Acessibilidade / Reportar erro

Nanotechnology in dental implants of medically compromised patients: is this the right way forward?

Nanotechnology has achieved wide attention in scientific media and can be defined as science engaged in design, synthesis, characterization and application of materials and devices whose smallest functional organization at the nanometer scale (Siegel & Fougere 1995SIEGEL RW & FOUGERE GE. 1995. Mechanical properties of nano-phase metals. Nanostruct Mater 6: 205-216. https://doi.org/10.1016/0965-9773(95)00044-5.
https://doi.org/10.1016/0965-9773(95)000...
). Innovative findings on nanoroughness are valuable in the fields of dental implantology, maxillofacial or orthopedic implant surfaces and on cardiovascular implants.

Some advantages of nanoroughness on titanium dental implants include increasing of surface area, improvement of cell attachment and biomechanical interaction of implant with bone (Pachauri et al. 2014PACHAURI P, BATHALA LR & SANGUR R. 2014. Techniques for dental implant nanosurface modifications. J Adv Prosthodont 6: 498-504. https://doi.org/10.4047/jap.2014.6.6.498.
https://doi.org/10.4047/jap.2014.6.6.498...
). Nanoparticles used in the coating of dental implants present osteointegrative (Al2O3, hydroxyapatite, calcium phosphate), antimicrobial (silver, zinc, cooper, quercitrin, chlorhexidine), and osteointegrative and antimicrobial (TiO2, nano-crystalline diamond) activities (Parnia et al. 2017PARNIA F, YAZDANI J, JAVAHERZADEH V & MALEKI DIZAJ S. 2017. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J Pharm Pharm Sci 20: 148-160. https://doi.org/10.18433/J3GP6G.
https://doi.org/10.18433/J3GP6G...
). Nanohydroxyapatites have nanostructured surface with higher surface area and higher reactivity, letting them to bind to bone creating a biomimetic coating on implants (Yazdani et al. 2018YAZDANI J, AHMADIAN E, SHARIFI S, SHAHI S & MALEKI DIZAJ S. 2018. A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 105: 553-557. https://doi.org/10.1016/j.biopha.2018.06.013.
https://doi.org/10.1016/j.biopha.2018.06...
). However, more investigations are needed to develop an effective implant due to the interaction of cells and biomaterial surface after implantation. Despite these advances, the clinical relevance of surface nanoroughness of dental implant in clinically healthy patients is poorly known (Matos 2021MATOS GRM. 2021. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg 20: 1-4. https://doi.org/10.1007/s12663-020-01437-5.
https://doi.org/10.1007/s12663-020-01437...
, Zhang et al. 2021ZHANG Y, GULATI K, LI Z, DI P & LIU Y. 2021. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11: 2489. https://doi.org/10.3390/nano11102489.
https://doi.org/10.3390/nano11102489...
).

On the other hand, in medically compromised patients with advanced age, diabetes mellitus, smokers, using bisphosphonates due to osteoporosis or in head and neck radiotherapy, the osseointegration is still a challenge for dental implant therapy (Gómez-de Diego et al. 2014GÓMEZ-DE DIEGO R, MANG-DE LA ROSA M, ROMERO-PÉREZ MJ, CUTANDO-SORIANO A & LÓPEZ-VALVERDE-CENTENO A. 2014. Indications and contraindications of dental implants in medically compromised patients: update. Med Oral Patol Oral Cir Bucal 19: 483-489. https://doi.org/10.4317/medoral.19565.
https://doi.org/10.4317/medoral.19565...
, Turri et al. 2016TURRI A, ROSSETTI PH, CANULLO L, GRUSOVIN MG & DAHLIN C. 2016. Prevalence of peri-implantitis in medically compromised patients and smokers: a systematic review. Int J Oral Maxillofac Implants 31: 111-118. https://doi.org/10.11607/jomi.4149.
https://doi.org/10.11607/jomi.4149...
, Zhang et al. 2021ZHANG Y, GULATI K, LI Z, DI P & LIU Y. 2021. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11: 2489. https://doi.org/10.3390/nano11102489.
https://doi.org/10.3390/nano11102489...
). In these cases, the clinical and radiographic follow up must emphasize criteria such as pain, mobility, bone crest loss, probing depth, and peri-implantitis. Genetic factors, such as polymorphisms in interleukin 1 (IL-1) genes, can be utilized to reduce the chances of failure (Dirschnabel et al. 2011DIRSCHNABEL AJ, ALVIM-PEREIRA F, ALVIM-PEREIRA CC, BERNARDINO JF, ROSA EAR & TREVILATTO PC. 2011. Analysis of the association of IL1B(C-511T) polymorphism with dental implant loss and the clusterization phenomenon. Clin Oral Implant Res 22: 1235-1241. https://doi.org/10.1111/j.1600-0501.2010.02080.x.
https://doi.org/10.1111/j.1600-0501.2010...
). It is also worth mentioning that the incorporation of nanoparticles in implant coatings must be properly fixated to the surface due to the cytotoxicity and potential hazard (Mao et al. 2018MAO BH, CHEN ZY, WANG YJ & YAN SJ. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8: 2445. https://doi.org/10.1038/s41598-018-20728-z.
https://doi.org/10.1038/s41598-018-20728...
), specially in compromised patients.

Therefore, nanotechnologies in the dental implant surface should be developed aiming to improve the prognosis the medically compromised patients based on the specific features of diseases or clinical conditions (e.g. diabetes mellitus), forming a barrier to the ingress of oral pathogens. In this context, would be this the right way forward?

REFERENCES

  • DIRSCHNABEL AJ, ALVIM-PEREIRA F, ALVIM-PEREIRA CC, BERNARDINO JF, ROSA EAR & TREVILATTO PC. 2011. Analysis of the association of IL1B(C-511T) polymorphism with dental implant loss and the clusterization phenomenon. Clin Oral Implant Res 22: 1235-1241. https://doi.org/10.1111/j.1600-0501.2010.02080.x.
    » https://doi.org/10.1111/j.1600-0501.2010.02080.x
  • GÓMEZ-DE DIEGO R, MANG-DE LA ROSA M, ROMERO-PÉREZ MJ, CUTANDO-SORIANO A & LÓPEZ-VALVERDE-CENTENO A. 2014. Indications and contraindications of dental implants in medically compromised patients: update. Med Oral Patol Oral Cir Bucal 19: 483-489. https://doi.org/10.4317/medoral.19565.
    » https://doi.org/10.4317/medoral.19565
  • MAO BH, CHEN ZY, WANG YJ & YAN SJ. 2018. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep 8: 2445. https://doi.org/10.1038/s41598-018-20728-z.
    » https://doi.org/10.1038/s41598-018-20728-z
  • MATOS GRM. 2021. Surface roughness of dental implant and osseointegration. J Maxillofac Oral Surg 20: 1-4. https://doi.org/10.1007/s12663-020-01437-5.
    » https://doi.org/10.1007/s12663-020-01437-5
  • PACHAURI P, BATHALA LR & SANGUR R. 2014. Techniques for dental implant nanosurface modifications. J Adv Prosthodont 6: 498-504. https://doi.org/10.4047/jap.2014.6.6.498.
    » https://doi.org/10.4047/jap.2014.6.6.498
  • PARNIA F, YAZDANI J, JAVAHERZADEH V & MALEKI DIZAJ S. 2017. Overview of nanoparticle coating of dental implants for enhanced osseointegration and antimicrobial purposes. J Pharm Pharm Sci 20: 148-160. https://doi.org/10.18433/J3GP6G.
    » https://doi.org/10.18433/J3GP6G
  • SIEGEL RW & FOUGERE GE. 1995. Mechanical properties of nano-phase metals. Nanostruct Mater 6: 205-216. https://doi.org/10.1016/0965-9773(95)00044-5.
    » https://doi.org/10.1016/0965-9773(95)00044-5
  • TURRI A, ROSSETTI PH, CANULLO L, GRUSOVIN MG & DAHLIN C. 2016. Prevalence of peri-implantitis in medically compromised patients and smokers: a systematic review. Int J Oral Maxillofac Implants 31: 111-118. https://doi.org/10.11607/jomi.4149.
    » https://doi.org/10.11607/jomi.4149
  • YAZDANI J, AHMADIAN E, SHARIFI S, SHAHI S & MALEKI DIZAJ S. 2018. A short view on nanohydroxyapatite as coating of dental implants. Biomed Pharmacother 105: 553-557. https://doi.org/10.1016/j.biopha.2018.06.013.
    » https://doi.org/10.1016/j.biopha.2018.06.013
  • ZHANG Y, GULATI K, LI Z, DI P & LIU Y. 2021. Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11: 2489. https://doi.org/10.3390/nano11102489.
    » https://doi.org/10.3390/nano11102489

Publication Dates

  • Publication in this collection
    02 Dec 2022
  • Date of issue
    2022

History

  • Received
    22 May 2022
  • Accepted
    14 Aug 2022
Academia Brasileira de Ciências Rua Anfilófio de Carvalho, 29, 3º andar, 20030-060 Rio de Janeiro RJ Brasil, Tel: +55 21 3907-8100 - Rio de Janeiro - RJ - Brazil
E-mail: aabc@abc.org.br