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ABSTRACT
We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits
a common complementary Lagrangian. The proof of this puzzling result, which is not totally
elementary alsoin thefinite dimensional case, isobtained as an application of the spectral theorem
for unbounded self-adjoint operators.
Key words: symplectic Hilbert spaces, Lagrangian subspaces, Lagrangian Grassmannian, un-
bounded self-adjoint operators, spectral theorem.

1 INTRODUCTION

A real symplectic Hilbert space isareal Hilbert space (V, (-, -)) endowed with asymplectic form;
by a symplectic form we mean a bounded anti-symmetric bilinear formw : V x V — R thatis
represented by a (anti-self-adjoint) linear isomorphism H of V,i.e,w = (H-, ). If H = PJ isthe
polar decomposition of H then P isa positive isomorphism of V and J is an orthogona complex
structure on V; theinner product (P-, -) on V istherefore equivalent to (-, -) and w is represented
by J with respect to (P-, -). We may therefore replace (-, -) with (P-, -) and assume since the
beginning that w is represented by an orthogonal complex structure J on V. A subspace S of V
is called isotropic if w vanisheson S or, equivalently, if J(S) iscontained in S*. A Lagrangian
subspace of V isamaximal isotropic subspace of V. We havethat L C V is Lagrangian if and
only if J(L) = L*. If L C V isLagrangian then aLagrangian L' C V suchthat V = L @ L’
iscaled acomplementary Lagrangian to L. Obviously every Lagrangian L has a complementary
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Lagrangian, namely, its orthogonal complement L*. Given apair L1, L, of Lagrangians, there are
known sufficient conditions for the existence of a common complementary Lagrangian to L, and
L, (see, for instance, Furutani 2004). In this paper we prove the following:

THEOREM. If (V, (-, ), w) is a real symplectic Hilbert space then any countable family of La-

grangian subspaces of 'V has a common complementary Lagrangian.

Associated to each pair of complementary Lagrangians (Lo, L1) one has a chart ¢, ;, on
the Lagrangian Grassmannian A whose domain is the set of Lagrangians complementary to L.
Clearly, the charts of the form ¢, ;, constitute an atlas for A, as (Lo, L1) runsin the set of al
pairs of complementary Lagrangians. Our Theorem implies thet, for fixed Lo, the charts ¢, 1,
also constitute an atlas for A, as L; runsin the set of Lagrangians complementary to Lo. This
observation is essential, for instance, to the study of the singularities of the exponential map of
infinite dimensional Riemannian manifolds (see Biliotti et al. 2004, Grossman 1965) and, more
generally, to the study of spectral propertiesassociated to (not necessarily Fredholm) pairsof curves
of Lagrangiansin symplectic Hilbert spaces.

The existence of a common complementary Lagrangian is proven first in the case of two
Lagrangians L and L, such that L N L; = {0} (Corollary 4). In this case L is the graph of a
densely defined self-adjoint operator on L;- (Lemma 1), and the result is obtained as an application
of the spectral theorem (Lemma 2 and Lemma 3). The existence of a common complementary
Lagrangian isthen proven inthe general case by areduction argument (Proposition 5), and thefinal
result is an application of Baire's category theorem.

The referee of this article suggested an alternative approach to the problem based on a com-
plexification argument. The complex argumentation is standard in the recent literature (see, for
instance, Booss-Bavnbek and Zhu 2005, Zhu 2001, Zhu and Long 1999). We discuss this approach
in Section 3.

2 PROOF OF THE RESULT

Inwhat follows, (V, (-, -}, w) will denote areal symplectic Hilbert space such that w isrepresented
by an orthogonal complex structure J on V. We will denote by A (V) the set of all Lagrangian
subspaces of V. It follows from Zorn's Lemma that V indeed has Lagrangian subspaces, i.e.,
A(V) #0. Given Lo, L1 € A(V) then (Lo + L1)* = J(LoN L1); inparticular, Lo N Ly = {0} if
andonly if Lo+ LiisdenseinV. For L € A(V), wedenoteby O(L) thesubset of A(V) consisting
of Lagrangians complementary to L. Givenarea Hilbert space 7, we denote by HC the orthogonal
direct sumH & H endowed with the orthogonal complex structure J defined by J (x, y) = (—y, x).
If A: D C H — Hisadensely defined linear operator on 7 then J (gr(A)*) = gr(A*). Itfollows
that gr(A) isLagrangianin € if and only if A isself-adjoint; inthiscase, gr(A) iscomplementary
to {0} @ H if and only if A isbounded.

LEMMA 1. Given L € A(H®) with L N ({O} @ H) = {0} then L is the graph of a densely defined
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self-adjoint operator A : D C H — H.

PrROOF. Thesum L + ({0} & #) isdensein HC; thus, denoting by 71 : H® — # the projection
onto the first summand, we havethat D = 71(L) = m1(L + ({0} @ H)) isdensein . Hence L is
the graph of adensely defined operator A : D — H, whichis self-adjoint by the remarks above. (J

Given Lagrangians Lo, L1 € A(V) with V = Ly @ L4 then we have an isomorphism p;, i, :
L1 — Lo defined by o1, 1, = Pr, o J|1,, Where P, denotes the orthogonal projection onto Lo.
The map:

V=Lo®Li3x+y+—> (x,—pr,.10(0)) € Lo® Lo =L§ (1)

isasymplectomorphism, i.e., itisanisomorphismthat preservesthe symplecticforms. Thus, weget
aone-to-one correspondence ¢, , 1., between Lagrangian subspaces L of V with L N L, = {0} and
densely defined self-adjoint operators A : D C Lo — Lo; more explicitly, weset A = ¢, 1, (L)
if the map (1) carries L to the graph of —A.

LEMMA 2. Let Lo, L1, L, L' € A(V) be Lagrangians such that Lo and L' are complementary to
Liand LN L1 ={0}. Set ¢, 1,(L)=A:D C Lo— Loand ¢, 1,(L") =A": Lo — Lo. Then
L' is complementary to L if and only if (A — A’) : D — Lg is an isomorphism.

PrROOF. Themap (1) carries L and L’ respectively to gr(—A) and gr(—A’). We thus have to show
that Lg =gr(—A)egr(—A’) ifandonly if A — A’ isanisomorphism. Thisfollows by observing
that (x, y) = (u, —Au) + (u', —A'v') isequivalent to (u + u’, (A’ — A)u) = (x, y + A'x), for all
x,y,u € Lo,u € D. O

LEMMA 3. IfA : D C H — H isadensely defined self-adjoint operator then for every ¢ > Othere
exists a bounded self-adjoint operator A’ - H — Hwith ||A’|| < e and suchthat (A—A") : D — H

is an isomorphism.

PROOF. By the Spectral Theorem for unbounded self-adjoint operators, we may assume that
H = L?(X,pn) and A = M, where (X, 1) is a measure space, f : X — R is ameasurable
function and M ; denotes the multiplication operator by f definedon D = {qb eL’X,p): fo e
L?(X, w)}. Inthissituation, the operator A’ can be defined as A’ = M,, whereg = ¢ - x. and x,
is the characteristic function of the set f~([—%, 41); clearly |A’|| < lIgll = ¢. The conclusion
follows by observingthat A — A" = My, and |f — g| > 5 on X. O

COROLLARY 4. Given Ly, L € A(V)with LiNL = {0} then there exists a common complementary
Lagrangian L' € A(V) to Ly and L.

PROOF. Set Lo = Ly and A = ¢y, ,(L). Lemma 3 gives us a bounded self-adjoint operator
A’ : Lo — Lowith A— A’ anisomorphism. Set L’ = ¢ZiLl(A’); L' isaL agrangian complementary

to L4, because A’ isbounded. It is aso complementary to L, by Lemma 2. O
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If V =V, & V,isanorthogonal direct sum decomposition into J-invariant subspaces V; and
Vs, then V1 and V, are symplectic Hilbert subspaces of V. Given subspaces L1 c Viand L, C V>
then L1 @ Lo isLagrangianin V if and only if L; isLagrangianin V;, fori = 1, 2. A Lagrangian
subspace L € A(V)isof theform L = L1 @ LowithL; € A(V;),i = 1,2, if andonly if L is
invariant by the orthogonal projection Py, onto V1. Inthiscase, L; = Py, (L) =L NV;,i =12
If S isaclosed isotropic subspace of V then adecomposition V = V1 & V, of the type above can
be obtained by setting Vi = S @ J(S) and V; = Vi*. Then, if L € A(V) contains S, it follows
that Py, (L) = S; namely, S c L implies L c J(S)* and J(S)* isinvariant by Py,. Hence
L=S® Py(L).

PROPOSITION 5. Given L, L’ € A(V) then O(L) N O(L") # .

PROOF. Set S = LNL, Vi =S®J(S),and V, = Vi*. ThenL = S@® Py, (L), L' = S& Py, (L)),
and Py,(L) N Py,(L") = (L N Vo) N (L' N V,) = {0}. By Corollary 4, there exists a Lagrangian
R € A(V,) complementary to both Py, (L) and Py,(L’) in V,. Hence J(S) @ R € A(V) isin
o) NOL). O

The map L — P, is a bijection from A (V) onto the space of bounded self-adjoint maps
P :V — Vwith P2 = P and PJ + JP = J. Such bijection induces a topology on A (V)
which makes it homeomorphic to a complete metric space. Moreover, for any Lo, L1 € A(V)
with V.= Lo @ L1, theset O(L1) isopenin A(V) andthemap O(L1) > L — ¢, ,(L) isa
homeomorphism onto the space of bounded self-adjoint operatorson L.

LEMMA 6. For any Lo € A(V), the set O(Ly) is dense in A(V).

PROOF. Given L € A(V), Proposition5givesus L, € O(Lg) N O(L). By Lemma 3, the bounded
self-adjoint operator A = ¢, 1,(L) on Lo is the limit of a sequence of bounded self-adjoint
isomorphisms A,, : Lo — Lg. Hence the sequence (pZ(iLl(An) isinO(Lg) andittendsto L. [

PROOF OF THEOREM. Let (L,),>1 be asequencein A(V). Each O(L,) is open and dense in
A(V), hence(,2; O(L,) isdensein A(V), by Baire's category theorem. O

3 AN ALTERNATIVE PROOF OF THE RESULT VIA COMPLEXIFICATION

Let (V, (-, ), w) denoteareal symplectic Hilbert space such that w isrepresented by an orthogonal
complex structure J on V. Let VC denote the complexification of V', which is acomplex Hilbert
space endowed with the unique sesquilinear product (-, -)& that extends (-, -). We denote by
J€ : V€ - VT the unique complex-linear extension of J, so that »© = (JC., )& isthe unique
sesquilinear extension of o to V. We have a direct sum decomposition VC = Z,, @ Z,, where
Zn = Ker(JC€ —i)and Z, = Ker(JC +i). Thespaces Z, and Z, area)@—orthogonal; moreover, the
restriction of i to Zj, (resp., to Z,) isequal to —(-, -) (resp., equal to (-, -)z). By aLagrangian
subspace L of VC we mean a complex subspace L of VC which is equal to its a)@—orthogonal
complement; equivalently, L isLagrangianif JC(L) isequal tothe (-, -)@-orthogonal complement
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of L (we observe that every Lagrangian subspace of V< ismaximal w@-isotropi c, but the converse
does not hold in the infinite-dimensional case). The Lagrangian subspaces of VC are precisely the
graphs of the complex-linear isometries U : Z,, — Z,. Given complex-linear isometries Uy, U,
from Z;, to Z, then their graphs are complementary subspaces of VC if and only if Uy — U, isan
isomorphism. We have isomorphismsi, : V. — Zy,i5: V — Z, defined by in(x) = x —iJx,
ia(x) = x+iJx. Theisomorphism iy carriesthe complex structure J of V to the complex structure
of Zy (inherited from V), while the isomorphism i, carries —J to the complex structure of Z,.
We observe that (V, (-, -)) isthe underlying real Hilbert space of a complex Hilbert space whose
complex structureis J : V — V and whose Hermitian product (-, -), isgiven by (-, -) —iw(, ).
The isomorphism i, carries 2(-, -), to (-, -)= and the isomorphism i, carries the complex conjugate
of 2(-, ), to (-, -)&. Given aLagrangian subspace Lo of V then Loy isareal form of (V, J) (i.e,
V = Lo® J(Lo)) onwhich the Hermitian product (-, -),. isreal. Thus, the conjugationc: V — V
corresponding to thereal form Lo (i.e., c(x +Jy) = x — Jy,x,y € L) carriesJ to —J and (-, -),
to the complex conjugate of (-, -).. Hence each complex-linear isometry U : Z,, — Z, can be
identified with the unitary operator 7 = coi;1o U oi, 0n V and the set of all Lagrangian subspaces
of VC can beidentified with the set of all unitary operatorson V. The Lagrangian L that defines
the conjugation ¢ corresponds to the identity operator of V. By what has been observed above, the
Lagrangians corresponding to unitary operators T; : V. — V, T, : V — V are complementary
to each other if and only if 71 — T5 is an isomorphism of V. Notice that the complexification
LC of aLagrangian subspace L of V isaLagrangian subspace of VC; moreover, the Lagrangian
subspacesof VC of theform LC correspond to the unitary operators T : V — V whose self-adjoint
components (7 + T*), 2 (T — T*) preserve thereal form Lo.

We can now give an aternative proof of Lemma 6, which implies our main result.
ALTERNATIVE PROOF OF LEMMA 6. It sufficesto show that given T : V — V aunitary operator
whose self-adj oint components preserve the real form Lq and given ¢ > 0 then there exists another
unitary operator 7’ : V — V whose self-adjoint components preserve Lo, with |7 — T’|| < ¢ and
suchthat T’ — Id isanisomorphism. By the“real version” of the Spectral Theorem stated below, we
may assumethat V = L2(X, ), with (X, 1) ameasurespaceand that 7 isamultiplication operator
M, with f : X — S* ameasurable function taking valuesin the unit circle S*. Arguing asin the
proof of Lemma 3, we may obtain a measurable function g : X — S suchthat || f — glle < &
and such that 1 is not in the closure of the range of g. Wethenset 7’ = M,. O

Thefollowing “real version” of the Spectral Theorem can be obtained easily from the standard
proof of the complex Spectral Theorem for bounded normal operators.

SPECTRAL THEOREM. Let H be a complex Hilbert space and Ho a real form of H (i.e., H =
Ho @ iHo) on which the Hilbert space Hermitian product of H is real. Let T : H — H be a

bounded normal operator whose self-adjoint components

1(T+T*) 1(T )
2 T2
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preserve the real form Ho. Then there exists a measure space (X, ), an isometry ¢ from H to
L?(X, ) that carries Ho to the set of real-valued functions on X and such that p o T o ¢ L is a

multiplication operator My, with f : X — C a bounded measurable function.
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RESUMO

N s demonstramos que qual quer colecdo enumeravel de subespacos L agrangeanos de um espago de Hilbert
simplético admite um subespaco Lagrangeano complementar. A prova desse intrigante resultado, que
também no caso de dimens&o finita ndo é totalmente elementar, é obtida como uma aplicagéo do teorema
espectral para operadores auto-adjuntos ilimitados.

Palavras-chave: Espacosde Hilbert simpléticos, subespacos L agrangeanos, Grassmanniano de Lagrangea-
nos, operadores auto-adjuntos ilimitados, teorema espectral.
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