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Abstract: The accuracy of traditional methods to sample planktonic microcrustaceans 
depends on two assumptions: that organisms are alive during sampling and that all 
carcasses can be identifi ed despite their degradation state, but fresh carcasses are 
not easy to distinguish by traditional methods. Previous studies about mortality have 
shown that neglecting dead organisms can provide biased ecological information. 
Thus, our objective was to determine the mortality rate and the proportion of dead 
microcrustacean in three tropical reservoirs. Sampling was carried out in 12 stations 
during two periods. The proportion of dead organisms was verifi ed using aniline blue 
and it varied between 0.6% and 90.6%. The carcass decomposition period varied between 
3 to 16 days and microcrustaceans mortality rate varied between 0.005 and 0.314 d-1. 
Traditional preservation techniques with formalin do not signifi cantly overestimate 
species abundance. However, these values should not be disregarded, because 
corrected (disregarding organisms that were dead) and formalin-preserved abundances 
were correlated with distinct limnological descriptors. Therefore, the traditional formalin 
preservation technique could provide misleading ecological interpretations. Other 
studies over larger temporal scales in addition to experiments to evaluate the effects 
of viruses, parasitism and the toxic effects of cyanobacteria on zooplankton would 
enlighten mortality rate patterns in freshwater ecosystems.
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INTRODUCTION

Ecological studies on microcrustaceans and 
the zooplankton community have been widely 
performed in the last 40 years (Allan 1976, 
Bonecker et al. 1996, Folt & Burns 1999). These 
invertebrates are particularly interesting 
because they infl uence the dynamics of other 
aquatic communities by relationships within the 
food web (Melão et al. 2005) or by contributing 
faecal pellets to the particle fl ux (Shatova et al. 
2012). However, most ecological studies do not 
consider the proportion of dead organisms at 
the moment samples are taken. Recent studies 

have argued that neglecting dead individuals 
may lead to biased ecological information (Tang 
et al. 2014, Besiktepe et al. 2015). 

Zooplankton mortality is caused by 
several factors such as senescence, predation, 
variability in abiotic factors and even parasitism 
(Dubovskaya 2009, Ersoy et al. 2019). A meta-
analysis showed that, apart from predation, 
these other factors might account for one third 
of the mortality in copepods (Hirst & Kiørboe 
2002). Nevertheless, the cause of death is mostly 
attributable to predation (Freitas et al. 2007, Serpe 
et al. 2009). The information on the proportion 
of dead organisms in aquatic environments 
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is relevant because it has implications on 
population dynamics and the energy flow 
through both pelagic and benthic food webs 
(Dubovskaya et al. 2003, 2015). Disregarding 
deceased individuals may lead to biased 
ecological information (Besiktepe et al. 2015). 
Even so, studies on the mortality of zooplankton 
in reservoirs are scarce, and most such studies 
were performed in Russia (Dubovskaya 1987, 
Sergeeva et al. 1989, Dubovskaya et al. 2004, 
Dubovskaya 2005, Tang et al. 2014). 

The simplest parameter in plankton studies 
is species abundance, which is widely used 
to obtain numerous ecological data such as 
population growth, biomass and secondary 
production (Lemke & Benke 2009, Azevedo et al. 
2012, Tang & Elliott 2014). However, depending 
on the decomposition rate, dead and live 
zooplankton can be identical even many days 
after their deaths. Therefore, quantifying 
microcrustacean carcasses in preserved 
plankton samples can be challenging (Tang et 
al. 2006a). Consequently, most studies do not 
distinguish among live and dead individuals 
(Diniz et al. 2013, Paranhos et al. 2013, Tang et al. 
2014, Besiktepe et al. 2015, Diniz & Melo-Júnior 
2017); therefore, they assume that all preserved 
animals were alive during the sampling. 

Several methodologies for determining 
zooplankton mortality have been described 
(Weikert 1977, Terazaki & Wada 1988), and the 
most appropriate technique for large numbers 
of samples is by means of using a biological stain 
(Crippen & Perrier 1974, Seepersad & Crippen 
1978). In 2009, Bickel and colleagues developed 
a method using aniline blue (C32H27N3O9S3Na2) to 
distinguish dead (dyed blue) from living (non-
dyed) organisms that inhabit continental waters.

Environments under high anthropogenic 
pressure, with elevated nutrient loads or under 
eutrophication processes, usually have high 
proportions of dead zooplankton (Semenova 

2010, Bickel et al. 2011, Tang & Elliott 2014). 
However, some researchers have already found 
the opposite pattern (more living organisms 
in eutrophic environments). A possible 
explanation is that in polluted environments 
the microbial activity is faster, which accelerates 
the decomposition of zooplankton, increasing 
the living-to-dead ratio (Mukhanov & Litvinyuk 
2017). On the other hand, in oligotrophic and 
less-affected environments, the proportion of 
dead organisms can be high depending on, for 
instance, the high incidence of solar radiation 
(Speekmann et al. 2000, Leech et al. 2005, Häder 
et al. 2007, Al-Aidaroos et al. 2014). This pattern 
is evident in neotropical semiarid regions 
(Wiegand et al. 2016), where temperatures are 
high and springs may dry up over the year 
(Maltchik & Medeiros 2006). It is, therefore, 
crucial to consider the organisms that are dead 
at the moment samples are taken to avoid biases 
in ecological information. To our knowledge, this 
is the first study that considers the proportion of 
dead and living microcrustaceans in freshwater 
ecosystems from the tropical semiarid regions.

The present study investigated the mortality 
of microcrustaceans (Cladocera and Copepoda) 
in three, relatively close in location, neotropical 
reservoirs from the same hydrogeographic basin, 
but with different usages and environmental 
statuses. This study allowed us to test two 
hypotheses: (i) the proportion of dead (%) and 
the mortality rate (d-1) of microcrustaceans are 
influenced by physico-chemical characteristics 
of the reservoirs, and (ii) there is an 
overestimation of microcrustacean abundances 
when dead organisms are not considered in the 
moment of sampling.
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MATERIALS AND METHODS
Study area
We sampled three reservoirs in a neotropical 
semiarid area located in the Pernambuco State, 
Brazil: Cachoeira II (07° 56’ 35” S, 038° 20’ 07” W), 
Saco I (07° 59’ 31” S 038° 17’ 5” W) and Borborema 
(07° 58’ 41” S, 038° 17’ 59” W) (Figure 1). Cachoeira 
II is an eutrophic reservoir, used for water 
supply (water-supply reservoir: WSR), Saco I is a 
hypereutrophic reservoir, used for aquaculture 
activities (aquaculture-use reservoir: AUR), and 
Borborema is also a hypereutrophic reservoir 
used for sewage discharge (sewage-discharge 
reservoir: SDR) (Diniz & Melo-Júnior 2017). 

The reservoirs of the Brazilian semiarid 
region undergo relevant changes in terms of 

limnological descriptors throughout the year 
(Barbosa et al. 2012). These reservoirs are 
used for several activities such as recreation, 
fishing and receiving solid and liquid wastes. In 
addition, the damming itself is another source of 
impact. Therefore, there is a great susceptibility 
to eutrophication in these systems (Bouvy et al. 
1999, Eskinazi-Sant’Anna et al. 2013). The climate 
is dry and hot, and the annual average rainfall 
is 800 mm. All these characteristics are a source 
of vulnerability to the biota in these ecosystems 
(Maltchik & Medeiros 2006), and just a few 
species, mostly small and opportunistic rotifers 
(Allan 1976), cladocerans and copepods (Diniz & 
Melo-Júnior 2017), are adapted to survive in such 
conditions.

Figure 1. Distribution and location of the sampling stations in three reservoirs in the neotropical semiarid 
ecosystem (Pernambuco, Brazil): Cachoeira II (water supply reservoir—WSR), Borborema (sewage discharge 
reservoir—SDR) and Saco I (aquaculture-use reservoir—AUR).
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Limnological descriptors	
We determined the following limnological 
descriptors: temperature (°C), pH, dissolved 
oxygen (mg L-1), conductivity (mS cm-1), total 
solids (g L-1) and turbidity (NTU) using a Horiba 
U-52 multiparameter probe (Horiba, Japan). 
Chlorophyll a (mg L-1) was determined from 
subsurface water samples (500 mL), which 
were filtered through cellulose membrane GF/F 
filters (0.45 µm porosity and 47 mm diameter) 
(Millipore®, USA). The filters were frozen prior to 
chlorophyll a determination. We followed the 
methodology described in Chorus & Bartram 
(1999). Also, subsurface water samples (500 
mL) were frozen for nutrient determination: 
phosphorus (µg L–1), nitrite (µg L–1), nitrate (µg L–1) 
and ammonia (µg L–1); we followed the methods 
described in Mackereth et al. (1978) for nitrate 
(NO3−) and nitrite (NO2−), Strickland & Parsons 
(1960) for total phosphorus (P) and Koroleff 
(1976) for ammonia (NH3).

Sampling design and biological material 
analysis
We performed two sampling campaigns in each 
reservoir between August and September 2015 
(dry season) and in March 2016 (rainy season), 
between 09:00 am and 12:30 pm. We selected 
12 stations (9 in the limnetic region and 3 in 
the littoral region) distributed over three zones 
(river zone: “zone 1”, transition zone: “zone 2” and 
lacustrine zone: “zone 3”) within each reservoir 
(Figure 1). These comprised 144 samples, with 72 
samples for formalin fixation and 72 samples for 
aniline blue staining. The stations were chosen 
at random and covered the entire reservoir.

For each station, we collected 100 L of 
subsurface water, which were filtered through a 
45-µm mesh plankton net. The organisms were 
preserved with 4% formalin (LABSYNTH Ltda, 
Brazil). In addition, we filtered 50 L of subsurface 
water through a 45-µm mesh and concentrated 

the sample in an amber bottle to estimate the 
proportion of dead microcrustaceans from living 
plankton samples. We added 0.45 M aniline blue 
(CAAL Ltda, Brazil, 16.7 g of aniline blue and 
50.30 mL of deionised water) to these samples, 
immediately after sampling, to evaluate the 
mortality ratio (Bickel et al. 2009). The samples 
were stored in the dark at room temperature. 
After 15 minutes, the samples were filtered again 
(pieces of net, 45 µm), placed in Petri dishes, 
covered with aluminium foil, stored in ice in 
the field and then transferred to the laboratory, 
where they were frozen and held for up to two 
months. 

In the laboratory, we took three subsamples 
(2 mL) of the preserved samples and analysed 
them using a Sedgwick-Rafter-type chamber 
(Microscopia Ltda, Brazil). We counted at least 
300 individuals per sample. Zooplankton 
identification was performed under an optical 
microscope and stereomicroscope (Opton, 
Brazil), using the relevant literature (e.g. Reid 
1985, Matsumura-Tundisi 1986, Elmoor-Loureiro 
1997, Perbiche-Neves et al. 2015). Regarding the 
samples for proportion of dead microcrustacean 
analysis, each one was slightly acidified with 
hydrochloric acid (<3%) to differentiate between 
dead (bright blue colour) and live individuals 
(natural colour) (Figure 2). We counted at least 
100 individuals in each sample to obtain the 
proportion of dead microcrustaceans. Because 
of the low number of individuals (< 100) in 
the SDR, it was not possible to calculate the 
proportion of dead microcrustaceans in the 
rainy season, according to Bickel et al. (2009). 

In this study, we focused on the 
microcrustacean species that were dominant 
in the three reservoirs. These were Moina 
micrura Kurz, 1873, Ceriodaphnia cornuta 
Sars, 1885, Diaphanosoma spinulosum 
Herbst, 1967, Thermocyclops decipiens (Kiefer, 
1929), Mesocyclops ellipticus Kiefer, 1936, 
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Notodiaptomus iheringi (Wright, 1935) and N. 
cearensis (Wright, 1936).

Microcrustacean carcass decomposition in 
laboratory
To estimate the mortality ratio from 
microcrustacean carcasses, we performed 
laboratory observations to follow the 
decomposition process. Individuals in the live 
plankton samples were killed by thermal shock to 
obtain fresh carcasses. These microcrustaceans 
were incubated in Petri dishes with filtered water 
(using a 10-µm mesh), specific to each of the 
three reservoirs, at 25 ± 1.5°C and observed with 
a stereomicroscope in regular intervals (6h).

Non-predatory mortal i ty  rate was 
estimated as, where D is the proportion of dead 
microcrustaceans and Y is the time in days to 
achieve full decomposition of the body at a 
certain temperature (Tang et al. 2006a).	

Data analysis
A principal components analysis (PCA; Pearson 
1901; function in R “prcomp”) was applied 
to describe the variability of limnological 
descriptors among reservoirs. Only the first 
axis was used for interpretation, according 
to the Broken-Stick criterion (Jackson  1993), 
using Euclidean distance. All variables, except 
pH, were log-transformed to stabilise the 
variance. Since the assumptions of normality 
and homoscedasticity were met, we performed 
parametric tests. To test for differences between 
reservoirs in relation to the abiotic variables, 
one-way ANOVAs were used. If significant effects 
were detected, post hoc methods (Tukey test) 
were used to see which reservoir was distinct 
from the others.

The  mic roc rus tacean  abundance 
was reported as (i) formalin-preserved 
abundance—total abundance obtained from 

Figure 2. Dead (bright blue colour a–c) and alive (natural colour of the animal d–f) microcrustaceans in three 
reservoirs in the neotropical semiarid ecosystems (Pernambuco, Brazil). a and d - Moina micrura Kurz, 1874; b, c, 
and e - Notodiaptomus cearensis (Wright, 1936); F - Thermocyclops decipiens (Kiefer, 1929).
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formalin-preserved samples with no distinction 
between dead and living organisms and 
(ii) corrected species abundance—species 
abundance of the living organisms at the 
time of collection, excluding the dead ones 
(methodology using aniline blue). To verify 
differences between the formalin-preserved 
abundance and the corrected abundance we 
applied a t test. The data was log-transformed 
to meet the assumptions of normality and 
homogeneity of variance. We performed 
Shapiro-Wilk’s test (function in R “shapiro.test”) 
and Levene’s test (function in R “leveneTest”) to 
evaluate normality and homogeneity of variance, 
respectively.

We performed a redundancy analysis 
(RDA; Legendre & Legendre 1998) to search 
for relationships between formalin-preserved 
abundance, corrected species abundance and 
limnological descriptors. The biotic matrix 
represented the abundance of microcrustaceans, 
transformed by Hellinger, since this method is 
appropriate for matrices that contain many zeros 
(Legendre & Gallagher 2001). The environmental 
parameters were log-transformed (except pH). 
To determine which variables would be selected, 
we followed the selection process according 
to Blanchet et al. (2008). This procedure uses 
permutations to define the variables that should 
be used in the model. The principal components 
were tested with ANOVA, and significance was 
set at p < 0.05.

A generalised linear model (GLM) with 
binomial distribution was applied to test 
for the effect of limnological descriptors on 
the proportion of dead microcrustaceans. To 
remove correlated limnological descriptors, we 
calculated the variance inflation factor (VIF) and 
removed variables with VIF > 3 (Zuur et al. 2010). 
The assumptions of the analysis were visually 
verified, and when necessary, the data was log-
transformed (Zuur et al. 2010). 

All analyses were performed in the software 
R 3.0.2 (R Development Core Team 2015), using 
the following packages: Vegan (Oksanen et al. 
2018), ade4 (Chessel et al. 2004), nlme (Pinheiro 
et al. 2019), nortest (Juergen & Ligges 2015), car 
(Fox & Weisberg 2019) and ggplot2 (Wickham 
2016).

RESULTS
Limnological descriptors
The reservoir used for water supply (WSR) was 
different from the hypereutrophic reservoirs 
(SDR and AUR) (p <0.05) in terms of dissolved 
oxygen, turbidity, chlorophyll a and phosphorus 
(Table I). Water temperature was always high 
in all reservoirs (> 23°C), and pH varied from 
neutral to alkaline (7.1–9.2). The water was 
predominantly well oxygenated, except for a 
sampling station in the AUR, where it reached a 
minimum value of 0.4 mg L-1 (Table I).

The PCA first canonical axis explained 65.37% 
of the data and was the only axis selected. The 
reservoir that is used for sewage discharge 
(SDR) and the one that is used for aquaculture 
(AUR) were grouped closer to each other in 
the PCA, indicating higher homogeneity of the 
environmental descriptors in the hypereutrophic 
reservoirs in relation to the eutrophic reservoir 
used for water supply (WSR). The first axis 
was positively correlated to chlorophyll a and 
pH. Chlorophyll a and pH were more closely 
associated with SDR and AUR than with the WSR 
(Figure 3). 

Proportion of dead microcrustaceans and 
carcass decomposition
The proportion of dead microcrustaceans 
oscillated between low and high values. In the 
SDR, the proportion of dead animals ranged 
from 4.4% and 90%. In the AUR, the proportion 
of dead microcrustaceans varied between 3.2 
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and 57.4%, whereas in the WSR it varied between 
0.6 and 67.9% (Figure 4).

The proportion of dead microcrustaceans 
varied between species. The highest proportion 
of dead was found for Moina micrura (49.4%), 
whereas Diaphanosoma spinulosum had the 
lowest proportion (0.6%). Cyclopoida and 
Calanoida adult copepods had a proportion of 
dead < 40%, whereas copepod nauplii had a 
proportion of dead of 50.5%. Formalin-preserved 
abundances did not significantly differ in 
relation to the corrected abundances (t test; p 
> 0.05).

The experiments to determine carcass 
decomposition did show differences among 
zooplankton groups (Table II). The necessary 
time to completely decompose the carcasses 
was lower for nauplii and the family Daphniidae. 
Carcasses from the family Chydoridae took the 
longest to completely decompose. The other 
groups completely decomposed in less than 10 
days (Table II). 

The mortality rates of microcrustaceans, 
considering all reservoirs, was 0.122 d-1. In 
addition, the non-predatory mortality rate also 
differed among zooplankton groups. The highest 

Table I. Ranges (minimum - maxim), means and standard deviations (SD) of the environmental descriptors in the 
reservoirs of neotropical semiarid ecosystems (Pernambuco, Brazil). 

Environmental 
descriptors 

Water-supply reservoir   
(WSR)

Sewage-discharge 
reservoir (SDR)

Aquaculture-use 
reservoir (AUR)

Range Mean SD Range Mean SD Range Mean SD

Water temperature (°C) 25.8-32.1 29.0 1.9 25.5-30.4 28.2 1.5 23.6-
33.7 28.6 2.4

pH 7.1-8.8 7.6 0.4 8.1-9.2 8.8 0.2 8.1-8.9 8.5 0.2

Conductivity (mS cm–1) - 0.5 - 2.7-4.2 3.4 0.7 3.9-6.6 5.2 1.4

Turbidity (NTU) 20.2-358.0 127.9 128.0 151.0-
259.0 202.4 42.2 124.0-

246.0 170.5 34.4

Dissolved oxygen (mg L-1) 5.0-10.8 7.3 1.6 4.1-17.7 12.4 3.5 0.4-17.3 11.5 3.5

Oxygen saturation (%) 66.1-146.6 95.0 20.6 92.1-248.7 157.4 52.9 6.1-
236.1 151.7 48.8

Total solids (g/L-1) - 0.3 - 1.7-2.7 2.1 0.4 0.8-4.2 3.3 0.9

Chlorophyll a (mg L-1) 7.4-540.6 61.5 125.8 118.5-
1096.0 563.8 318.9 133.3-

681.2 439.2 174.3

Phosphor P (µg L–1) 95.3-273.0 157.5 72.4 327-1158.8 725.3 421.3 278.1-
685 478.1 196.9

Ammonia NH3 (µg L–1) 5.1-185.3 55.8 65.9 26.6-347.4 97.9 123.8 17.1-
923.1 373.2 398.7

Nitrite NO2− (µg L–1) 1.2-25.5 11.6 9.1 2.1-34.2 10.1 12.4 1.2-5.4 3.2 1.4

Nitrate NO3− (µg L–1) 12.0-310.8 117.2 128.5 5-21.4 9.9 6.2 4.4-6.7 6.6 1.7
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rate was found for nauplii (0.314 d-1), whereas the 
lowest rate was found for Cyclopoida copepods 
(0.005 d-1). The other groups had mortality rates 
< 0.05 d-1 (Table II). 

Relationship between community attributes 
and limnological descriptors
We could not detect an influence of the 
limnological descriptors neither on the 
proportion of dead microcrustaceans nor on 
the mortality rates (p > 0.05, GLM with binomial 
distribution). The corrected and the formalin-
preserved species abundances were associated 
with the same variables in the model: 
conductivity, total solids and phosphorus. 
However, the chlorophyll a was only selected in 
the formalin-preserved abundance (traditional 
formalin studies). 

The power of the RDA axis was 92% for the 
formalin-preserved abundance approach; 60% 
of the variance was explained by the first axis. 
For the corrected approach (disregarding dead 
organisms), the power of the axis was slightly 

higher (96%), with 59% of the variance explained 
by the first axis (Figure 5).

DISCUSSION

Our study showed that, even though the 
proportion of dead microcrustaceans may 
reach high values the formalin-preserved 
abundances did not significantly differ from the 
corrected abundances. Therefore, traditional 
preservation techniques with formalin do not 
overestimate species abundance in tropical 
reservoirs. Nevertheless, these values should 
not be disregarded, because the corrected 
and the formalin-preserved abundances were 
correlated with distinct limnological descriptors. 
This shows that some environmental variables 
may be neglected or erroneously associated 
when formalin-preserved abundances are used. 
The proportion of dead microcrustaceans and 
the mortality rate were not related to any of the 
limnological descriptors of the reservoirs. This 
indicates that the mortality values in tropical 
reservoirs may be related to other factors, 

Figure 3. First two 
canonical axes of the 
PCA for three reservoirs 
in the neotropical 
semiarid ecosystem 
(Pernambuco, Brazil). 
The arrow indicates 
the variables that most 
positively influenced 
axis 1 (chlorophyll a 
and pH. Only scores 
of the first axis were 
interpreted, according 
to the Broken-Stick 
selection criteria. 
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such as parasitism, viruses, toxic effects of 
cyanobacteria and algal blooms, for example 
(Comps et al. 1991, Gladyshev et al. 2003, Bickel 
et al. 2011, Tang et al. 2014, Dubovskaya et al. 
2015).

This is the first study in the Neotropical region 
in continental aquatic environments to consider 
the proportion of dead microcrustaceans and 
their mortality rates. All previous mortality 
studies on zooplankton inhabiting reservoirs 
using the blue aniline method, were performed 
in Russia (Dubovskaya 1987, Sergeeva et al. 1989, 
Dubovskaya et al. 2004, Dubovskaya 2005). The 
low number of studies could be related to a 
common opinion among researchers that all 
animals in the water column are alive during 
the sampling. According to Elliott & Tang (2011), 
neglecting such information could result in 
unrealistic ecological data, and our study 
supports their argument. Other studies have 
highlighted the importance of considering dead 

organisms. Semenova (2011) found that dead 
microcrustaceans reached 26% in abundance 
and 49% in biomass in a lake close to the Baltic 
Sea under high anthropogenic influence. This 
reduction in abundance and biomass values 
should not be ignored in ecological studies, as 
it may lead to errors, such as overestimating 
carcass-mediated nutrient and carbon fluxes 
(Tang et al. 2014). 

An important issue is whether dead 
organisms actually correspond to real carcasses 
or whether they are dying from the sampling 
process. It is still unknown how the handling 
of samples may increase zooplankton mortality 
(Daase et al. 2014). Bickel et al. (2011) determined 
that marine copepods may die because of the 
boat engine turbulence. To avoid mortality 
caused by handling stress, our samples were 
taken slowly and by means of filtering a lower 
volume in relation to the samples collected for 
formalin preservation, minimising the possible 

Figure 4. Percentages of microcrustacean mortality in three reservoirs in the neotropical semiarid ecosystems 
(Pernambuco, Brazil). Because of the reduced number of individuals (< 100 ind.) in the sewage discharge reservoir 
(SDR, white bars), it was not possible to calculate the proportion of dead microcrustaceans in the rainy season. L—
Limnetic, LIT—Littoral. The arrow indicates the highest proportion of dead organisms recorded.
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consequences of sampling artefacts. Therefore, 
we believe that death by sampling stress is 
negligible in this study.

In our study, the hypothesis of abundance 
overestimation when dead organisms are not 
considered was rejected. This shows that if we 
had considered only the traditional formalin 
methodology, we would not have overestimated 
the abundance of zooplankton available for 
grazing, for example. Even so, the high proportion 
of dead microcrustaceans found in our study 
suggests the importance of not neglecting 
dead zooplankton at the time of collection in 
aquatic ecological studies. This is because non-
predatory mortality affects not only zooplankton 
population dynamics, but also microbial and 
benthic food networks (Dubovskaya et al. 2015). 
There are still few studies in the literature that 
considered the non-predatory mortality of 
microcrustaceans worldwide (Giesecke et al. 
2017, Krautz et al. 2017). This number is even 
lower for freshwater ecosystems (Tang et al. 
2014). This shows the need for further studies 

to improve our comprehension of the mortality 
patterns for freshwater zooplankton, especially 
in tropical semiarid areas.

We also found the highest mortality 
proportion (%) and mortality rates (d-1) in the 
reservoir that is used for sewage discharge. 
The higher ratios for microcrustacean mortality 
are usually associated with polluted areas or 
ecosystems under high anthropogenic pressure 
(Semenova 2010, Bickel et al. 2011, Tang et al. 
2014). The proportion of dead individuals was 
also high in the reservoir used for aquaculture. 
Intensified aquaculture activities may cause 
a series of negative effects, including the 
deterioration of water quality and ecological 
damages for the entire aquatic biota (Zhou et al. 
2011, Arruda et al. 2017). 

In nature, organisms live in constant trade-
offs between surviving, growing and reproducing 
(Litchman et al. 2013). In our study, the mortality 
rate was higher for nauplii. Overall, high mortality 
rates for young stages of copepods are to be 
expected. The life cycle of copepods is longer 

Table II. Results of laboratory experiments to determine the non-predatory mortality rate of planktonic 
microcrustaceans in three reservoirs in neotropical semiarid ecosystems (Pernambuco, Brazil).

Number of 
individuals Temperature (°C)

Total 
decomposition 

(days) 
Mortality rate (d-1)

CLADOCERA

Daphniidae 5 25 °C 6.0 0.047

Chydoridae 55 25 °C 16.0 0.000

Macrothricidae 29 25 °C 10.0 0.000

COPEPODA

Nauplii 71 25 °C 3.0 0.314

Calanoida 53 25 °C 9.7 0.035

Cyclopoida 66 25 °C 9.3 0.005
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compared to other zooplankton groups and 
may have higher mortality rates before reaching 
adulthood (Santos et al. 2013). Indeed, the 
high production of young stages is considered 
an adaptive strategy to compensate for high 
mortality rates before reaching adulthood 
(Espíndola et al. 2000). When the environment 
suffers constant impacts, as in the case of the 
reservoirs of this study, a higher mortality of 
the younger stages is to be expected. Elliott 
& Tang (2011b), for example, observed a 30% 
non-predatory mortality for naupliar stages of 
copepods. In addition, McCauley et al. (2017) 
observed mortality of all larval forms and 
higher mortality for small-sized copepods 
when studying the negative impact of marine 
seismic survey air gun operations. Furthermore, 
Futuyma (2002) argues that organisms usually 
invest energy for their own body development 
in stressful situations, such as in the presence 
of predators. This sort of behaviour avoids 

wasting resources on an offspring with little or 
no chance of survival. On the other hand, large-
sized zooplankton are better competitors when 
resources become limiting. This is because they 
can survive even at lower levels of food and may 
feed on a wider size range of particles (Gliwicz 
1969, Bonecker et al. 2011).

Individuals from the Chydoridae family were 
the last to have their carcasses decomposed. 
This could be related to their peculiar features 
such as being phytophile, with a robust and 
thick carapace (Fryer 1995, Sousa & Elmoor-
Loureiro 2008). On the other hand, family 
Daphniidae, a typically planktonic family, 
with finer and delicate carapace, was the first 
to reach total decomposition. Both carcass 
decomposition and microcrustacean mortality 
rates had high variability, and there are virtually 
no studies that have been performed in similar 
ecological systems. Zooplankton carcasses 
are “hot spots” of pelagic microorganism 

Figure 5. Redundancy Analysis (RDA) of microcrustaceans (Cladocera and Copepoda) and environmental 
descriptors that were significant in the analysis considering formalin-preserved abundance (a) and corrected 
abundance values (b) in three reservoirs in neotropical semiarid ecosystems (Pernambuco, Brazil). In red, 
we highlight the variable that was selected only in the formalin-preserved abundance (traditional studies of 
formaldehyde). The arrows indicate the influence vectors of each explanatory variable.
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activity (Tang et al. 2006b, Elliott et al. 2010). 
Therefore, providing a comprehensive picture 
on the decomposition of carcasses is crucial 
for calculating remineralisation rates by the 
bacterial community and understanding 
ecosystem dynamics (Kolmakova et al. 2019). 

The proportions of dead microcrustaceans 
and the mortality rates were not related to 
any of the limnological descriptors in these 
neotropical semiarid reservoirs. Although other 
studies found similar results (Besiktepe et al. 
2015), there are other variables that could be 
causing mortality. Predation has a major impact 
on zooplankton (Ersoy et al. 2019), but for ponds 
and reservoirs the decline of organisms in the 
environment is mostly related to non-predatory 
mortality, leaving carcasses intact for hours or 
several days (Gries & Güde 1999, Dubovskaya et 
al. 2003). 

Although Tang et al. (2006a) found that 
temperature is a variable that affects mortality 
rate, we found no relationship between 
temperature and the decomposition or mortality 
rates of planktonic microcrustaceans. In general, 
resident tropical semiarid species are already 
adapted to high temperatures (Barbosa et al. 
2012), which does not mean that these species 
can handle temperature increases. Although we 
did not find a relationship with temperature, it 
is known that increases in this variable (such as 
from climate change) could promote changes 
in the patterns of zooplanktonic organisms 
and impact energy transfer and nutrient flow 
along aquatic food webs (Meerhoff et al. 2007, 
Jeppesen et al. 2014, Tang et al. 2014). Temperature 
rises may favour a few zooplankton species, 
promoting increases in abundance (Hall & 
Burns 2002, Mantovano et al. 2019), but may also 
affect individual metabolisms, increasing energy 
expenditure (Regaudie-de-Gioux & Duarte 2012), 
which could indirectly affect the mortality rate 
by affecting the individual fitness. 

Considering the importance of determine 
mortality rates, particularly with such a simple 
and easily applied method (Tang et al. 2006a, 
Capua & Mazzocchi 2017), we argue that future 
studies should include this approach to 
improve the understanding of global patterns 
in non-predatory mortality, as has already been 
pointed out by Tang et al. (2014). Therefore, 
other studies about non-predatory mortality 
on microcrustaceans in broader temporal and 
spatial scales must be developed to provide a 
more accurate estimate of the influence that 
non-predatory mortality on ecological indexes, 
particularly in continental aquatic ecosystems.
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