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ABSTRACT

We propose a new lifetime model called the exponentiated power generalized Weibull (EPGW) distribu-

tion, which is obtained from the exponentiated family applied to the power generalized Weibull (PGW)

distribution. It can also be derived from a power transform on an exponentiated Nadarajah-Haghighi ran-

dom variable. Since several structural properties of the PGW distribution have not been studied, they can be

obtained from those of the EPGW distribution. The model is very flexible for modeling all common types

of hazard rate functions. It is a very competitive model to the well-known Weibull, exponentiated expo-

nential and exponentiated Weibull distributions, among others. We also give a physical motivation for the

new distribution if the power parameter is an integer. Some of its mathematical properties are investigated.

We discuss estimation of the model parameters by maximum likelihood and provide two applications to

real data. A simulation study is performed in order to examine the accuracy of the maximum likelihood

estimators of the model parameters.

Key words: Exponential distribution, lifetime data, Nadarajah-Haghighi distribution, power generalized

Weibull distribution, survival function.

1 - INTRODUCTION

There has been an increased interest in defining new continuous distributions by adding shape parameters

to an existing baseline model. One of the most widely-accepted methods on this parameter induction is the

exponentiated-G (exp-G) class. Let G(y) and g(y) be the baseline cumulative distribution function (cdf) and

the probability density function (pdf) of a random variable W , respectively. We obtain the exp-G cdf by
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raising G(y) to a positive power shape parameter to the baseline model. Thus, a random variable Y has an

exp-G distribution if its cdf is given by

F(y) = G(y)β ,

for y ∈ D ⊆ R, where β > 0 represents the additional parameter. The corresponding pdf is given by

f (y) = β g(x)G(y)β−1.

Tahir and Nadarajah (2015) traced this approach back to the first half of the nineteenth century and found

twenty-eight different exp-G models published in recent literature. Most of these models are motivated by

their usefulness in exploring tail properties and also for improving the goodness-of-fit in comparison with

their baselines. Another current reason for introducing exp-G distributions is their applications in lifetime

data analysis.

Thus, the classical lifetime distributions have received a great deal of attention as baselines on the exp-G

class, among other generated families. Using the exponential lifetime model as baseline, Gupta et al. (1998)

pioneered the exponentiated exponential (EE) distribution.

The exponentiated Weibull (EW) distribution was introduced by ?.

Another model that has been considered for modeling lifetime data is the Nadarajah-Haghighi (NH) dis-

tribution pioneered by Nadarajah and Haghighi (2011). The NHmodel is a generalization of the exponential

distribution with cdf given by (for z > 0)

G(z) = 1− exp{1− (1+λ z)α}, (1)

where λ and α are the scale and shape parameters, respectively. If Z has the cdf (1), we write Z ∼NH(α,λ ).

The pdf of Z is given by

g(z) = αλ (1+λ z)α−1 exp{1− (1+λ z)α}. (2)

The motivations for studying the NHmodel are: the relationship between the pdf (2) and its hazard rate func-

tion (hrf), the ability (or inability) to model data with mode fixed at zero and the fact that it can be interpreted

as a truncated Weibull distribution. Further details and general properties can be found in Nadarajah and

Haghighi (2011). The exponentiated Nadarajah-Haghighi (ENH) model was proposed by Lemonte (2013).

The exponential, NH and Weibull distributions are all special cases of the power generalized Weibull

(PGW) distribution proposed by Bagdonavicius and Nikulin (2002) in the context of accelerated failure time

models. The original PGW cdf is given by (for t > 0)

G(t) = 1− e1−
[
1+
( t

σ

)β
] 1

γ

,

where σ ,β and γ > 0. By setting λ = σ−β and α = γ−1, the cdf, pdf and hrf of this distribution reduce to

G(t) = 1− exp{1− (1+λ tγ)α}, (3)

g(t) = αλγtγ−1(1+λ tγ)α−1 exp{1− (1+λ tγ)α} (4)

and

h(t) = αλγtγ−1(1+λ tγ)α−1,
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respectively. Dimitrakopoulou et al. (2007) presented a lifetime model that has the same formulation as that

one in (3) with motivation in competing risk scenario. Lai (2013) described the PGW among the Weibull

generalizations that are often required to prescribe the nonmonotonic nature of the empirical hazard rates.

Nikulin and Haghighi (2006) introduced a chi-square statistic for testing the validity of the PGW dis-

tribution and presented an application to censored survival times of cancer patients. Nikulin and Haghighi

(2009) presented shape analysis for the PGW pdf and hrf. They also obtained a series representation for the

sth moment of this distribution, but only for integer values of s/γ . They do not provide a general expression

for the PGW ordinary moments. We also note that there is a lack of other structural properties of the PGW

distribution like incomplete moments, skewness, mean deviations, Bonferroni and Lorenz curves and Rényi

entropy.

In this paper, we use the concept of exponentiated distributions for introducing a new four-parameter

Weibull-type family, so-called the exponentiated power generalized Weibull (EPGW) distribution. The pro-

posed distribution is obtained by considering the PGW model as baseline in the exp-G family. Thus, the

EPGW cdf and pdf are given by (for t > 0)

F(t) = [1− exp{1− (1+λ tγ)α}]β , (5)

and

f (t) = αβλγtγ−1 (1+λ tγ)α−1 exp{1− (1+λ tγ)α}
[1− exp{1− (1+λ tγ)α}]1−β

, (6)

respectively. Here, λ is the scale parameter and γ , α and β are shape parameters. Henceforth, we denote by

T a random variable having pdf (6), say T ∼ EPGW(α,β ,λ ,γ). Identifiability is a property which a model

must satisfy for precise inference to be possible, which refers to whether the unknown parameters in the

model can be uniquely estimated. Equation (5) is clearly identifiable.

The hrf of T is given by

h(t) =αβλγtγ−1(1+λ tγ)α−1

× exp{1− (1+λ tγ)α} [1− exp{1− (1+λ tγ)α}]β−1

1− [1− exp{1− (1+λ tγ)α}]β
. (7)

By inverting (5), we obtain an explicit expression for the quantile function (qf) of the EPGW distribution,

say Q(u), given by

Q(u) = λ
−1/γ

{[
1− log(1−u1/β )

]1/α

−1
}1/γ

, u ∈ (0,1). (8)

Its median M follows by setting u = 1/2 in (8). The simulation of the EPGW random variable is straight-

forward. If U ∼U (0,1), then the random variable T = Q(U) follows the EPGW distribution given by

(6).

Some motivations for introducing the EPGW distribution are:

• The new distribution is quite flexible because it contains several well-known lifetime distributions

as special models, see Table I. This feature is also suitable for testing the goodness-of-fit of these

distributions.
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TABLE I

Some special models of the EPGW distribution.

α β λ γ Distribution

1 1 - 1 Exponential

1 - - 1 Exponentiated exponential

1 1 - 2 Rayleigh

1 - - 2 Burr type X

1 1 - - Weibull

1 - - - Exponentiated Weibull

- 1 - 1 Nadarajah-Haghighi

- - - 1 Exponentiated Nadarajah-Haghighi

- 1 - - Power generalized Weibull

• The current distribution can also be derived from a power transform on an ENH random variable. If

Y ∼ENH(α,β ,λ ), the cdf of Y is given by

FY (y) = [1− exp{1− (1+λy)α}]β , y > 0,

where α > 0, β > 0 and λ > 0. Consider the transformation T = Y 1/γ , where γ > 0. Thus, the cdf
of T has the form F(t) = FY (tγ) given by (5). A similar approach was addressed by Gomes et al.

(2008). They proposed a new method of estimation for the generalized gamma distribution through

the power transformation W = Xc, where X is a generalized gamma random variable and W has the

gamma distribution.

• Once several structural properties of the PGWdistribution have not been studied, they shall be obtained

from those of the EPGW distribution.

• By pioneering a PGW generalization of the exp-G family, it is also possible to obtain several proper-

ties of other generated families based on linear combinations from those of the EPGW distribution.

For example, for the beta-G famil (Eugene et al. 2002), the density function can be expressed as a

linear combination of exp-G pdfs for any baseline G. Similar results can also be demonstrated for the

Kumaraswamy-G introduced by Cordeiro and Castro (2011), among several others generated families

of distributions.

• Let β > 0 be an integer. Thus, F(t) given in (5) represents the cdf of the maximum value on a β -variate

random sample from the PGW distribution, say: T = max{T1, . . . ,Tβ}. In other words, the EPGW

distribution can be used tomodel themaximum lifetime of a random sample from the PGWdistribution

with size β . Further, as part of the exp-G family, the EPGW distribution has the following physical

interpretation. Consider a parallel system consisting of β = n components, whichmeans that the system

works if at least one of the n-components works. If the lifetime distributions of the components are

independent and identically distributed PGW random variables, then the lifetime distribution of the

system becomes the EPGW cdf with power parameter β = n.
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• The EPGWmay provide consistently ‘better fits’ than other Weibull generalizations including its spe-

cial models. This fact is shown by fitting the proposed distribution to two data sets in Section 13. The

applications illustrate that the EPGW distribution can also be very competitive to other widely known

lifetime models.

The paper is outlined as follows. Some mathematical properties of the new distribution are provided

in Sections 3-10. They include ordinary and incomplete moments, mean deviations about the mean and

the median, Bonferroni and Lorenz curves, Rényi entropy, reliability and order statistics. In Section 11, we

present the maximum likelihood method to estimate the model parameters. In Section 12, a simulation study

evaluates the performance of the maximum likelihood estimators (MLEs). Applications to two real data sets

are presented in Section 13. Section 14 offers some concluding remarks.

2 - DENSITYAND HAZARD SHAPES

Note that the pdf (6) can be expressed in terms of the cdf and pdf given in (3) and (4), respectively, in the

form f (t) = βG(t)β−1g(t). Thus, the multiplicative factor βG(t)β−1 is greater (smaller) than one for β > 1
(β < 1) and for larger values of t, and the opposite occurs for smaller values of t. The inclusion of the extra
shape parameter β provides greater flexibility in terms of skewness and kurtosis of the new distribution.

The pdf (6) can take various forms depending on the values of the shape parameters α,β and γ . It is easy to

verify that

lim
t→0

f (t) =


∞ if β < 1,

αλγ if β = 1,

0 if β > 1,

and limt→∞ f (t) = 0.
Seting z = (1+λ tγ)α , we can rewrite the EPGW pdf as

ψ(z) = αβλ
1/γ

γ z(α−1)/α(z1/α −1)(γ−1)/γe1−z(1− e1−z)β−1.

Differentiating twice logψ(z) with respect to z, we obtain

d2 logψ(z)
dz2 =−

[
α −1
αz2 +

(β −1)e1−z

(1− e1−z)2 +
z

1
α
−2(γ −1)

[
1+α

(
z1/α −1

)]
α2 γ

(
z1/α −1

)2

]
.

Note that z = (1+λ tγ)α implies that z > 1. Thus, we can verify that for t > 0, α < 1, β < 1 and γ < 1,
[d2 logψ(z)/dz2] > 0. This implies that the EPGW pdf is log-convex. Further, for t > 0, α > 1, β > 1 and

γ > 1, [d2 logψ(z)/dz2]< 0, which implies that the EPGW pdf is log-concave. Figure 1 displays plots of the

pdf (6) for some parameter values. It illustrates the flexibility of the EPGW density, which allows modeling

skewed and asymmetrical data.

Analogously, the EPGW hrf can be rewritten as

φ(z) = αβλ
1/γ

γ z(α−1)/α(z1/α −1)(γ−1)/γ e1−z(1− e1−z)−1

(1− e1−z)−β −1
.

The critical point are obtained from

dlogφ(z)
dz

=
α −1

αz
+

(γ −1)z(1−α)/α

αγ (z1/α −1)
+

βe1−z

(1− e1−z)[1− (1− e1−z)β ]
− e1−z

1− e1−z −1 = 0.
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Figure 1 - Plots of the EPGW density for λ = 1 .

For α = β = γ = 1, dlogφ(z)/dz = 0 and the hrf is constant. For α < 1, γ < 1 and β < 1, dlogφ(z)/dz < 0
and the hrf is decreasing. There may be more than one root to this equation.

Figure 2 provides plots of the hrf (7) for some parameter values. Figure 2 reveals that the EPGW distri-

bution can have decreasing, increasing, upside-down bathtub and bathtub-shaped hazard functions. This fea-

ture makes the new distribution very attractive to model lifetime data. For example, according to Nadarajah

et al. (2011) most empirical life systems have bathtub shapes for their hrfs.

3 - MOMENTS

The sth ordinary moment of T is obtained asE(T s) =
∫

∞

0 ts f (t)dt, with f (t) from (6). For illustrative pur-

poses, we provide a small numerical study by computing the first six moments for some scenarios. Each one

considers a different parametrization for γ and β , with fixed α = 1.5 and λ = 1.
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Figure 2 - Plots of the EPGW hrf for λ = 1.

These results are presented in Table II. All computations are obtained using R software, which have

numerical integration routines with great precision. Based on these values, we can note that, for fixed γ ,

the additional parameter β has large impact on the moments of T . Note that the moments increase as β

increases. For β fixed and ≤ 1, the moments decreases when γ increases.

The sth moment of T can also be determined from equation (8). After some algebra, we can write

µ
′
s = IE(T s) = βλ

−s/γ Is(α,β ,γ),

where Is(α,β ,γ) =
∫ 1

0 {[1− log(1−u)]1/α −1}s/γuβ−1du is an integral to be evaluated numerically.

Using the binomial expansion since 0 < e1−(1+λ tγ )α

< 1, the inverse of the denominator of (6) can be

expressed as

[1− exp{1− (1+λ tγ)α}]β−1 =
∞

∑
j=0

(−1) j
(

β −1
j

)
e j[1−(1+λ tγ )α ].
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Further, we can rewrite µ ′
s as

µ
′
s = αβλγ

∞

∑
j=0

(−1) j
(

β −1
j

)
e j+1

∫
∞

0
ts+γ−1(1+λ tγ)α−1e−( j+1)(1+λ tγ )α

dt. (9)

We consider the integral

J =
∫

∞

0
ts+γ−1(1+λ tγ)α−1 e−( j+1)(1+λ tγ )α

dt.

Setting u = ( j+1)(1+λ tγ)α , we have

t =

{
λ
−1

[(
u

j+1

)1/α

−1

]}1/γ

.

Hence, after some algebra, we obtain

J =

(
1
λ

)s/γ ∫ ∞

j+1

[(
u

j+1

)1/α

−1

]s/γ

e−u

αλγ( j+1)
du. (10)

The most general case of the binomial theorem is the power series identity

(x+a)ν =
∞

∑
k=0

(
ν

k

)
xk aν−k, (11)

where
(

ν

k

)
is a binomial coefficient and ν is a real number. This power series converges for ν ≥ 0 an in-

teger, or |x/a| < 1. This general form is given by Graham (1994). By using (11) in equation (10), since∣∣[u/( j+1)]1/α
∣∣< 1, it follows from (9) that

µ
′
s = βλ

−s/γ
∞

∑
i, j=0

(−1)i+ j e j+1

( j+1)[s−γ(i−α)]/αγ

(
β −1

j

)(
s/γ

i

)
Γ

(
s− γ(i−α)

αγ
, j+1

)
, (12)

where Γ(a,x) =
∫

∞

x za−1 e−zdz denotes the complementary incomplete gamma function, which is defined for

all real numbers except the negative integers. Equation (12) is the main result of this section.

4 - SKEWNESS

The central moments (µs) and cumulants (κs) of T can be expressed recursively from equation (12) as

µs =
s

∑
k=0

(−1)k
(

s
k

)
µ
′k
1 µ

′
s−k and κs =

s−1

∑
k=0

(
s−1
k−1

)
κk µ

′
s−k,

respectively, where κ1 = µ ′
1. Thus, κ2 = µ ′

2 −µ ′2
1 ,κ3 = µ ′

3 −3µ ′
2µ ′

1+2µ ′3
1 , etc. The skewness γ1 = κ3/κ

3/2
2

and kurtosis γ2 = κ4/κ2
2 can be determined from the third and fourth standardized cumulants.

The MacGillivray (1986) skewness function of T is given by

ρ(u) = ρ(u;α,β ,γ) =
ρ(1)(u;α,β ,γ)

ρ(2)(u;α,β ,)
=

Q(1−u)+Q(u)−2Q(1/2)
Q(1−u)−Q(u)

,
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TABLE II

First six moments for some scenarios of γ and β , with fixed α = 1.5 and λ = 1.

γ β E(T ) E(T 2) E(T 3) E(T 4) E(T 5) E(T 6)

0.5

0.5 0.2989 0.6249 2.7433 19.2657 191.2419 2498.7853

0.8 0.4488 0.9827 4.3653 30.7679 305.7880 3997.1257

1.0 0.5397 1.2149 5.4372 38.4129 382.0702 4995.6341

2.0 0.9176 2.3100 10.6904 76.3690 762.5177 9983.6001

3.0 1.2116 3.3145 15.7832 113.8992 1141.4011 14964.0482

4.0 1.4537 4.2472 20.7336 151.0300 1518.7741 19937.1200

0.8

0.5 0.3162 0.3259 0.5425 1.2207 3.4227 11.4158

0.8 0.4515 0.4986 0.8507 1.9344 5.4503 18.2210

1.0 0.5278 0.6062 1.0498 2.4030 6.7917 22.7400

2.0 0.8109 1.0755 1.9810 4.6677 13.3819 45.1295

3.0 1.0030 1.4633 2.8250 6.8184 19.7945 67.1961

4.0 1.1481 1.7964 3.6014 8.8727 26.0480 88.9632

1.0

0.5 0.3450 0.2989 0.3824 0.6249 1.2207 2.7433

0.8 0.4789 0.4488 0.5924 0.9827 1.9344 4.3653

1.0 0.5517 0.5397 0.7257 1.2149 2.4030 5.4372

2.0 0.8066 0.9176 1.3275 2.3100 4.6677 10.6904

3.0 0.9688 1.2116 1.8477 3.3145 6.8184 15.7832

4.0 1.0868 1.4537 2.3092 4.2472 8.8727 20.7336

2.0

0.5 0.4818 0.3450 0.3012 0.2989 0.3259 0.3824

0.8 0.6092 0.4789 0.4391 0.4488 0.4986 0.5924

1.0 0.6702 0.5517 0.5194 0.5397 0.6062 0.7257

2.0 0.8518 0.8066 0.8308 0.9176 1.0755 1.3275

3.0 0.9488 0.9688 1.0538 1.2116 1.4633 1.8477

4.0 1.0129 1.0868 1.2278 1.4537 1.7964 2.3092

3.0

0.5 0.5773 0.4186 0.3450 0.3099 0.2968 0.2989

0.8 0.6929 0.5504 0.4789 0.4459 0.4377 0.4488

1.0 0.7445 0.6168 0.5517 0.5234 0.5210 0.5397

2.0 0.8868 0.8277 0.8066 0.8158 0.8527 0.9176

3.0 0.9571 0.9482 0.9688 1.0181 1.0976 1.2116

4.0 1.0018 1.0306 1.0868 1.1725 1.2925 1.4537

4.0

0.5 0.6440 0.4818 0.3950 0.3450 0.3162 0.3012

0.8 0.7478 0.6092 0.5276 0.4789 0.4515 0.4391

1.0 0.7922 0.6702 0.5961 0.5517 0.5278 0.5194

2.0 0.9091 0.8518 0.8193 0.8066 0.8109 0.8308

3.0 0.9644 0.9488 0.9507 0.9688 1.0030 1.0538

4.0 0.9987 1.0129 1.0420 1.0868 1.1481 1.2278
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where u ∈ (0, 1), Q(·) is the qf defined in (8),

ρ(1)(u;α,β ,γ) =

{[
1− log(1− (1−u)1/β )

]1/α

−1
}1/γ

+

{[
1− log(1−u1/β )

]1/α

−1
}1/γ

− 2
{[

1+β
−1 log(2)− log(21/β −1)

]1/α

−1
}1/γ

and

ρ(2)(u;α,β ,γ) =

{[
1− log(1− (1−u)1/β )

]1/α

−1
}1/γ

−
{[

1− log(1−u1/β )
]1/α

−1
}1/γ

.

It is based on quantiles and can illustrate the effects of the shape parameters α , β and γ on the skewness

of T . Plots of ρ(u) for some parameter values are displayed in Figure 3. These plots reveal that when the

parameters β and γ increase, the function ρ(u) converges to zero. The closer ρ(u) is to the horizontal line
ρ(u) = 0, the density becomes more symmetrical. The quantity ρ(u) does not depend on the parameter λ

since it is a scale parameter.

5 - INCOMPLETE MOMENTS

The sth incomplete moment of T , say ms(y) =
∫ y

0 ts f (t)dt, follows as

ms(y) = βλ
−s/γ

∫ 1−e1−(1+λyγ )α

0
{[1− log(1−u)]1/α −1}s/γuβ−1du.

An alternative expression for ms(y) takes the form

ms(y) = βλ
−s/γ

∞

∑
i, j=0

(−1)i+ j e j+1

( j+1)[s−γ(i−α)]/αγ

(
β −1

j

)(
s/γ

i

)[
Γ

(
s− γ(i−α)

αγ
, j+1

)
−Γ

(
s− γ(i−α)

αγ
, ( j+1)(1+λ yγ)α

)]
.

6 - MEAN DEVIATIONS

The mean deviations about the mean (δ1 = IE(|T −µ ′
1|)) and about the median (δ2 = IE(|T −M|)) of T can

be expressed as

δ1 = 2µ
′
1F(µ ′

1)−2m1(µ
′
1) and δ2 = µ

′
1 −2m1(M),

respectively, where µ ′
1 = IE(T ), M = Median(T ) = Q(0.5) is the median, F(µ ′

1) is easily determined

from (5) and m1(y) =
∫ y

0 t f (t)dt is the first incomplete moment. Hence, we can write

m1(y) = βλ
−1/γ

∫ 1−e1−(1+λyγ )α

0
{[1− log(1−u)]1/α −1}1/γuβ−1du.
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Figure 3 - The MacGillivray’s skewness of the EPGW distribution.

Alternatively, we can determine m1(y) as

m1(y) = βλ
−1/γ

∞

∑
i, j=0

(−1)i+ j e j+1

( j+1)[1−γ(i−α)]/αγ

(
β −1

j

)(
1/γ

i

)[
Γ

(
1− γ(i−α)

αγ
, j+1

)
−Γ

(
1− γ(i−α)

αγ
, ( j+1)(1+λ yγ)α

)]
.

7 - BONFERRONI AND LORENZ CURVES

Applications of the previous results to the Bonferroni and Lorenz curves are important in several fields such

as economics, demography, insurance and medicine. They are defined, for a given probability π , by B(π) =
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m1(q)/(πµ ′
1) and L(π) = m1(q)/µ ′

1, respectively, where q = Q(π) follows from (8). The Gini concentration

(CG) is defined as the area between the curve L(π) and the straight line. Hence,

CG = 1−2
∫ 1

0
L(π)du.

An alternative expression is CG = (2δ −µ ′
1)/µ ′

1, where δ = IE[T F(T )]. The quantity δ is given by

δ =βλ
−1/γ

∫ 1

0
u2β−1{[1− log(1−u)]1/α −1}1/γdu.

This integral can be easily evaluated numerically in softwares such as R and Ox, among others.An alternative

expression for δ takes the form

δ =βλ
−1/γ

∞

∑
i, j=0

(−1)i+ j e j+1

( j+1)[1−γ(i−α)]/αγ

(
2β −1

j

)(
1/γ

i

)
×Γ

(
1− γ(i−α)

αγ
, j+1

)
.

For γ = 1, we can prove that this expression reduces to that one obtained by Lemonte (2013).

8 - ENTROPY

The entropy of a random variable is a measure of variation of the uncertainty and has been used in many

fields. Several measures of entropy have been studied in the literature. However, we consider the most

popular entropy measure: the Rényi entropy of a random variable with pdf f (x) defined by

IR = IR(δ ) =
1

1−δ
log
[∫

∞

−∞

f δ (x)
]

dx,

for δ > 0 and δ 6= 1. The Rényi entropy of T can be expressed as

IR = M+
1

1−δ
log

(∫
∞

1

uα−1(α−1)(δ−1)(u1/α −1)γ−1(γ−1)(δ−1)eδ (1−u)

[1− e1−u]δ (1−β )
du

)
,

where M =− log(αγλ γ)+ δ

1−δ
log(β ). The above integral can be evaluated numerically. By expanding the

inverse of the denominator using the binomial expansion, we obtain

IR = M+
1

1−δ
log

[
∞

∑
j=0

(−1) jeδ+ j
(

δ (β −1)
j

)
×

(∫
∞

1
uα−1(α−1)(δ−1)(u1/α −1)γ−1(γ−1)(δ−1)e−u(δ+ j)du

)]
.

Again, by using the binomial expansion, IR can be expressed as

IR = M+
1

1−δ
log

[
∞

∑
j,k=0

(−1) j+keδ+ j

( j+δ )[δ (γα−1)+1]/γα

×
(

δ (β −1)
j

)(
(γ −1)(δ −1)/γ

k

)
Γ

(
δ (γα −1)+1

γα
, j+δ

)]
.

For γ = 1, the last expression agrees with the result by Lemonte (2013).
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9 - STRESS-STRENGTH RELIABILITY

The stress-strength reliability, defined as R = P(X >Y ), is a measure that describes the life of a component

with a random strength X , which is subjected to a random stress Y . The failure occurs if the stress applied to
the component exceeds the strength, i.e.Y >X , otherwise it will function satisfactorily. Clearly, this measure

is very useful in engineering context such as deterioration of rocket motors and the aging of concrete pressure

vessels.

Let X and Y be two independent random variables with EPGW(α,β1,λ ,γ) and EPGW(α,β2,λ ,γ)

distributions, respectively. We shall obtain the stress–strength parameter in the form

R = αβ1λγ

∫
∞

0

tγ−1(1+λ tγ)α−1 exp{1− (1+λ tγ)α}
[1− exp{1− (1+λ tγ)α}]1−β1−β2

dt.

Thus, by taking u = 1− exp{1− (1+λ tγ)α}, the above integral can be reduced to

R = β1

∫ 1

0
uβ2+β1−1du =

β1

β1 +β2
.

10 - ORDER STATISTICS

Let T1, · · · ,Tn be a random sample from the EPGW distribution. Let Ti:n denote the ith order statistic. The

probability density function of Ti:n is

fi:n(t) =
1

B(i,n− i+1)

n−i

∑
j=0

(−1) j
(

n− i
j

)
f (t)F(t)i+ j−1. (13)

By inserting (5) and (6) in (13) and after some algebra, we obtain

fi:n(t) =
1

B(i,n− i+1)

n−i

∑
j=0

(−1) j
(

n− i
j

)
αβλγtγ−1 (1+λ tγ)α−1 exp{1− (1+λ tγ)α}

[1− exp{1− (1+λ tγ)α}]1−(i+ j)β
.

Thus, we can write

fi:n(t) =
n−i

∑
j=0

υi j f (t;α,(i+ j)β ,λ ,γ), (14)

where

υi j =
(−1) j

(i+ j)B(i,n− i+1)

(
n− i

j

)
,

f (t;α,(i+ j)β ,λ ,γ) is the EPGW density function with scale parameter λ and shape parameters γ , α and

(i + j)β . Equation (14) is the main result of this section. Based on this, we can obtain some structural

properties of Ti:n using similar procedures as presented in the previous sections.
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11 - MAXIMUM LIKELIHOOD ESTIMATION

This section addresses the estimation of the unknown parameters of the EPGW distribution by the method

of maximum likelihood. Let t1, . . . , tn be a random sample of size n from the EPGW(α,β ,λ ,γ) distribution.

Let θ = (α,β ,λ ,γ)T be the parameter vector of interest. The log-likelihood function for θ based on this

sample is

`(θ) = n+n log(α β λ γ)+(γ −1)
n

∑
i=1

log(ti)−
n

∑
i=1

(
1+λ tγ

i

)α
(15)

+ (α −1)
n

∑
i=1

log
(
1+λ tγ

i

)
+(β −1)

n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]
.

The components of the score vector U(θ) are given by

Uα(θ) =
n
α
+

n

∑
i=1

log
(
1+λ tγ

i

)
−

n

∑
i=1

(
1+λ tγ

i

)α log
(
1+λ tγ

i

)
+(β −1)

n

∑
i=1

(
1+λ tγ

i

)α log
(
1+λ tγ

i

)
e1−

(
1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α ,Uβ (θ) =
n
β
+

n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]
,

Uλ (θ) =
n
λ
+(α −1)

n

∑
i=1

tγ

i

(
1+λ tγ

i

)−1 −α

n

∑
i=1

tγ

i

(
1+λ tγ

i

)α−1

+α (β −1)
n

∑
i=1

tγ

i

(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α ,

and

Uγ(θ) =
n
γ
+

n

∑
i=1

log(ti)−αλ

n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)α−1

+λ (α −1)
n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)−1

+λα (β −1)
n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α .

Setting the above equations to zero,U(θ)= 0, and solving them simultaneously yields theMLEs of the four

parameters. These equations cannot be solved analytically. We have to use iterative techniques such as the

quasi-Newton BFGS and Newton-Raphson algorithms. The initial values for the parameters are important

but are not hard to obtain from fitting special EPGW sub-models.

Note that, for fixed α , λ and γ , the MLE of β is given by

β̂ (α,λ ,γ) =− n

∑
n
i=1 log

[
1− e1−

(
1+λ tγ

i

)α] .
Thus, it is easily observed that fixed on t1, . . . , tn,
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• β̂ → 0 when α̂ → 0 and/or λ̂ → 0

• β̂ → ∞ when α̂ → 0 and/or λ̂ → ∞

• β̂ → 0 when γ̂ → ∞ and ti < 1, for some i ≤ n

• β̂ → ∞ when γ̂ → ∞ and ti < 1, ∀i ≤ n.

This behavior anticipates that estimates for smaller α and/or λ may require improved estimation procedures.

By replacing β by β̂ in equation (15) and letting θp = (α, λ , γ), the profile log-likelihood function for

θp can be expressed as

`(θp) = n log(n)+n log(α λ γ)+(γ −1)
n

∑
i=1

log(ti)−
n

∑
i=1

(
1+λ tγ

i

)α

+ (α −1)
n

∑
i=1

log
(
1+λ tγ

i

)
−

n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]
− n log

{
−

n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]}
. (16)

We assume that the standard regularity conditions for `p = `(θp) hold.

They are not restrictive and hold for the models cited in this paper. The score vector corresponding to

(16), U(θp), has the components

Uα(θp) =
n
α
+

n

∑
i=1

log
(
1+λ tγ

i

)
−

n

∑
i=1

(
1+λ tγ

i

)α log
(
1+λ tγ

i

)
−n

n

∑
i=1

(
1+λ tγ

i

)α log
(
1+λ tγ

i

)
e1−

(
1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α

{
n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]}−1

−
n

∑
i=1

(
1+λ tγ

i

)α log
(
1+λ tγ

i

)
e1−

(
1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α ,

Uλ (θp) =
n
λ
+(α −1)

n

∑
i=1

tγ

i

(
1+λ tγ

i

)−1 −α

n

∑
i=1

tγ

i

(
1+λ tγ

i

)α−1

−nα

n

∑
i=1

tγ

i

(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α

{
n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]}−1

−α

n

∑
i=1

tγ

i

(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α
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and

Uγ(θp) =
n
γ
+

n

∑
i=1

log(ti)+λ (α −1)
n

∑
i=1

tγ

i log(ti)
1+λ tγ

i
−αλ

n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)α−1

−nαλ

n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α

{
n

∑
i=1

log
[

1− e1−
(

1+λ tγ

i

)α]}−1

−αλ

n

∑
i=1

tγ

i log(ti)
(
1+λ tγ

i

)α−1 e1−
(

1+λ tγ

i

)α

1− e1−
(

1+λ tγ

i

)α .

Solving the equations in U(θp)= 0 simultaneously yields the MLEs of α , λ and γ . The MLE of β is just

β̂ (α̂, λ̂ , γ̂). The maximization of the profile log-likelihood might be simpler since it involves only three pa-

rameters. Lemonte (2013) noted a similar result for the ENHmodel but mentioned that some of the properties

that hold for a genuine likelihood do not hold for its profile version.

For interval estimation of the components of θ, we can adopt the observed information matrix J(θ),

whose elements can be obtained from the authors upon request. The multivariate normal N4(0,J(θ̂)−1)

distribution can be used to construct approximate confidence intervals for the model parameters.

12 - SIMULATION STUDY

Here, aMonte Carlo simulation experiment is performed in order to examine the accuracy of theMLEs of the

model parameters. The simulations are carried out by generating observations from the EPGW distribution

using the inverse transformation method for different parameter combinations. The number of observations

is set at n = 100, 300 and 500 and the number of replications at 10,000. For maximizing the log-likelihood

function, we use the Optim function with analytical derivatives in R. From the results of the simulations

given in Table III, we can verify that the root mean squared errors (RMSEs) of the MLEs of α , β , λ and

γ decay toward zero when the sample size n increases, as expected. The mean estimates of the parameters

tend to be closer to the true parameter values when n increases.

13 - APPLICATIONS

In this section, we present two applications to illustrate the flexibility of the EPGW distribution. They in-

dicate the potentiality of the new distribution for modeling positive data. The first data set represents the

remission times (in months) of 128 patients with bladder cancer (Lee and Wang 2003). The second one

corresponds to the 101 observations representing the stress-rupture life of kevlar 49/epoxy strands that are

subjected to constant sustained pressure at the 90% stress level until all had failed. Then, we obtain a com-

plete data set with exact failure times. This data set was studied byAndrews and Herzberg (1985). Table IV

gives a descriptive summary of the samples. Note that both data sets present positive skewness and that the

remission times show higher variance.
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TABLE III

Mean estimates and RMSEs of the EPGW distribution for some parameter values.

Mean estimates RMSEs

n α β λ γ α̂ β̂ λ̂ γ̂ α̂ β̂ λ̂ γ̂

100 0.3 4.0 3.0 1.6 0.355 4.041 3.061 2.140 0.313 1.988 2.084 1.376

1.7 0.8 0.1 0.2 1.670 0.795 0.105 0.253 0.833 0.434 0.109 0.117

3.0 2.0 5.0 0.6 3.848 2.212 5.512 0.627 2.027 1.104 3.112 0.157

3.5 0.9 0.2 0.1 2.729 0.781 0.284 0.166 1.674 0.493 0.276 0.128

7.0 1.5 5.0 0.2 7.296 1.643 5.215 0.199 1.717 0.504 1.644 0.027

7.5 1.3 4.0 0.5 8.034 1.436 4.786 0.510 2.488 0.589 2.386 0.100

300 0.3 4.0 3.0 1.6 0.316 4.035 2.990 1.843 0.145 1.515 1.534 0.807

1.7 0.8 0.1 0.2 1.630 0.762 0.094 0.235 0.657 0.271 0.052 0.086

3.0 2.0 5.0 0.6 3.454 2.096 5.083 0.603 1.277 0.573 2.189 0.086

3.5 0.9 0.2 0.1 3.155 0.858 0.233 0.117 1.063 0.278 0.111 0.050

7.0 1.5 5.0 0.2 7.093 1.556 5.121 0.199 1.130 0.285 1.141 0.018

7.5 1.3 4.0 0.5 7.774 1.337 4.431 0.507 1.753 0.303 1.645 0.066

500 0.3 4.0 3.0 1.6 0.308 4.005 2.990 1.766 0.105 1.296 1.344 0.613

1.7 0.8 0.1 0.2 1.639 0.766 0.093 0.226 0.572 0.226 0.041 0.069

3.0 2.0 5.0 0.6 3.322 2.062 5.030 0.600 0.991 0.429 1.902 0.068

3.5 0.9 0.2 0.1 3.301 0.883 0.219 0.107 0.789 0.204 0.073 0.025

7.0 1.5 5.0 0.2 7.090 1.530 5.090 0.200 0.938 0.218 0.964 0.015

7.5 1.3 4.0 0.5 7.724 1.323 4.272 0.504 1.462 0.231 1.327 0.053

800 0.3 4.0 3.0 1.6 0.304 4.013 2.994 1.718 0.083 1.134 1.167 0.498

1.7 0.8 0.1 0.2 1.640 0.770 0.095 0.220 0.509 0.192 0.033 0.059

3.0 2.0 5.0 0.6 3.242 2.044 4.993 0.599 0.812 0.336 1.656 0.056

3.5 0.9 0.2 0.1 3.383 0.892 0.211 0.103 0.603 0.160 0.051 0.016

7.0 1.5 5.0 0.2 7.063 1.518 5.061 0.200 0.789 0.171 0.801 0.012

7.5 1.3 4.0 0.5 7.620 1.318 4.187 0.502 1.215 0.182 1.104 0.043

We fit the EPGW distribution (6) to these data sets and also present a comparative study with the fits

of some embedded and not embedded models. One of these models is the Kumaraswamy Weibull (Kw-W)

distribution, whose pdf is given by

g(t) =
abcβ c tc−1 exp{−(β t)c} [1− exp{−(β t)c}]a−1

{1− [1− exp{−(β t)c}]a}1−b , t > 0,
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TABLE IV

Descriptive statistics.

Statistics
Real data sets

Remission times data Stress-rupture data

Mean 9.3656 1.0248

Median 6.3950 0.8000

Mode 5.0000 0.5000

Variance 110.4250 1.2529

Skewness 3.2865 3.0017

Kurtosis 15.4831 13.7089

Maximum 79.0500 7.8900

Minimum 0.0800 0.0100

n 128 101

where a > 0, b > 0, c > 0 and β > 0. Another model is the beta Weibull (BW) distribution, whose pdf is

given by

g(t) =
α

λ B(a,b)

( t
λ

)α−1
[1− exp{−(t/λ )α}]a−1 exp{−b(t/λ )α},

where a > 0, b > 0, α > 0 and λ > 0. The Beta-Fréchet (BFr) distribution, whose pdf is given by

g(t) =
λ σ

B(a,b)
t−(λ+1) exp

{
a
(

σ

t

)λ
}[

1− exp
{

a
(

σ

t

)λ
}]b−1

,

where a > 0, b > 0, λ > 0 and σ > 0. We also consider the Marshall-Olkin Nadarajah-Haghighi (MONH)

model, whose pdf is given by

g(t) = α β λ
(1+λ t)α−1 exp{1− (1+λ t)α}
[1− (β −1) exp{1− (1+λ t)α}]2

,

where α > 0, β > 0 and λ > 0. The EW distribution, whose pdf is given by

g(t) = α β λ tα−1 exp(−λ tα) [1− exp(−λ tα)]β−1, t > 0,

whereα > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter. This distribution is quite flexible

because its hrf presents the classic five forms (constant, decreasing, increasing, upside-down bathtub and

bathtub-shaped). The Weibull model is a special case of the EW model when β = 1.
The ENH distribution can also have the same shapes for the hrf and therefore can be an interesting

alternative to the EW distribution in modeling positive data. The ENH density is given by (6) when γ = 1.
Further, for γ = β = 1, we have as a special model the NH distribution given by (2). We also consider the

PGW model, whose pdf is given in (4), which arises from the EPGW model when β = 1.
Xie et al. (2002) proposed a modified Weibull (MW) density given by

g(t) = λβ

( t
α

)1−β

exp
{( t

α

)β

+λ α

(
1− exp

{ t
α

}β
)}

, t > 0,
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Figure 4 - The TTT plot (a) and EPGW hrf for the remission times data (b).

where λ > 0, β > 0 and α > 0. For α = 1, it becomes the Chen distribution (Chen 2000). The MW and

Chen distributions can have increasing or bathtub-shaped failure rate. An extension of the Weibull model

proposed by Bebbington et al. (2007) has pdf given by

g(t) =
(

α +
β

t2

)
exp
(

αt − β

t

)
exp

{
−exp

(
αt − β

t

)}
, t > 0,

where α > 0 and β > 0. We shall use the same terminology by Lemonte (2013) for this distribution, i.e.,

denote the flexible Weibull (FW) density. The FW model can have increasing or modified bathtub-shaped

failure rate.

We use the simulated-annealing method for maximizing the log-likelihood function of the models in the

two applications. The MLEs and goodness-of-fit statistics are evaluated using the AdequacyModel script in

R software. Tables V and VI list the MLEs and the corresponding standard errors (SEs) in parentheses of the

unknown parameters for the fitted models to remission times data (first data set) and stress-rupture failure

times (second data set), respectively.

In applications there is qualitative information about the failure rate shape, which can help for selecting

some models. Thus, a device called the total time on test (TTT) plot is useful. The TTT plot is obtained by

plotting

T
( r

n

)
=

[
r

∑
i=1

yi:n +(n− r)yr:n

]/
n

∑
i=1

yi:n,

against r/n, where r = 1, . . . ,n and yi:n (i = 1, . . . ,n) are the order statistics of the sample.

The figures in Tables V and VI indicate that the MLEs of the EPGW model are precise for both data

sets. Figures 4 and 5 provide the TTT plots and plots of the hrf for the EPGW fitted model for the remission

times and stress-rupture times data sets, respectively. They reveal that the EPGW hrf has decreasing and

decreasing-increasing-decreasing shapes, respectively. This fact is in agreement with the TTT plot based on

each data set.
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TABLE V

The MLEs of the model parameters for the remission times data and the

corresponding SEs in parentheses.

Distributions Estimates

EPGW(α,β ,λ ,γ) 0.2076 0.4062 0.0047 3.1008

(0.0347) (0.0547) (0.0025) (0.2866)

Kw-W(a,b,c,β ) 3.8071 1.7364 0.5144 0.2904

(1.3951) (0.8486) (0.1157) (0.1435)

BW(a,b,α,λ ) 6.4498 8.3256 0.3909 25.4616

(2.7464) (4.3776) (0.0859) (18.7415)

BFr(a,b,λ ,σ ) 4.1513 8.8050 0.3087 8.8088

(1.4516) (2.6397) (0.0460) (4.0961)

PGW(α,λ ,γ) 0.4253 0.1364 1.5564

(0.0996) (0.0359) (0.2212)

MONH(λ ,α,β ) 1.1844 0.5025 6.3566

(0.5670) (0.0480) (3.1274)

EW(β ,λ ,γ) 0.4854 0.5421 3.9736

(0.1821) (0.0619) (1.0804)

MW(α,β ,λ ) 0.0030 0.1979 2.2188

(0.0009) (0.0063) (0.6607)

ENH(α,β ,λ ) 0.6003 0.4002 1.7880

(0.0841) (0.1614) (0.3419)

NH(α,λ ) 0.9134 0.1236

(0.1475) (0.0344)

Chen(β ,λ ) 0.1106 0.3538

(0.0152) (0.0123)

Weibull(α,λ ) 9.5470 1.0490

(0.8499) (0.0676)

FW(α,β ) 0.0325 2.1553

(0.0026) (0.2490)

Chen and Balakrishnan (1995) constructed the corrected Cramér-von Mises and Anderson-Darling

statistics. We adopt these statistics, where we have a random sample x1, . . . ,xn with empirical distribution

function Fn(x), and require to test if the sample comes from a special distribution. The Cramér-von Mises

(W ∗) and Anderson-Darling (A∗) statistics are given by

W ∗ =

{
n
∫ +∞

−∞

{Fn(x)−F(x; θ̂n)}2dF(x; θ̂n)

}(
1+

0.5
n

)
= W 2

(
1+

0.5
n

)
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TABLE VI

The MLEs of the model parameters for the stress-rupture data and the

corresponding SEs in parentheses.

Distributions Estimates

EPGW(α,β ,λ ,γ) 0.1349 0.1022 0.0415 6.6681

(0.0171) (0.0104) (0.0154) (0.0136)

Kw-W(a,b,c,β ) 0.7029 0.2175 1.0118 4.3625

(0.1620) (0.1038) (0.0027) (2.1072)

BW(a,b,α,λ ) 0.7482 0.2305 1.1275 0.3245

(0.1608) (0.0338) (0.0858) (0.0856)

BFr(a,b,λ ,σ ) 0.3984 5.0048 0.4208 9.1684)

(0.1702) (1.4399) (0.0534) (4.3072)

PGW(α,λ ,γ) 1.2659 0.7182 0.8696

(0.4483) (0.3485) (0.1039)

MONH(λ ,α,β ) 0.0146 17.7252 0.2122

(0.0067) (7.7187) (0.0618)

EW(β ,λ ,γ) 0.8488 1.0419 0.8171

(0.2981) (0.2511) (0.3157)

MW(α,β ,λ ) 0.0027 0.2259 7.0190

(0.0008) (0.0076) (1.5244)

ENH(α,β ,λ ) 1.0732 0.7762 0.8426

(0.2760) (0.3582) (0.1238)

NH(α,λ ) 0.8898 1.1810

(0.1853) (0.4270)

Chen(β ,λ ) 0.5410 0.5303

(0.0585) (0.0321)

Weibull(α,λ ) 0.9919 0.9259

(0.1121) (0.0726)

FW(α,β ) 0.3287 0.0838

(0.0246) (0.0133)

and

A∗ =

{
n
∫ +∞

−∞

{Fn(x)−F(x; θ̂n)}2

{F(x; θ̂n)[1−F(x; θ̂n)]}
dF(x; θ̂n)

}(
1+

0.75
n

+
2.25
n2

)
= A2

(
1+

0.75
n

+
2.25
n2

)
,

respectively, where Fn(x) is the empirical distribution function, F(x; θ̂n) is the postulated distribution func-

tion evaluated at the MLE θ̂n of θ . Note that the statistics W ∗ and A∗ are given by the differences of Fn(x)

An Acad Bras Cienc (2018) 90 (3)



2574 FERNANDOA. PEÑA-RAMÍREZ et al.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

i/n

T
(i
/
n

)

(a)

0 1 2 3 4 5 6 7

0
.6

0
.8

1
.0

1
.2

x

h
(x

)

(b)

Figure 5 - The TTT plot (a) and EPGW hrf for the stress-rupture failure data (b).

and F(x; θ̂n). Thus, the lower are these statistics, we have more evidence that F(x; θ̂n) generates the sample.

The details to evaluate the statistics W ∗ and A∗ are given by Chen and Balakrishnan (1995).

TheW ∗, A∗ and Kolmogorov-Smirnov (KS) statistics for these models are given in Tables VII and VIII

for both data sets. We emphasize that the EPGW model fits the remission times and stress-rupture failure

data better than the other models according to these statistics. They indicate that the EPGW distribution

yields the best fits in both applications.

More information is provided by the histogram of the data and some fitted density functions for both

data sets given in Figure 6. Clearly, in both applications, the new distribution provides a closer fit to the

histogram than the other competitive models. The fitted cdfs of these models are also displayed in Figure

7. Finally, we can conclude in the two situations that the EPGW distribution is quite competitive to other

well-known and widely used distributions such as the Kw-W, EW and Weibull models.

14 - CONCLUSIONS

In this paper, we introduce the exponentiated power generalized Weibull (EPGW) model to extend the

Weibull distribution. It has a power parameter and its hazard rate function allows constant, decreasing,

increasing, upside-down bathtub or bathtub-shaped forms. The proposed distribution contains as special

models several well-known lifetime distributions. It can also be derived from a power transform on an ex-

ponentiated Nadarajah-Haghighi random variable. Several structural properties of the power generalized

Weibull (PGW) distribution have not been studied. However, they can be determined from those of the

EPGW distribution. It can also be useful to obtain the properties for other generated families under the

PGW baseline. We give a physical motivation for introducing the new distribution if the power parameter is

an integer. We obtain some mathematical properties of the EPGW distribution, estimate the model parame-

ters by maximum likelihood and prove empirically its flexibility in two applications to real data. In fact, the

new distribution yields a good adjustment in both applications. We note that the EPGW distribution is quite

competitive with other lifetime models and can be used effectively to provide better fits than other usual

lifetime distributions.
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TABLE VII

Goodness-of-fit statistics for the models fitted to

the remission times data.

Statistics

Distributions W∗ A∗ KS

EPGW 0.0166 0.1148 0.0384

Kw-W 0.0408 0.2744 0.0447

BW 0.0484 0.3313 0.0543

BFr 0.2370 1.5485 0.0987

PGW 0.0352 0.2345 0.0431

MONH 0.0832 0.4864 0.0641

EW 0.0458 0.3163 0.0483

MW 0.3636 2.1554 0.1067

ENH 0.0413 0.2781 0.0422

NH 0.0997 0.6017 0.0927

Chen 0.4430 2.6114 0.1411

Weibull 0.1318 0.7890 0.0695

FW 1.4134 7.8093 0.2085

TABLE VIII

Goodness-of-fit statistics for the models fitted to

the stress-rupture data.

Statistics

Distributions W∗ A∗ KS

EPGW 0.0722 0.4672 0.0699

Kw-W 0.1400 0.8478 0.1017

BW 0.2753 1.5190 0.1005

BFr 0.7116 3.8276 0.1914

PGW 0.1730 0.9930 0.0833

MONH 1.1054 5.9604 0.3068

EW 0.1686 0.9736 0.0875

MW 0.0980 0.7596 0.1292

ENH 0.1670 0.9667 0.0837

NH 0.2053 1.1434 0.0819

Chen 0.1207 0.8756 0.0973

Weibull 0.1987 1.1115 0.0900

FW 1.1130 5.9971 0.3054
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Figure 6 - Histogram and estimated densities of the (a) EPGW, Kw-W and PGW models for the remission times data; (b) EPGW,

PGW and MW models for the stress-rupture data.
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Figure 7 - Estimated and empirical cdfs for (a) EPGW, Kw-W and PGW models for the remission times data; (b) EPGW, PGW

and MW models for the stress-rupture data.
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