanobubble stability, or,

in other words, the solute-solvent interface location.

In this paper we review selected examples in the

explicit and implicit modeling of nanobubbles in hydro-

phobic confinement and present a method – the vari-

ational implicit solvent model (VISM) – which is po-

tentially capable of predicting nanobubbles in arbitrary

confinement without any a priori assumption of the in-

terface location. It is the first implicit water model that

can predict nanobubble formation as it is based on a

geometric minimization procedure and does not need

the interface location in the confining system as input,

as used by conventional methods. In the next section,

the mechanisms of and competition between hydropho-

bic (interfacial) effects and electrostatics are readily ex-

emplified by explicit-water MD simulations of two gen-

eric model systems. After that, the VISM is introduced,

along with the level-set method, helpful for the numer-

ical evaluation of the VISM equation. Some simple

application are discussed thereafter in the last but one

section. Parts of this paper have been published else-

where (Cheng et al. 2007, Dzubiella and Hansen 2003,

2004a, b, 2005, Dzubiella et al. 2006a, b).

EXPLICIT MODELING OF NANOBUBBLES:
SELECTED EXAMPLES

A. TWO SPHERICAL HYDROPHOBIC NANOSOLUTES

In Figure 2 we show the (cylindrically averaged) den-

sity profiles of water around two hydrophobic nanome-

ter sized solutes from MD simulation at normal condi-
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Fig. 2 – Left: Cylindrically averaged water density profiles around two hydrophobic (hard-core) solutes from explicit-water MD simulations

(Dzubiella and Hansen 2003, 2004a). The solutes are fixed at a surface-to-surface distance of 4Å. Dark regions show low density of water

while light regions show high water density. The solutes (spheres) are homogeneously and oppositely charged with z = a) 0, b) 2, and c) 5

elementary charges. Right: Mean force between the two solutes vs. their distance. The hydrophobic range and depth of attraction decreases with

an increasing charge. Symbols are MD results (squares: z = 0, diamonds: z = 2, triangles: z = 5), while lines are the according VISM results.

tions (Dzubiella and Hansen 2003, 2004a). The water-

sphere interaction is hard-core like and the spheres have

a radius of R ' 1 nm and are kept at a fixed surface-

to-surface distance of 4 Å. Additionally, the spheres are

homogeneously and oppositely charged with a) z = 0,

b) 2, and c) 5 elementary charges. As can be seen

in Figure 2 a), a stable nanobubble is developed be-

tween the two neutral spheres due to capillary evapora-

tion. The solute-solvent interface has a catenoidal shape

and minimizes the area of the enveloping surface, which

is smaller than the total solvent-accessible surface area

of the two spheres (8π R2). Upon charging, the spheres

become increasingly solvated and the nanobubble be-

comes unstable and vanishes [Fig. 2 b) and c)]. Charg-

ing the spheres, i.e., adding attraction between the so-

lute and the polar solvent, competes with the hydropho-

bic effect and clearly suppresses nanobubble formation

due to a favorable solvation.

The nanobubble has a strong impact on the mean

force (MF) between the two spheres, as shown in Fig-

ure 2 in the right plot. The MF displays a significant

attraction for the neutral spheres while the attraction de-

creases for increasing charge. Without charges, the sys-

tem is strongly hydrophobic and attempts to further

minimize solute-solvent interface area by pushing the

spheres together. Charging, on the other hand, attracts

solvent to the solute surface and the solutes like to stay

in solution. This simple system already exemplifies the

An Acad Bras Cienc (2010) 82 (1)
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subtle competition between hydrophobicity and electro-

statics in molecular systems, which might play a role in

macromolecular assemblies on nanometer scales.

B. NANOPORES AND ION CHANNELS

Another relevant generic model system for studying hy-

drophobic effects is that of a cylindrical pore with length

L and radius R connecting two reservoirs of water and

ions, as shown in Figure 3. In explicit-water MD simu-

lations (Allen et al. 2002, Beckstein et al. 2001, Dzu-

biella and Hansen 2004b, Rasaiah et al. 2008) it was

shown that the pore can exhibit capillary evaporation,

i.e., nanobubble formation, with a strong dependence on

the geometry (R, L) of the pore. This can be readily

understood by the simple macroscopic arguments pre-

sented in the introduction. By evaporating from the

cylinder interior, the solvent saves unfavorable interac-

tions with the hydrophobic cylinder walls (1G ∝ −RL)

while new interfaces have to be created at the cylinder

mouths (1G ∝ R2). In the shown example, the pore

radius is ∼ 0.5 nm while the length is about 1.5 nm and

a stable nanobubble is observed. Consequently, ions in

the reservoir do not seem to permeate the channel as they

have to pay a large solvation free energy when crossing

the bubble. Under the bottom line, the channel, although

sterically large enough, is blocked by the nanobubble

for particle permeation.

However, it was further demonstrated that an ionic

concentration imbalance between the two reservoirs can

give rise to a large electric field E across the mem-

brane that drives the polar solvent into the pore. It was

observed that the electric field necessary for wetting of

the pore had to be larger than a critical field Ec. Once

the pore was solvated, ions could be easily dragged

through it by the help of the driving field, as shown in

Figure 3 b). Subsequent permeation events lower the

concentration gradient and the electric field E falls be-

low Ec, whereupon the pore empties again from wa-

ter and closes to ion permeation. The nanobubble acts

hereby as an ‘electrostatic switch’ and may be relevant

for biological voltage gating or biotechnological appli-

cations as previously proposed (Dzubiella and Hansen

2004b, 2005). Furthermore, explicit MD simulations of

atomistically resolved ion channel proteins revealed

that this mechanism may indeed play a key role in the

E>Ec

Fig. 3 – MD simulation snapshots of a cylindrical hydrophobic pore

(dashed lines) connecting to reservoirs explicitly filled with water and

ions (red and green spheres) (Dzubiella and Hansen 2004b, 2005).

a) The hydrophobic pore triggers capillary evaporation and is blocked

for ion permeation. b) A field E larger than a critical field Ec induces

water permeation and subsequent tunneling of ions. The nanobubble

acts as an ‘electrostatic switch’.

electrostatic control of water and ion permeation in bio-

logical membranes (Sotomayor et al. 2007).

IMPLICIT MODELING

A. VARIATIONAL IMPLICIT SOLVENT MODEL (VISM)

Consider an assembly of arbitrary solutes surrounded by

solvent in a region W . V is the region occupied by the

solutes (the cavity region empty of solvent) and we iden-

tify the solute-solvent interface to be the boundary of

region V , and denote it by 0 = ∂V . We further define a

volume exclusion function

v(Er) =






0 for Er ∈ V,

1 else,

characterizing space devoid of solvent. We assume that

the position of each solute atom Eri and the solute con-

formation is fixed. Thus, the solutes can be considered

as an external potential to the solvent without any de-

grees of freedom. Coupling the VISM model the so-

lute’s degrees of freedom is work in progress (Cheng et

al. 2009). In this continuum solvent model, the solvent

density distribution is given by a sharp-interface distri-

bution ρ(Er) = ρ0v(Er), where ρ0 is the bulk density of

the solvent.

An Acad Bras Cienc (2010) 82 (1)
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The basic idea of VISM is to express the solva-

tion free energy G as a functional of the cavity geome-

try and obtain the ‘optimal’ interface by minimization.

It has been proposed that (Dzubiella et al. 2006a, b)

G[v] = Gvol[v] + Gsur[v] + GvdW[v] + Gele[v], where

the first term

Gvol[v] = P
∫

W
[1 − v(Er)] d3r = P Vol [V], (1)

is proportional to the volume of V , is the energy of cre-

ating a cavity in the solvent against the difference in

bulk pressures P between the liquid and vapor phase,

P = Pl − Pv (typically one can assume Pv ' 0 at nor-

mal conditions and for nanoscale volumes). The second

term

Gsur[v] =
∫

W
γ (Er , 0)|∇v(Er)|d3r

=
∫

0

γ (Er , 0) dS

(2)

describes the energetic cost due to the solvent rearrange-

ment around the cavity, i.e., near the solute-solvent inter-

face 0, in terms of a function γ (Er , 0) with dimensions of

free energy/surface area and depending on the particular

topology of the solute-solvent interface. The approxima-

tion γ (Er , 0) = γ0[1 − 2τ H(Er)] based on scaled-particle

theory assumptions (Reiss 1965) accounts for the inter-

face curvature dependence of the surface tension (Dzu-

biella et al. 2006a, b), where γ0 is the constant solvent

liquid-vapor surface tension for a planar interface, τ is a

constant first-order curvature correction coefficient, and

H(Er) =
[
κ1(Er) + κ2(Er)

]
/2 is the local mean curvature

in which κ1(Er) and κ2(Er) are the local principal curva-

tures. The third term

GvdW[v] = ρ0

∫

W
U (Er)v(Er) d3r

= ρ0

∫

W\V
U (Er)d3r

(3)

is the total energy of the non-electrostatic, van der Waals

type, solute-solvent interaction. The potential U (Er) =
∑N

i Ui (|Er − Eri |) is the sum of Ui that describes the

interaction of the i th solute atom (with N total atoms)

centered at Eri with the surrounding solvent. Each term

Ui includes the short-ranged repulsive exclusion and

the long-ranged attractive dispersion interaction be-

tween each solute atom i at position Eri and a solvent

molecule at Er . Classical solvation studies typically rep-

resent the interaction Ui as an isotropic Lennard-Jones

(LJ) potential,

ULJ(r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]

, (4)

with an energy scale ε, length scale σ , and center-to-

center distance r .

The last term Gele[v] is the electrostatic energy due

to charges possibly carried by solute atoms and the ions

in the solvent and is modeled by a functional term on the

Poisson-Boltzmann (PB) level (Dzubiella et al. 2006b).

We refer to literature (Dzubiella et al. 2006a, b) and a

recent work on a more mathematical derivation (Che et

al. 2008) for further details and references.

The solvation free energy 1G is the reversible

work to solvate the solute and is given by 1G = G[vmin]

− G0, with some arbitrary reference energy G0 and

vmin(Er) obtained from minimization

δG[v]

δv(Er)
= 0

at every point of the boundary 0, leading to the main

result

P + 2γ0
[
H(Er) − τ K (Er)

]
− ρ0U (Er) = 0, (5)

where we introduced the Gaussian curvature K = κ1κ2.

This partial differential equation (PDE) for the optimal

exclusion function vmin(Er), or equivalently the optimal

solute-solvent interface 0min, is expressed in terms of

pressure, curvatures, short-range repulsion, and disper-

sion, all of which have dimensions of energy density.

It can also be interpreted as a mechanical balance be-

tween the forces per surface area generated by each of

the particular contributions. Note that the electrostatic

contribution is not included in (5); see the literature (Che

et al. 2008, Dzubiella et al. 2006b) for details.

B. THE LEVEL-SET METHOD

The level-set method is a stable numerical technique

for the description and evolution of 2D surfaces in 3D

space and perfectly suited for solving eq. (5). One of

the major advantages of the level-set method is its easy

handling of topological changes of surfaces during the

surface evolution. For instance, the merge or break of

bubbles can be captured by level-set calculations.

An Acad Bras Cienc (2010) 82 (1)
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The starting point of the level-set method is to

identify the surface 0 in three-dimensional space as the

zero level-set of a function φ = φ(Er) [see literature

(Cheng et al. 2007) for references] 0 =
{
Er : φ(Er) =

0
}
. In other words, the surface consists exactly of those

points Er at which the function φ vanishes. The function

φ = φ(Er) is called a level-set function of the surface 0.

The unit normal vector En at the interface 0, the mean

curvature H , and the Gaussian curvature K can all be

expressed in terms of the level-set function φ:

En =
∇φ

|∇φ|
, H =

1

2
∇ ∙ En,

K = En ∙ adj (He(φ))En,

(6)

where He(φ) is the 3×3 Hessian matrix of the function

φ whose entries are all the second order partial deriv-

atives ∂2
i jφ of the level-set function φ, and adj (He(φ))

is the adjoint matrix of the Hessian He(φ). The basic

idea is now to track the motion of the moving surface

0(t) by evolving the level-set function φ(Er , t) and its

zero level-set at each time t according to the so-called

level-set equation,

∂tφ + vn|∇φ| = 0, (7)

where vn = dEr(t)/dt ∙ En is the normal velocity. As in

common practice, we define the level-set normal veloc-

ity to be proportional to the negative of the first vari-

ation of the Gibbs free energy vn = −μδG[v]/δv(Er)

yielding with (5)

vn = −μ[P + 2γ0
[
H(Er) − τ K (Er)

]
− ρ0U (Er ], (8)

where μ is the interface mobility. For the equilibrium so-

lution of (5), the particular form of μ is arbitrary. If one

is interested in the right dynamics and time scales, how-

ever, μ has to be further defined. Although only valid

for spherical bubbles, it was shown by a simple anal-

ysis of the Rayleigh-Plesset equation that μ = R/4η,

where R is the radius of mean curvature of the bubble

and η the dynamic solvent viscosity (Dzubiella 2007).

For complex geometries, one could naively assume that

a simple generalization μ = (4ηH)−1 holds, but here

a more thorough derivation based on the hydrodynamic

Stokes equations is necessary. Interestingly, however, if

one assumes dominance of capillary pressure (∝ γ0 H ) in

the driving of the nanobubble interface motion, one im-

mediately sees that the mean curvature cancels out and

the absolute interface velocity is given by vn ∼ γ0/η,

which is of the order of 1Å/ps (100m/s). This is in ac-

cord with previous explicit-water computer simulations

of nanobubble collapse (Huang et al. 2003, Liu et al.

2005, ten Wolde and Chandler 2002, Zhou et al. 2004).

C. SELECTED VISM EXAMPLES

The following selected examples illustrate that complex

cavities with different interface curvature, as typical in

molecular structures, can be efficiently tackled by the

VISM together with the level-set method. For more

quantitative details of the systems including the calcula-

tion of solvation free energies, see previous work (Cheng

et al. 2007). In all of our examples, we focus on water

close to normal conditions (T = 298K and P = 1bar).

All solutes are modeled by fixed assemblies of identical

and uncharged spheres with hard-core or LJ interactions.

1. Two spherical hydrophobic nanosolutes

We applied the VISM to study the simple two sphere

system discussed in section 2 (Dzubiella et al. 2006a).

The results for the MF are shown in Figure 2 together

with the explicit modeling results and show good agree-

ment. In particular, VISM captures the trend that nano-

bubble formation is increasingly suppressed (Dzubiella

et al. 2006a) and the strong attraction in the MF re-

duces with charging of the solutes. Thus, VISM cap-

tures the subtle competition between hydrophobic (in-

terfacial) and electrostatic effects.

2. Two parallel nanometer-sized paraffin plates

Here we consider the strongly hydrophobic system of

two parallel paraffin plates as investigated in explicit

water MD simulations (Koishi et al. 2004). Each plate

consists of 6 × 6 fixed LJ-spheres and has a square

length of ∼ 3 nm. The two plates are placed in a center-

to-center distance d and different separations are invest-

igated. Koishi et al. observed a clear nanobubble forma-

tion for distances smaller than d ' 15Å accompanied

by a strong attractive interaction energy of the order of

tenths of kB T (and in accord with the simple macro-

scopic estimate in the Introduction). The potential of

An Acad Bras Cienc (2010) 82 (1)
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mean force (pmf) is shown in Figure 4 together with

the solution of our variational implicit solvent model

and level-set snapshots of the equilibrium interface at

selected distances.

0 5 10 15
d/

-200

-150

-100

-50

0

W
(d

)/
k B

T

Å

Fig. 4 – Comparison of level-set and MD calculations for the two-

plate system. The dotted line is the pmf by MD simulations and circles

indicate values of pmf by the level-set calculations using τ = 0.9Å.

Three configurations of the system are also shown in their respective

separations.

As can be seen in Figure 4, we have almost perfect

agreement with the MD simulation results. Our varia-

tional implicit solvent model captures the nanobubble

formation, see the interface snapshots in Figure 4 for

d < 15Å, a consequence of the energetic desire of the

system to minimize the total interface area. For larger

distances the interface breaks, i.e., the bubble ruptures

and the equilibrium interface is given by two isolated

plates having almost no mutual interaction.

3. Helical alkane chains

In order to check if our level-set method works for more

complex shaped molecules, we study model helical

alkane chains. We investigate the solvation of two differ-

ent configurations, one is more loosely packed with 32

atoms, and the other uses more tightly packed 22 atoms

with hardly room for water in the helical core.

The results are plotted in Figure 5, which include

a comparison of our level-set calculation and a typical

SAS type surface constructed by taking the envelope of

all the LJ spheres. Though they look quite similar, our

level-set result leads to a much smoother solute-solvent

interface, and a nanobubble in the tightly packed he-

lix, a result from the minimization of the interface area

based on the energy functional. In Figure 5, on the right

side, we show the same two helical chains but using

a color code that indicates the value of mean curva-

ture at each point of the solute-solvent interface. The

curvature ranges between positive and negative values

showing also concave parts (blue). The highest posi-

tive curvature (deep red) is roughly given by the inverse

of the length σ of one LJ sphere. According to the en-

ergy functional, the concave parts give large interfacial

energy penalties (mainly entropic) but the latter might

be compensated by large favorable dispersion attraction

(mainly enthalpic), which result in total solvation ener-

gies close to small alkanes (Cheng et al. 2007). Note

that the concave parts of the interface are on the inner

side of the loosely packed helix in contrast to the convex

outer parts. This finding suggests a qualitatively differ-

ent hydration of the helix based on local curvature, i.e.,

geometry.

CONCLUSIONS

In conclusion, capillary effects of water on nanometer

scales (e.g., nanobubble formation) have strong relev-

ance in a broad range of confining systems as found

in bio(techno)logical or nanofluidic processes. As dem-

onstrated by explicit studies of these effects in generic

model systems, a subtle competition between interfacial

and energetic contributions (e.g., electrostatics, disper-

sion) governs the stability and occurrence of nanobub-

bles and, consequently, the behavior and function in any

possible nano-devices. The implicit modeling of these

intricate effects poses a formidable theoretical and nu-

merical challenge for the ‘nano’-physical and mathemat-

ical community. The presented VISM together with the

level-set numerics shows high potential for that and, af-

ter further refinement, might be a suitable candidate for

the implicit modeling and prediction of nanobubbles in

hydrophobic confinement, and for molecular solvation

studies in general.
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Fig. 5 – A comparison of the level-set (left) and SAS (middle) description of helical polymer chains with 32 atoms (above) and 22 atoms (below),

respectively. Right: color represents mean curvature. The units of mean curvature are in Å−1.

RESUMO

Água em condições normais consiste de um fluido termodi-

namicamente próximo à fase líquida-vapor exibindo alta ten-

são superficial. Esta combinação conduz a fenômenos capi-

lares interessantes na escala microscópica. Simulações com-

putacionais baseadas em técnicas de Dinâmica Molecular em

solutos hidrofóbicos por exemplo fornecem evidências do fe-

nômeno de evaporação capilar em escalas nanométricas dan-

do origem à formação de bolhas nanométricas confinadas en-

tre superfícies hidrofóbicas. Este fenômeno tem sido exem-

plificado em solutos de complexidade variável, ex placas de

parafina, polímeros, canais biológicos e de estado sólido bem

como proteínas tratadas atomicamente. Tem sido arguido que

bolhas nanométricas possuem impacto significativo nos meca-

nismos fluídicos nanométricos e na estabilidade e dobramento

de proteínas. Dado que simulações baseadas em dinâmica mo-

lecular são custosas computacionalmente, o desenvolvimento

de uma modelagem multiescala eficiente sob o ponto de vista

computacional impõe uma tarefa formidável à comunidade

nano-física. Recentemente apresentamos um novo e versátil

modelo de solvente denominado modelo implícito variacional

de solvente (VISM) o qual é baseado em um funcional de

energia geométrica. Tal como apresentado aqui os primeiros

estudos de solvatação de solutos hidrofóbicos simples usan-

do VISM acoplados com esquemas numéricos de conjunto de

níveis mostraram resultados promissores e em particular cap-

turaram a formação de nano-bolhas e a sua competição com

potenciais localmente energéticos em condições de confina-

mento hidrofóbico.

Palavras-chave: solvatação, hidrofobicidade, nano-bolhas,

modelo de água implícito, simulações de dinâmica molecular.
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