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ABSTRACT

In this paper we describe the global phase portrait of the Hamiltonian system associated to a Pinchuk map

in the Poincaré disc. In particular, we prove that this phase portrait has 15 separatrices, five of them singular

points, and 7 canonical regions, six of them of type strip and one annular.
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INTRODUCTION

As far as we know, the simplest class of non-injective polynomial local diffeomorphisms of R2 are the

Pinchuk maps, constructed by Pinchuk (1994). The existence of these maps disproves the real Jacobian

conjecture, that a polynomial local diffeomorphism of R2 is globally injective. One open problem is to

know what exactly fails in this conjecture.

One of the most known conditions for a local diffeomorphism to be a global one is that it is proper.

The asymptotic variety of a map of R2 is the set of points where the map is not proper (i.e., points that

are limits of the map under sequences tending to infinity). In particular, a local diffeomorphism is a global

diffeomorphism if and only if this set is empty. Gwoździewicz (2000) and Campbell (arXiv:math/9812032

in 1998, 2011) calculated the asymptotic variety of two Pinchuk maps in details. Our aim in this paper is to

do a similar work, i.e., to describe a Pinchuk map, but now from a different point of view.

LetU ⊂R2 be an open connected set. Let F = (p,q) : U ⊂R2 →R2 be aC2 local diffeomorphism. Let

HF(x,y) = (p(x,y)2 +q(x,y)2)/2 and consider the Hamiltonian system

ẋ =−(HF)y(x,y), ẏ = (HF)x(x,y), (1)

where the dot denotes derivative with respect to the time t. The singular points of system (1) are characterized

by the following result, that we shall prove below.
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Lemma 1. The singular points of system (1) are the zeros of F , each of them is a center of system (1).

The following is a generalization of the characterization of global invertibility of polynomial maps

given by Sabatini (1998). This version is due to Braun and Llibre (arXiv:1706.02643 in 2017).

Theorem 2. Let z0 ∈U such that F(z0) = (0,0). The center z0 of system (1) is global if and only if (i) F is

globally injective and (ii) F(U) = R2 or F(U) is an open disc centered at the origin.

In the special case that F is a polynomial map and U = R2, it follows that F(R2) = R2 provided F is

injective (Białynicki-Birula and Rosenlicht 1962). Hence, in this case, z0 is a global center of (1) if and only

if F is globally injective. An application of this result was given by Braun et al. (2016).

Since the phase portrait on the Poincaré sphere of a Hamiltonian polynomial vector field having a

global center is simple, i.e., at the infinite either it does not have singular points, or the infinite singular

points are formed by two degenerate hyperbolic sectors (for Hamiltonian vector fields, the infinity contains

only isolated singular points), it is interesting to know how complex can be the phase portrait of a non-global

center of a Hamiltonian system (1).

In this paper we provide the qualitative global phase portrait of the Hamiltonian system (1) when F is

given by the Pinchuk map considered by Campbell (1998, 2011), after a translation in the target in order to

have only a point z0 such that F(z0) = (0,0). More precisely, we prove the following result.

Theorem 3. Let F = (p,q) : R2 → R2, where (p,q+ 208) : R2 → R2 is the Pinchuk map considered by

Campbell (1998, 2011) (see the definition below). Then the phase portrait of the Hamiltonian system (1) in

the Poincaré disc is topologically equivalent to the phase portrait given in Fig. 1.

Figure 1 - The qualitative global phase portrait of system (1) in the Poincaré disc.

To prove Theorem 3, we first study the infinite singular points of system (1). These infinite singular

points are very degenerate, and we apply homogeneous and quasi-homogeneous blow ups to study them.
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Then, we complete the proof of Theorem 3 by proving that the separatrix configuration of system (1) is

qualitatively the one presented in Fig. 1.

We think that a good understanding of what fails in the real Jacobian conjecture could be interesting to

investigate a related problem, the Jacobian conjecture inR2, that a polynomial local diffeomorphism whose

Jacobian determinant is constant is globally injective. This conjecture remains unsolved until now. For the

Jacobian conjecture we address the reader to the works of Bass et al. (1982) and Van Den Essen (2000).

INJECTIVITY, CENTERSANDA PINCHUKMAP

We begin with the proof of Lemma 1.

Proof of Lemma 1. Let z0 be a singular point of the Hamiltonian system (1). We have −py(z0) −qy(z0)

px(z0) qx(z0)


 p(z0)

q(z0)

=

 0

0

 ,

which is true if and only in F(z0) = (p,q)(z0) = (0,0) because the Jacobian determinant of F is nowhere

zero.

The point z0 is a center of the Hamiltonian system (1) because it is an isolated minimum of HF .

Now, we select the map F that we are going to work in this paper. Let t = xy−1, h = t(xt +1) and f =
(xt+1)2(t2+y).A Pinchuk map is a non-injective polynomial map with nowhere zero Jacobian determinant

of the form (P,Q) : R2 → R2 such that P = h+ f and Q =−t2 −6th(h+1)−u(h, f ), where u is chosen so

that detD(P,Q)(x,y) = t2+(t + f (13+15h))2+ f 2. The following is the Pinchuk map studied by Campbell

(1998, 2011):

p = h+ f ,

q =−t2 −6th(h+1)−170 f h−91h2 −195 f h2 −69h3 −75 f h3 − 75h4

4
.

According to Campbell (2011), the points (−1,−163/4) and (0,0) ∈ R2 have no inverse image under

(p,q), all the other points of the curve

γ(s) =
(

s2 −1,−75s5 +
345s4

4
−29s3 +

117s2

2
− 163

4

)
, s ∈ R,

which is a parametrization of the asymptotic variety of (p,q), have exactly one inverse image under this map,

and the points of R2 \ γ(R) have two inverse images. Hence, in particular, the point (0,208) has precisely
one inverse image under (p,q).

We consider the map F = (p,q) : R2 → R2 given by the translation

p(x,y) = p(x,y), q(x,y) = q(x,y)−208. (2)
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Observe that F is a Pinchuk map according to our above-definition. Moreover, now there exists exactly one

point z0 ∈R2 such that F(z0) = (0,0). From Lemma 1 the point z0 is the only finite singular point of system

(1), corresponding to a non-global center of this system according to Theorem 2. Further, the curve

β (s) = γ(s)− (0,208) =
(

s2 −1,−75s5 +
345s4

4
−29s3 +

117s2

2
− 995

4

)
, (3)

s ∈ R, is the asymptotic variety of F , whose points have exactly one inverse image over F , but the points
(−1,−995/4) and (0,208), which have none.

From now on, we restrict our attention to the specific Pinchuk map (2).

We first calculate the coordinates of the point z0. Observe that xt + 1 = x2y− x+ 1 is a factor of p. If
this factor annihilates, then h = 0 and q =−t2 −208 < 0. The other factor of p is

g(x,y) =−x+(1−2x+3x2)y− x2(−2+3x)y2 + x4y3.

We observe that g(0,y) = y and q(0,y) = 50y− 799/4 do not annihilate at the same time, thus the first

coordinate of the point z0 is not 0. Moreover, since the leading coefficient of q(x,y) as a polynomial in y is
−75x15, it follows that the first coordinate of z0 will be a point where the resultant in y between g(x,y) and
q(x,y) is zero. This resultant is the cubic c(x) = 31008391− 11757152x− 155580672x2 + 2239078400x3

multiplied by −x36/64. The discriminant of c(x) is negative, so it has only one real root, which will be the
first coordinate of the point z0.

Repeating a similar reasoning now looking g and q as polynomials in x, we calculate their resul-

tant and obtain that its zero is the only real root of the cubic c(y) = 1789023641600+ 100675956992y+
26252413280y2 +1506138481y3, which will be the second coordinate of the point z0.

Hence z0 = (−0,22568337...,−17,491214...) approximately. Since z0 is a center, the only finite sin-

gular point of system (1), near z0 the phase portrait of this system is simple. Indeed, since z0 is the minimum

point of HF , it follows that the gradient of HF points outward of each closed orbit of the center, and so each

closed orbit of the center rotates in counterclockwise around z0.

In the following section we shall investigate the infinite of system (1).

THE INFINITE OF SYSTEM

In this section, we will use results and notations on the Poincaré compactification of polynomial vector

fields of R2. In particular Ui, Vi, i = 1,2,3, are the canonical local charts of the Poincaré sphere S2.

For details on this technique we refer the reader to Chapter 5 of (Dumortier et al. 2006) or to (González

Velasco 1969).

We call a singular point of a vector field linearly zero when the linear part of the vector field at this

point is identically zero.

We begin by proving a general fact about the infinite singular points of Hamiltonian systems of the form

(1). Writing H = H0 +H1 + · · ·+Hd+1, where Hi is the homogeneous part of degree i of the polynomial H,

it is simple to conclude that the infinite singular points (u,0) of system (1) in the local charts U1 and U2 are

An Acad Bras Cienc (2018) 90 (3)



PHASE PORTRAIT OFA PINCHUK MAP 2603

the points satisfying Hd+1(1,u) = 0 and Hd+1(u,1) = 0, respectively. Let (u,0) be an infinite singular point
of system (1) and assume it is in the chart U1. The linear part of the vector field at (u,0) is (d +1)(Hd+1)y(1,u) dHd(1,u)

0 (Hd+1)y(1,u)

 .

Assuming m = deg p ≥ degq, we have d = 2m−1 and Hd = pm pm−1+qmqm−1 and Hd+1 = p2
m+q2

m. Since

Hd+1(1,u) = 0, it follows that pm(1,u) = qm(1,u) = 0, and hence (Hd+1)y(1,u) = Hd(1,u) = 0. Therefore,
(u,0) is a linearly zero singular point. This proves the following result.

Lemma 4. The infinite singular points of the Hamiltonian system (1) are linearly zero.

Now, we return to the Pinchuk map F defined by (2). Observe that the highest homogeneous part of

HF(x,y) is 5625x30y20/2. Thus, the origins of the charts U1,V1 and U2,V2 are the infinite singular points of

the Hamiltonian system (1), each of them linearly zero from Lemma 4.

Wewill use the quasi-homogeneous directional blow up technique to desingularize each of these infinite

singular points. An exposition about blow-ups can be found in (Álvarez et al. 2011), see also Chapter 3 of

(Dumortier et al. 2006). We now recall the directional blow up transformations.

By the quasi-homogeneous blow up in the positive (resp. negative) x-direction with weights α and β , or

simply (α,β )-blow up in the positive (resp. negative) x-direction, we mean the transformation which carries

the variables (x1,y1) to the variables (x2,y2) according to the formulas

(x1,y1) = (xα
2 ,x

β

2 y2), (x1,y1) = (−xα
2 ,x

β

2 y2),

respectively. Similarly, by the quasi-homogeneous blow up in the positive (resp. negative) y-direction with

weights α and β , or simply (α,β )-blow up in the positive (resp. negative) y-direction, we mean the

transformations

(x1,y1) = (x2yα
2 ,y

β

2 ), (x1,y1) = (x2yα
2 ,−yβ

2 ),

respectively.

Clearly if α (resp. β ) is odd, then, the blow up in the positive x-direction (respec. y-direction) provides
the information of the respectively negative blow ups. Also, if β is odd, the x-directional blow ups swap the

second and third quadrants, while the y-directional blow ups swap the third and the fourth quadrants if α is

odd. After the (α,β )-blow up in the x-direction, a system ẋ1 = P(x1,y1), ẏ1 = Q(x1,y1) is transformed into

ẋ2 =
±P

αxα−1
2

, ẏ2 =
αxα−1

2 Q∓βxβ−1
2 y2P

αxα+β−1
2

,

with P = P(±xα
2 ,x

β

2 y2) and Q = Q(±xα
2 ,x

β

2 y2), in the positive and negative directions according to ±.

Similarly, the (α,β )-blow up in the y-direction transforms ẋ1 = P(x1,y1), ẏ1 = Q(x1,y1) into

ẋ2 =
βyβ−1

2 P∓αx2yα−1
2 Q

βyα+β−1
2

, ẏ2 =
±Q

βyβ−1
2

,
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with P = P(x2yα
2 ,±yβ

2 ) and Q = Q(x2yα
2 ,±yβ

2 ), in the positive and in the negative directions according to

±.

After the blow up in the x-direction (resp. y-direction) we cancel a common appearing factor xk
2 (y

k
2) for

a suitable k. So, if k is odd, the direction of the orbits are reversed in x2 < 0 (y2 < 0).
The weights α and β are chosen analyzing the Newton polygon of (P,Q), see the construction in

(Álvarez et al. 2011).

The application of (α,β )-blow ups with αβ 6= 1 usually reduces the number of blow ups necessary for

studying the local phase portrait of a linearly zero singular point.

To make the exposition clearer, we shall apply the most part of the blow ups in the x-direction. So,
sometimes, we will first apply a xy-change, (x1,y1) 7→ (y1,x1) = (x2,y2), before making the blow-up.

In the next two subsections we will desingularize the origin of the charts U1 and U2, respectively. We

will denote the coordinates of the system in the step i of the algorithm as the variables (wi,zi), so that after

either a wz-change, a translation or a blow up, the new obtained system will be written in the variables

(wi+1,zi+1). In each step, we will denote the system ẇi = Pi(wi,zi), żi = Qi(wi,zi) simply as (Pi,Qi).

Since the Hamiltonian system (1) with the polynomials p and q given by (2) has degree 49, it follows
that for the calculations in each step of the algorithm we have to deal with polynomials of very high degree.

So, we persuade these calculations with the algebraic manipulator Mathematica. We do not show in each

step the whole expressions of the systems (Pi,Qi) because this would be impractical.

THE ORIGIN OF THE CHART U1

We write the compactification of system (1) in the chart U1 in the variables (w0,z0), as (P0,Q0). From

Lemma 4, the singular point (0,0) is linearly zero.
We first apply a wz-change and write the new system in the variables (w1,z1) as (P1,Q1).

The Newton polygon of system (P1,Q1) has only one compact edge contained in the straight line x+
2y = 38. We apply (1,2)-blow ups in the positive w-direction and in the positive and negative z-directions
obtaining systems (P2,Q2) and (P±

2 ,Q±
2 ), in the variables (w2,z2) and (w±

2 ,z
±
2 ), after canceling the common

factors w38
2 and (w±

2 )
38, respectively. The first terms of these systems have the following expressions:

P2 = w2

(
−56250+

1125
2

(447w2 +1900z2)+ · · ·
)
,

Q2 = 28125− 1125
4

(387w2 +2000z2)+
75
4
(1967w2

2 +24138w2z2 +57000z2
2)+ · · · ,

and

P±
2 = w±

2

(
∓28125

2
+281250(w±

2 )
2 + · · ·

)
,

Q±
2 = z±2

(
±140625

2
−1350000(w±

2 )
2 + · · ·

)
.

The only singular point of (P2,Q2) over the line w2 = 0 is the linearly zero singular point (0,1). The
origin of the systems (P±

2 ,Q±
2 ) are saddles as depicted in the planes w+

2 z+2 and w−
2 z−2 of Fig. 2.

The reader can follow a schema of each step of the calculations in Fig. 2. We just need to analyze the

origin of the systems (P±
2 ,Q±

2 ), because the other singularities over the lines z±2 = 0 will correspond to the

singularity (0,1) of (P2,Q2).
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Figura 2:
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w
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2

z
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2

Figura 3:

(a) Origin of ( , Q ). (b) Origin of ( , Q ).

Figura 4:

Figura 5:

Figura 6

Figura 7

Figure 2 - The sequence of blow downs in the study of the origin of the chart U1.

We now analyze this linearly zero singularity. We first do a translation bringing this point to the origin,

obtaining the new system (P3,Q3) in the variables (w3,z3). We also apply a wz-change obtaining the system
(P4,Q4) in the variables (w4,z4). The Newton polygon of this system has two compact edges.We choose the

one contained in the straight line x+y = 11. This compact edge has the point of negative abscissa (−1,12),
thus, concerning (1,1)-blow ups, it follows from Proposition 3.2 of (Álvarez et al. 2011) that w4 is not a

characteristic direction, and so we only need to apply a w-directional (1,1)-blow up, obtaining the system

(P5,Q5) in the variables (w5,z5), after canceling the common factor w11
5 . The first terms of (P5,Q5) are:

P5 = w5

(1
4
(w5 + z5)(w5 +2z5)

(
442125w5

5z5 +824250w4
5z2

5 +699990w3
5z3

5

+320532w2
5z4

5 +215904w5z5
5 +112500w6

5 +217160z6
5
)
+ · · ·

)
,

Q5 = z5

(1
4
(w5 + z5)(w5 +2z5)

(
442125w5

5z5 +824250w4
5z2

5 +699990w3
5z3

5

+320532w2
5z4

5 +215904w5z5
5 +112500w6

5 +217160z6
5
)
+ · · ·

)
.

(4)

Over the line w5 = 0, the singular points of (P5,Q5) are (0,0) and two points of the form (0,z5), with z5 the

two real solutions of

0 = z4
5 +70726z3

5 +252941z2
5 +290380z5 +108580.

The discriminant of this quartic equation is negative, thus, it has two real solutions. Those are approximately

z5 = −70722.424... and z5 = −1.6611121.... The singular point (0,0) is linearly zero and the other two

singular points are saddles, as represented in the w5z5-plane of Fig. 2.

Now,we study the linearly zero point (0,0) of (P5,Q5). It is clear from (4) that the characteristic equation

of (P5,Q5) is identically zero, so (0,0) is a dicritical singular point. We apply (1,1)-blow ups in both the w-
and z-directions obtaining systems (P6,Q6) and (P

y
6 ,Q

y
6) in the variables (w6,z6) and (w

y
6,z

y
6), after canceling
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the factors w9
6 and (zy

6)
9, respectively. System (Py

6 ,Q
y
6) does not have (0,0) as a singular point, so we just

need to consider system (P6,Q6) over the line w6 = 0. We have

P6(0,z6) =
1
4
(z6 +1)(2z6 +1)

(
217160z6

6 +215904z5
6 +320532z4

6 +699990z3
6

+824250z2
6 +442125z6 +112500

)
,

Q6(0,z6) =
1
4

z2
6(z6 +1)(2z6 +1)

(
290380z6

6 +260416z5
6 +421348z4

6 +904140z3
6

+1032225z2
6 +542250z6 +135000

)
.

By using Sturm’s theorem (see for instance (Isaacson and Keller 1994); in the software Mathematica, the

Sturm theorem is programed by the instruction CountRoots) we see that the polynomial of degree 6 mul-

tiplying (z6 + 1)(2z6 + 1)/4 in P6(0,z6) has no real roots, so, the only singular points are (0,−1/2) and
(0,−1). The first one is a weak focus and the second one is a saddle, as depicted in the plane w6z6 of Fig. 2.

Since the origin of (P5,Q5) is dicritical, it follows that each orbit crossing the line w6 = 0 will correspond

to two orbits tending to (0,0) in positive or negative directions.
We now begin the process of blowing down.

It is simple to conclude that the phase portrait of the system (P5,Q5) close to the origin is qualitatively

the one depicted in (a) of Fig. 3. Consequently, by considering also the information close to the other two

z5

z5

(a)

w3

z3

(b)

Figure 3 - The origin of system (P5,Q5) in (a) and the origin of system (P3,Q3) in (b).

singular points in the line w5 = 0 (see the plane w5z5 of Fig. 2), we can understand the behavior near the

origin of system (P4,Q4). We then apply a wz-change and conclude that the behavior of system (P3,Q3) near

the origin is the one presented qualitatively in (b) of Fig. 3.

By translating (0,0) to (0,1) and by using the information provided by the saddles of planes w±
2 z±2 , we

make the blow downs with α = 1 and β = 2, obtaining the origin of system (P1,Q1). We then finally apply

a wz-change and conclude that the origin of system (P0,Q0) is qualitatively as drawn in Fig. 4.

Figura 2:

wz-change

wz-change

translation
= 1, = 2

= 1, = 2

= 1
= 1

-dir

-dir
-dir

-dir

odd
odd

even
even

Figura 3:

(a) Origin of ( , Q ). (b) Origin of ( , Q ).

Figura 4:

w0

z0

Figura 5:

Figura 6

Figura 7

Figure 4 - The origin of the chart U1.
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THE ORIGIN OF CHART U2

As in the calculations made above, we write the compactified vector field in the chart U2 as (ẇ0, ż0) =

(P0,Q0). The Newton polygon of (P0,Q0) has two compact edges: one of them contained in the straight line

3x+ 2y = 87. We apply a (3,2)-blow up in the w-direction, obtaining the system (ẇ1, ż1) = (P1,Q1) after

canceling the factor w87
1 . The first terms of P1 and Q1 are:

P1 = w1
(
−46875+11250z2

1(80w1 −47z1)+ · · ·
)
,

Q1 = z1
(
9375+56250z2

1(2z1 −3w1)+ · · ·
)
.

The polynomials P1 and Q1 have degree 61.

It is clear that at (0,0)we have a saddle. The other singular point of (P1,Q1) in the linew1 = 0 is (0,−1),
and it is a linearly zero point. See the w1z1-plane of Fig. 5. The reader can follow the steps of the calculations

in the schema shown in this figure. We just warn that, differently of Fig. 2, we already draw the final phase

portrait of each step, including the behavior close to the linearly zero points (information that we will know

only after persuading all the blow ups).

wz-change

α = β = 1

α = 3, β = 2

α = 3, β = 2

α = 1, β = 2

α = β = 1

α = β = 1

α = β = 1

α = β = 1

α = β = 1

z-dir

z-dir

z-dir

z-dir

w-dir

w-dir

w-dir

w-dir

w-dir

odd

odd

odd

odd

odd

odd

odd

odd

odd

w0

z0

w1

z1

w2

z2

w3

z3

w4

z4

w5

z5

w6

z6

w
y

6

z
y

6

w7

z7

w8

z8

w
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8

z
y

8
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z9

w10

z10

w
−

1

z
−

1

w
+
1

z
+
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Figure 5 - The sequence of blow downs in the study of the origin of the chart U2.
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We also apply (3,2)-blow ups in the positive and negative z-directions, obtaining the systems ẇ±
1 = P±

1 ,
˙z±1 = Q±

1 , respectively, with linearly zero singular points at (w
±
1 ,z

±
1 ) = (0,0). The polynomials P±

1 and Q±
1

have degree 30 and Q±
1 is a factor of z±1 .

We do not need to analyze the other singular points over the lines z±1 = 0, as the information provided by

them is already contained in the w-directional blow up. We desingularize these points applying (1,1)-blow
ups in the w-direction. Here, we do not need to apply blow ups in the z-directions because the characteristic
equations of the systems are

0 = z±1
(
−4500(w±

1 )
5z±1 +1650(w±

1 )
4(z±1 )

2 −7800(w±
1 )

3(z±1 )
3

+3025(w±
1 )

2(z±1 )
4 −500w±

1 (z
±
1 )

5 +5625(w±
1 )

6 +2501(z±1 )
6
)
,

and so w±
1 = 0 are not characteristic directions. We obtain the systems (P±

2 ,Q±
2 ) after canceling a factor

(w±
2 )

5. The polynomials P±
2 and Q±

2 have degree 45, and up to order 2 they have the same expressions:

P±
2 = w±

2

(
−28125

2
+10125z±2 + · · ·

)
,

Q±
2 = z±2

(
5625−4500z±2 + · · ·

)
.

Thus, at (0,0) the systems have a saddle, as depicted in the planes w±
2 z±2 of Fig. 5. Moreover, any other

singularity of the form (0,z±2 ) must satisfy

2501(z±2 )
6 −500(z±2 )

5 +3025(z±2 )
4 −7800(z±2 )

3 +1650(z±2 )
2 −4500z±2 +5625 = 0.

By using Sturm’s theorem, we conclude that this equation has no real solution.

Now, we desingularize the point (0,−1) of system (P1,Q1). First, we apply a translation to bring this

point to the origin, obtaining the system (P2,Q2) in the variables (w2,z2). We also apply a wz-change obtain-
ing the system (P3,Q3) in the variables (w3,z3). The Newton polygon of this system has only one compact

edge contained in the line x+2y = 11, and this edge has points of negative abscissa, so, concerning (1,2)-
blow ups we just need to apply them in the w-direction, according to Proposition 3.2 of (Álvarez et al. 2011).
Hence, we apply a (1,2)-blow up in the positive w-direction, obtaining the system (P4,Q4) in the variables

(w4,z4), after canceling a factor of w11
4 . These polynomials have degree 90, and their first terms are:

P4 = w4

(
−4982259375+

996451875
4

(260w4 + z4)+ · · ·
)
,

Q4 = z4 (3985807500−110716875(639w4 +2z4)+ · · ·) .

Clearly, (0,0) is a singularity corresponding to a saddle. The other singular point in the line w4 = 0 is (0,ξ ),
where ξ is the only real root of the cubic

c(x) = 4x3 +216x2 +6075x−218700,

which is approximately ξ = 18.8848..... This cubic has only one real root because its discriminant is

negative. A calculation shows that (0,ξ ) is linearly zero. See the plane w4z4 in Fig. 5.

Now, we apply a translation to bring the point (0,ξ ) to the origin, obtaining system (P5,Q5) written

in the variables (w5,z5). Since ξ is not a rational number, we do this translation with a parameter x, and
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thus P5 and Q5 are polynomials in w5, z5 and x. We simplify these polynomials substituting them by the

remainder of the division of each of them by c(x), obtaining so polynomials of degree 2 in x, and hence

when we substitute x by ξ , we obtain the same expressions. We keep the notation (P5,Q5).

The Newton polygon of this system has just one compact edge contained in the line x+ y = 1. So, the
blow ups here will be homogeneous ones. The characteristic equation of system (P5,Q5) is a multiple of

0 = w5
(
729

(
23090824x2 +532204875x−18375684300

)
w2

5

−216
(
149x2 +1828125x−32221800

)
w5z5 −4

(
404x2 +8325x−54675

)
z2

5
)
,

with x = ξ . It would thus be enough to apply a (1,1)-blow up in the z-direction, and to study the singularities
of the new system in z6 = 0 (this could evidently also be concluded by observing that the compact edge of

the Newton polygon of (P5,Q5) has a point of negative ordinate). We prefer though to apply (1,1)-blow ups

in the w and z-directions and to study the singularities of the new systems either in the line w6 = 0 and in the

origin, respectively. The reason why we do this is that the singularities other than the origin are linearly zero

and we have to apply new blow ups after persuading a translation. The matter here is that the blow up in

the z-direction produces a vector field of degree 158, while the blow up in the w-direction produces a vector
field of degree 109. Thus, it is simpler to do a translation and after to apply the polynomial remainder in the

vector field with smaller degree.

Then, after applying (1,1)-blow ups in either the positive w- and z-directions, we obtain the systems

(P6,Q6) and (Py
6 ,Q

y
6) in the variables (w6,z6) and (wy

6,z
y
6), after canceling factors w6 and zy

6, respectively.

The first terms of these systems are:

P6 = w6

(
59049

4
(
149x2 +1828125x−32221800

)
+ · · ·

)
,

Q6 =−4782969
16

(
23090824x2 +532204875x−18375684300

)
+

177147
64

(
5928191012x2 −9644385686625x+179165168144100

)
w6

+
177147

2
(
149x2 +1828125x−32221800

)
z6 + · · · ,

with x = ξ and

Py
6 = wy

6

(
−6561

4
(404x2 +8325x−54675)+ · · ·

)
,

Qy
6 = zy

6

(
2187(404x2 +8325x−54675)+ · · ·

)
,

with x = ξ .

The origin of system (Py
6 ,Q

y
6) is a saddle (see the plane wy

6zy
6 in Fig. 5). On the other hand, the

singularities of (P6,Q6) over the line w6 = 0 are the points (0,z6), with z6 the real solutions of

0 = 4
(
404x2 +8325x−54675

)
z2

6 +216
(
149x2 +1828125x−32221800

)
z6

−729
(
23090824x2 +532204875x−18375684300

)
,

(5)

with x = ξ . The discriminant of this quadratic equation is a polynomial in x whose division by c(x) has
remainder equal to 0. This means that the only real solution of (5) is r1 = −b/(2a), where a and b are the
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coefficients of z2
6 and z6 in (5), respectively. Substituting x by ξ after applying the polynomial remainder

again we have

r1 =
3
(
2380ξ 2 +21ξ −334440

)
5989

The point (0,r1) is linearly zero, so, we translate it to the origin obtaining the system (P7,Q7) in the variables

(w7,z7).We again persuade this translation considering r1 = r1(x) as a polynomial of x.Again P7 and Q7 will

be polynomials in w7, z7 and x. As before we substitute these polynomials by the remainder of the division

of them by c(x), obtaining polynomials of degree 2 in x. We keep the notation P7 and Q7 for them.

The Newton polygon of this system has only one compact edge contained in the straight line x+y = 1.
The characteristic equation of this system has w7 = 0 as a solution.

As above, we apply (1,1)-blow ups in either the positive w- and z-directions, obtaining the systems

(P8,Q8) and (P
y
8 ,Q

y
8) in the variables (w8,z8) and (w

y
8,z

y
8), respectively. We then study the origin of (Py

8 ,Q
y
8)

and the singularities of (P8,Q8) over the line w8 = 0. The reason is again computational, as the degree of

(Py
8 ,Q

y
8) is 196 and the degree of (P8,Q8) is 128. The first terms of these systems are:

P8 = w8

(
−

6561
(
610023097091x2 −7154910819000x−72219849901200

)
95824

+ · · ·

)
,

Q8 =
59049

4591119488
(
866106385697199684752x2 −63678825997496319079125x

+894244583851567110026100
)
+ · · · ,

with x = ξ , and

Py
8 = w8

(
−2187

2
(404x2 +8325x−54675)+ · · ·

)
,

Qy
8 = z8

(
6561

4
(404x2 +8325x−54675)+ · · ·

)
,

with x = ξ .

System (Py
8 ,Q

y
8) has a saddle at the origin (see the plane wy

8zy
8 in Fig. 5), while the singular points of

(P8,Q8) over the line w8 = 0 are the points (0,z8), with z8 the real roots of

0 = 2295559744
(
404x2 +8325x−54675

)
z2

8 −574944
(
610023097091x2

−7154910819000x−72219849901200
)
z8 +27

(
866106385697199684752x2

−63678825997496319079125x+894244583851567110026100
)
,

with x = ξ . The discriminant of this equation is a polynomial in x whose division by c(x) has remainder 0.
Thus, the only real solution is r2 =−b/(2a), where a and b are the coefficients of z2

8 and z8 of the equation,

respectively. After applying the polynomial remainder, we substitute x by ξ obtaining

r2 =
−38570325688ξ 2 −1361034154573ξ +41691943772820

430417452
.

The point (0,r2) is linearly zero, so, we translate it to the origin obtaining the system (P9,Q9) in the variables

(w9,z9). As before, we make this translation with the parameter x, so that P9 and Q9 are polynomials in x.
Keeping the notation we substitute these polynomials by the remainder of the division of them by c(x).
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As before the Newton polygon of this system has only one compact edge contained in the straight line

x+ y = 1. Moreover, the characteristic equation does not have z9 = 0 as a solution. Here, we just apply

a (1,1)-blow up in the positive z-direction, obtaining system (P10,Q10) in the variables (w10,z10), after

canceling the factor z10 (here we do not use the superscript y as this is the only system in this step). The

degree of this new system is 234, but as we are going to see, just the origin is a singular point in the line

z10 = 0. The first terms of P10 and Q10 are:

P10 = w10

(
−2187

4
(404x2 +8325x−54675)+ · · ·

)
,

Q10 = z10

(
2187

2
(404x2 +8325x−54675)+ · · ·

)
,

with x = ξ .

Now, over the line z10 = 0, the singular points of (P10,Q10) are (0,0) and the points (w10,0), with w10

the real roots of

0 = 27(224799605593831132981000196646508x2

+11060763183198622719418769173796625x

−289048399074933337876985160926408100)w2
10

−1721669808(375535867201456283x2 +10785776535503894250x

−338993606077717260600)w10 +41168707330260512(404x2 +8325x−54675),

with x = ξ . The discriminant of this equation after applying the polynomial remainder is

∆(x) = 42795139080321190650757595864867731660278486158784x2

+2546081344010178238089386481604981090589087283168000x

−63345629158853164845226783632142224359340633182668800.

It is simple to conclude that ∆(ξ ) < 0, thus, only (0,0) is a singular point of (P10,Q10) in z10 = 0. This
singular point is the saddle depicted in the plane w10z10 of Fig. 5.

Since the behavior near each appearing singular points in each step above is very simple, the blow down

of each step is also very simple: following the arrays in Fig. 5, it is easy to conclude that the origin of U2

has a degenerate hyperbolic sector as shown in the w0z0-plane of Fig. 5.

THE GLOBAL PHASE PORTRAIT

We begin with a background on separatrices and canonical regions of the Poincaré compactification p(X )

in the Poincaré disc D of a polynomial system ẋ =X (x). Let ϕ be the flow of p(X ) defined in D. As usual
we denote by (U,ϕ) the flow of p(X ) on an invariant subsetU ⊂D. Two flows (U,ϕ) and (V,ψ) are said

to be topologically equivalent if there exists a homeomorphism h : U → V sending orbits of (U,ϕ) onto

orbits of (V,ψ) preserving or reversing the orientation of all the orbits.

Following Markus (1954), we say that the flow (U,ϕ) is parallel if it is topologically equivalent to

one of the following flows: (i) the flow defined in R2 by the system ẋ = 1, ẏ = 0; (ii) the flow defined in

R2 \{(0,0)} by the system in polar coordinates ṙ = 0, θ̇ = 1; and (iii) the flow defined in R2 \{(0,0)} by
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the system in polar coordinates ṙ = r, θ̇ = 0. Parallel flows topologically equivalent to (i), (ii) and (iii) are
called strip, annular and spiral (or radial), respectively.

We denote by γx the orbit of p(X ) passing through x when t = 0 with maximal interval Ix, and the

positive (resp. negative) orbit of γx by γ+x = {γx(t) | t ∈ Ix and t ≥ 0} (resp. γ−x = {γx(t) | t ∈ Ix and t ≤ 0}).
Then we set a±(x) = γ

±
x \ γ±x , here as usual γ

±
x denotes the closure of γ±x . Observe that a−(x) differs from

α(x) in the case of periodic orbits and singular points: indeed, a−(x) = /0 andα(x) = γx in this case (similarly

for a+(x) and ω(x)). An orbit γx of p(X ) is called a separatrix of p(X ) if it is not contained in an open

neighborhoodU such that (U,ϕ) is parallel and such that both a±(x) = a±(y) for all y∈U andU \U consists

of a+(x), a−(x) and exactly two orbits γy and γz such that a±(x) = a±(y) = a±(z).
If X is a polynomial vector field it is known that the separatrices of p(X ) are (i) the finite and infinite

singular points of p(X ); (ii) the orbits of p(X ) contained in the boundary S1 of D; (iii) the limit cycles of

p(X ); and (iv) the separatrices of the hyperbolic sectors of the finite and infinite singular points of p(X ).

Moreover, if p(X ) has finitely many finite and infinite singular points and finitely many limit cycles, then

p(X ) has finitely many separatrices. We call each connected component of the complement of the union

of separatrices a canonical region of p(X ). Neumann (1975) proved that each canonical region of a vector

field p(X ) is parallel.

To the union of the separatrices of p(X ) together with an orbit belonging to each canonical region

of p(X ) we call a separatrix configuration of p(X ). We say that the separatrix configurations S1 and S2

of p(X1) and p(X2) are topologically equivalent if there exists an orientation preserving homeomorphism

from D to D which transforms orbits of S1 onto orbits of S2. The following is the Markus-Neumann-Peixoto

classification theorem (Markus 1954, Neumann 1975, Neumann andO’Brien 1976, Peixoto 1973, Dumortier

et al. 2006) for the Poincaré compactification in the Poincaré disc of polynomial systems.

Theorem 5 (Markus-Neumann-Peixoto). Let p(X1) and p(X2) be the Poincaré compactification of two

polynomial systems ẋ =X1(x) and ẋ =X2(x), respectively. The flows of p(X1) and p(X2) on the Poincaré

disc are topological equivalent if and only if the separatrix configurations of p(X1) and p(X2) are

topological equivalent.

Hence, in order to qualitatively describe the phase portrait on the Poincaré disc of system (1) it is enough

to qualitatively describe its separatrix configuration. This was done in Fig. 1, where we have drawn the

separatrices other than singular points with bold lines. The other lines are orbits contained in its respective

canonical regions. We observe from Fig. 1 that system (1) has 15 separatrices, five of them singular points,

and 7 canonical regions, six of them of type strip and the one formed by the closed orbits surrounding z0,

annular.

Below, we prove Theorem 3 by proving that Fig. 1 is a separatrix configuration of system (1).

From the previous sections we conclude that close enough to the singular points, the phase portrait

of system (1) is qualitatively the one presented in Fig. 6. For further references we label the hyperbolic,

parabolic and elliptic sectors presenting in the origins of the charts U1 and V1 in Fig. 6 as h1, h2, h3, h4, p1,

p2 and e1, e2, respectively.

From the definition of system (1), each of its orbits is a connected component of a level set of HF =

(p2 + q2)/2 (because the only singular point of this system is the center z0), which in turn is the inverse

image under F = (p,q) of circles surrounding the point (0,0). Since F preserves orientation (because the

Jacobian determinant of F is positive), each orbit of (1) is carried onto a curve contained in a circle with
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Figure 6 - The phase portrait of system (1) near the singular points.

counterclockwise orientation. As we have seen, the curve β (s) defined in (3) is the asymptotic variety of F .
Moreover, the points β (0) = (−1,−995/4) and β (1) = (0,208) of this curve have no inverse image under

F , all the other points of this curve have exactly one inverse image and the other points of R2 have precisely

two inverse images. Acting as Campbell (arXiv:math/9812032 1998), we delete from the curve β (s) the
points β (0) and β (1), obtaining three curves:C1 = β (−∞,0),C2 = β (0,1) andC3 = β (1,∞). According to

Campbell (1998), the inverse image under F of each Ci is a curve that divides the plane into two connected

components.We callDi the inverse image ofCi, i= 1,2,3. The setD1∪D2∪D3 is called by Campbell (1998)

the asymptotic flower of F . It follows that R2 \ (D1 ∪D2 ∪D3) is formed by 4 connected components, each

of them mapped twice onto each of the two connected components of R2 \ {β (s)}. Each curve Ci has a

natural orientation, given by its parametrization (it is the opposite orientation used by Campbell (1998)).

So, each curve Di also has a natural orientation (recall that F preserves orientation). The graphics of Ci and

Di, i = 1,2,3, are given in (a) and (b) of Fig. 7, respectively. As in (Campbell 1998, 2011) the axes in (a)

have different scales. Following Campbell (1998), we label the regions as R (right) and L (left) of the curves

Ci and Di.
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Figure 7 - The asymptotic variety of F in (a) and the asymptotic flower of F in (b).
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Since for each s ∈ R

β
′(s) ·β (s) = 1

4
(1− s)s(s+1)

(
112500s6 −232875s5 +301125s4 −425760s3

+432312s2 −86565s+116423
)
,

and this polynomial of degree 6 multiplying (1− s)s(s+1) has no real zeros by Sturm’s theorem, it follows

that the curvesC1,C2 andC3 are transversal to the circles centered at (0,0) = β (−1). As a consequence the
curves D1, D2 and D3 are transversal to the non-singular orbits of system (1). In particular, the image of a

non-periodic orbit of system (1) has α- and ω-limits contained in the curve β (s). Below, we will say that the
image of an orbit starts or finishes at β (s0) meaning that its α- or ω-limit is β (s0), respectively. Moreover,

through each point in the intersection of C1 ∪C2 ∪C3 with a circle, it crosses exactly one image of an orbit

of system (1).

We call S1 and S2 the circles centered at (0,0) and containing the points β (1) and β (0), respectively.
The point z0, being the inverse image under F of (0,0) = β (−1), is contained in the curve D1. The

images under F of the closed orbits surrounding z0 are circles surrounding (0,0) contained in the bounded
region defined by S1. Thus the boundary of the period annulus of the center z0 corresponds to the arc of

circle contained in S1, starting and finishing at the point β (1). This means that the boundary of the period

annulus is an orbit that goes to infinity through the region labeled by L in (b) of Fig. 7. In particular, in the

Poincaré disc, this orbit tends to the origin of the chartV1. Then, analyzing the possibilities in Fig. 6, we see

that this orbit contains the two separatrices of the hyperbolic sector h2. This period annulus is an annular

canonical region.

Now we analyze the parabolic sectors p1 and p2.

Close to the two points ofD1 cut by the orbit giving the boundary of the period annulus of the center (i.e.,

the orbit connecting the two separatrices of the hyperbolic sector h2), and outside the period annulus, there

must exist orbits cutting D1. Analyzing the images of these orbits, they are contained in circles surrounding

the circle S1. So, there are two possibilities for the images of these orbits: either they are arcs starting and

finishing at a point of the curve C2, or they are arcs starting at the curve C3 and finishing at the curve C2 or

C3. At a first glance both of these possibilities are compatible with the parabolic sectors p1 and p2 in Fig.

6. We claim that the correct possibility is the first one. Indeed, we can increase the radii of these circles

containing the images of the orbits of p1 and p2 until we achieve the circle S2. If we are in the second

possibility, the orbit whose image is contained in S2 and starts at a point ofC3 will contain the separatrice of

the end of the parabolic sector p2. But, this orbit will not contain the separatrice of the end of the parabolic

sector p1, because we can continue drawing arcs starting atC3 with radii bigger than the radius of S2. Thus,

the parabolic sector p1 will not finish, a contradiction with the nature of the vector field at the origin of the

chart V1, as shown in Fig. 6. This proves the claim.

So, the image of the orbits of the parabolic sectors p1 and p2 are arcs starting and finishing at a point

of the curve C2. And since we can continue drawing these arcs until we arrive at circle S2, this means that

the parabolic sectors p1 and p2 are connected, and the image of the orbit containing the separatrices that

separate p1 from h1 and p2 from h3 is contained in the arc of S2 starting and finishing at the point β (0). The
region connecting p1 to p2 is a strip canonical region, see Fig. 1.

Now, since the image of this last orbit cuts the curves C3 and C1, there must exist orbits near it whose

images crossC3 andC1. The only possibility is that those images are arcs of circles starting at the curveC1,
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rotating a complete turn crossingC3 andC1 and continue up to finishing in the curveC3. We call these orbits

the big orbits. A big orbit whose image is contained in a circle close enough to S2 enters both the hyperbolic

sectors h1 and h3. We have to see where the big orbits start and finish.

The orbits whose images are arcs of the circles with radii smaller than the radius of S2, starting and

finishing at C1 and contained in the region R correspond to an elliptic sector with boundary formed by an

orbit having image contained in the arc of S2 starting at C1 an finishing at β (0). Close to this boundary and
out of the elliptic sector there must exist orbits whose images start at C1. These orbits are the big orbits.

Hence, it follows that this elliptic sector is e1 and that the big orbits start at the origin of V1, see Fig. 1.

The orbits whose images are arcs starting and finishing at C1 and contained in the region L form the

elliptic sector e2. Clearly its boundary is formed by the two orbits containing the separatrices of the hyper-

bolic sector h4. The image of these orbits are the arcs starting atC1 and finishing at β (1) and starting at β (1)
and finishing at C1, respectively.

In particular, this means that the big orbits must finish at the origin of the chartU1, below the hyperbolic

sector h4. Since their images are contained in the circles bigger than S2, there exist orbits whose images are

arcs contained in the circles between S1 and S2, starting at C1, crossing C2 and finishing at C3. These orbits

produce a parabolic sector between h3 and e2, and give rise to a strip canonical region as presented in Fig. 1.

The big orbits also produce a strip canonical region.

The orbits of the strip canonical region placed above the hyperbolic sector h4 have their images

contained in arcs of circles with radii bigger than the radius of S1, starting at C3 and finishing at C1.

The elliptic sectors e1 and e2 form another two strip canonical regions.

Hence we have 7 canonical regions, six of them are strip and one is annular. Analyzing Fig. 1, we

see there are 6 finite orbits that are separatrices. The infinite has another 4 orbits. Hence, since there are 5
singular points, we have 15 separatrices in the separatrix configuration of system (1) in the Poincaré disc.
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