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ABSTRACT

Trypanosoma cruzi, the etiological agent of Chagas’ disease, occurs as different strains or isolates that may

be grouped in two major phylogenetic lineages: T. cruzi I, associated with the sylvatic cycle and T. cruzi

II, linked to the human disease. In the mammalian host the parasite has to invade cells and many studies

implicated the flagellated trypomastigotes in this process. Several parasite surface components and some of

host cell receptors with which they interact have been identified. Our work focused on how amastigotes,

usually found growing in the cytoplasm, can invade mammalian cells with infectivities comparable to that

of trypomastigotes. We found differences in cellular responses induced by amastigotes and trypomastigotes

regarding cytoskeletal components and actin-rich projections. Extracellularly generated amastigotes of T.

cruzi I strains may display greater infectivity than metacyclic trypomastigotes towards cultured cell lines as

well as target cells that have modified expression of different classes of cellular components. Cultured host

cells harboring the bacterium Coxiella burnetii allowed us to gain new insights into the trafficking properties

of the different infective forms of T. cruzi, disclosing unexpected requirements for the parasite to transit

between the parasitophorous vacuole to its final destination in the host cell cytoplasm.

Key words: Trypanosoma cruzi, cellular invasion, amastigotes, trypomastigotes, parasitophorous vacuole

escape, trafficking, Coxiella burnetii, phylogenetic lineages.

OVERVIEW

Since the pioneering studies by Herta Meyer and

co-workers that initiated in vitro studies of T. cruzi

development within cultured cells (Meyer and Xa-

vier de Oliveira 1948) followed by the detailed de-

scription provided by James Dvorak and Thomas

Hyde on how cells become infected by T. cruzi try-
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pomastigotes (Dvorak and Hyde 1973), numerous

studies have been performed in order to understand

the molecular mechanisms that underlie the rather

complex process of parasite entry into mammalian

host cells. A number of significant contributions

have provided evidence for the participation of both

parasite and cellular components. Unfortunately,

some of this work have established mechanisms

that turned out not to be as universal or general as

initially supposed (Ming et al. 1995, Ortega-Barria
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and Pereira 1991, Tardieux et al. 1992, 1994). On

the contrary, it has become increasingly apparent

that a rather complex interplay of signaling cas-

cades involving both parasite and cellular compo-

nents seems to operate (Burleigh and Woolsey 2002,

Yoshida 2002). More recently, the discovery of dif-

ferences in the invasion mechanisms engaged by

metacyclic trypomastigotes from the two major

phylogenetic lineages of the parasite opened new

possibilities to deepen studies on this already intri-

cate process (Neira et al. 2002).

After entering host cells, trypomastigotes are

usually found in an acidic membrane-bound com-

partment referred to as phagosome or parasito-

phorous vacuole (PV), from where they eventually

escape to differentiate into amastigotes in the cyto-

plasm (Kress et al. 1975, Ley et al. 1990, Meirelles

et al. 1986, 1987, 1992, Milder and Kloetzel 1980,

Nogueira and Cohn 1976, Tanowitz et al. 1975). In

the course of these studies, it became apparent that

amastigotes, prematurely released from infected

cells or generated by the extracellular differentia-

tion of released tissue-culture derived trypomastig-

otes (TCTs), could also infect cultured cells and an-

imals (Behbehani 1973, Hudson et al. 1984, Ley

et al. 1988, Nogueira and Cohn 1976). Systematic

studies on cell invasion and PV escape carried out in

our laboratory have reinforced the notion that each

infective form of the parasite displays a unique in-

terplay with the specific target host cell with which

it interacts. Not only the parasite infective form is

relevant but also the strain (and phylogenetic ori-

gin) will determine the outcome of the interaction.

Furthermore, if target mammalian cells are doubly

infected with Coxiella burnetii, the destination and

nature of the intracellular compartments that con-

tain T. cruzi infective forms will also be affected.

The variety of mechanisms used for invasion and

escape from the parasitophorous vacuoles engaged

by amastigotes and trypomastigotes is consistent

with the complex repertoires of both infective forms

and surface molecules that the parasite has evolved

to ensure host colonization.

EARLY OBSERVATIONS ON THE ENTRY OF
TRYPOMASTIGOTES AND EXTRACELLULAR

AMASTIGOTES IN HeLa AND Vero CELLS

It has become increasingly evident that several

intracellular pathogens specialized in subverting

host cell pathways to their benefit. This is particu-

larly well characterized for invasive bacteria such as

Shigella, Listeria and enteropathogenic Escherichia

coli (EPEC) (Bourdet-Sicard et al. 2000, Cossart

1997, Dramsi and Cossart 1998, Frischknecht and

Way 2001, Goosney et al. 2000). Interaction be-

tween EPEC and HeLa cells involved aggregation

of surface microvilli at the points where the bac-

terium attached to the dorsal surface of cultured

HeLa cells (Silva et al. 1989). In order to promote

the interaction, the bacteria were centrifuged onto

the cells and actin aggregation was monitored by

staining cells with fluorescently labeled phalloidin,

using what is now known as the FAS (fluorescent

actin staining) assay (Silva et al. 1989). Earlier

data in the literature indicated that amastigotes (or

amastigote-like forms) could be generated by the

extracellular differentiation of trypomastigotes and

these forms were capable of invading cultured cells

(Behbehani 1973, Hudson et al. 1984, Ley et al.

1988, Nogueira and Cohn 1976). Using the EPEC-

derived protocol, we then centrifuged extracellular

amastigotes of the G strain onto HeLa cells and ob-

served that they promptly aggregate actin filaments

by attaching to dorsal surface microvilli (Mortara

1991). Microvillus aggregation was followed by the

formation of cup-like structures underneath the par-

asite (Figure 1), that resemble the pedestals formed

during EPEC attachment/effacing (Rosenshine and

Finlay 1993). Extracellular amastigote invasion can

be easily detected by several techniques, including

freeze-fracture replicas of recently-infected HeLa

cells (Figure 2).

By contrast, trypomastigotes enter HeLa cells

by penetrating at their borders (Mortara 1991), a

behavior that had been described by Schenkman et

al. (1988). Interestingly, the invasion of HeLa cells

by trypomastigotes induced the formation of previ-

ously undescribed actin-rich pseudopodial protru-
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Fig. 1 – Formation of a cup-like pedestal (arrow) upon invasion

of HeLa cells by extracellular amastigotes. Transmission elec-

tron microscopy of HeLa cells recently infected with G strain

extracellular amastigotes. Bar: 500 µm.

Fig. 2 – Extracellular amastigotes are highly infective to HeLa

cells and are promptly visualized in the cytoplasm. Freeze-

fracture replica of recently invaded parasite inside a HeLa cell.

The parasite flagellar pocket (arrow) can be clearly seen and the

nuclear membrane of the host cell (N) identified by the presence

of nuclear pores. Bar: 400 µm.

sions around the parasites (Figure 3, Schenkman

and Mortara 1992). This phenomenon was not in-

hibited by cytochalasin D indicting that the major

driving force derived from the parasite, and was de-

tected in HeLa but not in MDCK cells (Schenkman

Fig. 3 – Formation of sleeve-like pseudopodia around trypo-

mastigotes invading HeLa cells. Scanning electron microscopy

showing the membrane expansion (arrow) around the invading

trypomastigote (Schenkman and Mortara 1992). Bar: 2 µm.

and Mortara 1992). Later on, other investigators

found similar pseudopodial extensions around try-

pomastigotes invading cadiomyocytes (Barbosa and

Meirelles 1995).

We further investigated the entry of extracel-

lular amastigotes into HeLa and Vero cells using

the centrifugation protocol and compared the results

with metacyclic trypomastigotes. First, we con-

firmed that the mechanisms of cell invasion used

by the two forms is distinct, in line with results of

Schenkman et al. (1991a) that observed no compe-

tition towards cell binding between the two forms.

We then treated the mammalian target cells with

cytochalasin D and nocodazole to evaluate the role

of actin and tubulin mobilization. Cytochalasin D

always inhibited amastigote invasion indicating

that unlike what was observed for trypomastigotes,

amastigotes had a more passive role in the entry pro-

cess. Nevertheless, the main conclusion was that

the effect of a particular drug was specific and un-

predictable (inhibitory or stimulatory) for a parasite

infective form and a particular host cell (Procópio

et al. 1998).

Besides the formation of the surface cups in

HeLa cells, we also noticed a remarkable response

to extracellular amastigotes when they invade Vero
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cells. In this fibroblastic cell line devoid of surface

microvilli, protrusive lamellae formed at the sites

of amastigote invasion (Procópio et al. 1999) were

markedly similar to shown by attaching Shigella

flexneri (Bourdet-Sicard et al. 2000, Clerc and

Sansonetti 1987, Tran et al. 2000). In figure 4

the co-localization of different actin-binding pro-

teins and actin filaments in the membrane projec-

tions involved in T. cruzi invasion of HeLa and Vero

cells is illustrated. In all the actin-rich membrane

extensions formed around invading amastigotes or

trypomastigotes, accumulation of cytoskeletal ele-

ments, integrins or matrix elements could be de-

tected, with some variability observed between the

infective forms and target cells (Procópio et al.

1999). These results were again consistent with

the notion that each parasite-host cell pair mobilizes

specific interacting components (see Table I).

INTRACELLULAR VS. EXTRACELLULAR
AMASTIGOTES AS INFECTIVE FORMS

OF THE PARASITE

Although intracellular amastigotes are larger and

slightly more elongated than extracellular forms

(Barros et al. 1996), they share biochemical and

ultrastructural similarities (Andrews et al. 1987,

Ley et al. 1988, Villalta and Kierszenbaum 1982)

and express similar antigenic stage-specific markers

(Andrews et al. 1987, Barros et al. 1997, Pan and

McMahon-Pratt 1989, Silva et al. 1998, Verbisck

et al. 1998). Studies with strains of T. cruzi I and

II, suggest that the expression of the epitopes de-

fined by monoclonal antibodies may vary consider-

ably among intracellular and extracellular amastig-

otes of the two lineages (Verbisck et al. 1998). Fur-

ther studies with isolates from chagasic patients tend

to confirm this extensive polymorphism (Silva C.V.,

unpublished observations).

While previous results from the literature have

provided conflicting evidence regarding the infec-

tivity of T. cruzi intracellular amastigotes (Carvalho

et al. 1981, Ley et al. 1988, Ulisses de Carvalho

and De Souza 1986, Umezawa et al. 1985), there

are reports that infective extracellular amastigotes

resist antibody-independent complement lysis (Iida

et al. 1989). We found that intracellular amastig-

otes (isolated from infected cells) of strains from

both T. cruzi I or T. cruzi II groups are highly sus-

ceptible to complement lysis and poorly infective

to either Vero or HeLa cells, as well as to MDCK

cells transfected with Rho GTPases (Barros 1996,

Fernandes and Mortara 2004). A plausible explana-

tion for these results is that intracellular amastigotes

are committed to growth within a sheltered environ-

ment whereas extracellular forms have to cope with

a more hostile milieu where they may encounter not

only specific antibodies (Andrews 1989) but also

complement proteins (Iida et al. 1989). Acquisition

of complement resistance and infectivity by extra-

cellular amastigotes is certainly an interesting and as

yet poorly understood process that deserves further

investigation.

T. cruzi INVASION OF CELLS TRANSFECTED WITH
CYTOSKELETAL ELEMENTS, CARBOHYDRATES

OR REGULATORY Rho-GTPases

In the course of our studies we used a number of

available cell lines with altered expression of distinct

components. Cytoskeletal mutants of a melanoma

cell line expressing varying amounts of actin binding

protein 280, ABP280 (Cunningham et al. 1992), a

microfilament cross-linking protein, as well as NIH

mouse fibroblasts expressing variable amounts of

the actin assembly regulator protein gelsolin

(Cunningham et al. 1991) display distinct suscep-

tibility towards metacyclic trypomastigotes or ex-

tracellular amastigotes of the G strain (Procópio et

al. 1998). We also observed that CHO cells with

poorly sialylated proteins (Lec-2 cells, Deutscher et

al. 1984) are slightly more susceptible to extracel-

lular amastigotes, when compared to the normal

controls (Stecconi-Silva et al. 2003).

The observation that amastigotes and trypo-

mastigotes become associated with distinct actin-

rich projections upon cell invasion prompted us to

examine the role of regulatory Rho GTPases in this

process. Constitutively activated (GTPase activity

deficient) mutants of RhoA and Rac1 were found to
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Fig. 4 – Formation of actin-rich membrane extensions around invading T. cruzi infective forms (arrows). A: formation of sleeve-like

pseudopodia around trypomastigotes invading HeLa cells, Nomarski DIC image; A’: f-actin labeling with phalloidin-Rhodamine; A”:

merged image of actin (red), cytoplasmic f-actin binding protein ABP280 (green), and DNA labeling with DAPI (blue). B: formation of

cup-like projections around amastigotes invading HeLa cells, DIC image; B’: f-actin labeling with phalloidin-Rhodamine; B”: merged

image with actin (red), cytoplasmic f-actin binding protein gelsolin (green), and DNA labeling with DAPI (blue). C: Crater-like

projections around amastigotes invading Vero cells, DIC image; C’: f-actin labeling with phalloidin-Rhodamine; C”: merged image

of actin (red), cytoplasmic f-actin binding protein tropomyosin (green), and DNA labeling with DAPI (blue) (Procópio et al. 1999).

Magnification bars in µm.
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TABLE I

Invasion of cultured cells by T. cruzi I and II infective forms.

T. cruzi I T. cruzi II1

Meta2 Ama2 Meta Ama

Actin-rich projection in HeLa cells pseudopodium cup pseudopodium cup

Actin-rich projection in Vero cells none crater none ND

Infectivity towards HeLa and Vero cells low high high low

Infectivity to MDCK Rho-Transfectants low high high low

Cell invasion requires Ca2+ mobilized

from acidocalcisomes2 yes yes no yes

Cell invasion requires Ca2+ mobilized

from IP-dependent compartments2 no no yes no

Effect of C. burnetii on parasite invasion

of Vero cells Decrease Increase Decrease Increase3

Effect of weak bases and vacuolar H+
pump inhibitors4 on invasion of Vero

cell colonized with C. burnetii Decrease Increase Increase Increase

1G strain was used as T. cruzi I prototype and CL as T. cruzi II. 2Meta: metacyclic trypomastigotes; ama: extracellular amastigotes.
3Results of metacyclic trypomastigotes from Neira et al. 2002. 4Weak bases: chloroquine and NH4CL; vacuolar H+ pump
inhibitors: bafilomycin A1 and concanamycin A. ND: not done.

induce the assembly of contractile actin and myosin

filaments (stress fibers) and actin rich surface pro-

trusions (lamellipodia), respectively (Hall 1994,

Ridley et al. 1992, Ridley and Hall 1992). Later,

Cdc42 was shown to promote the formation of actin-

rich, finger like membrane extensions (filopodia)

(Kozma et al. 1995, Nobes and Hall 1995). Thus,

RhoA, Rac1, and Cdc42 regulate three separate sig-

nal transduction pathways, linking plasma mem-

brane receptors to the assembly of distinct filamen-

tous actin structures. In order to evaluate the rela-

tive importance of RhoA GTPases in host cell inva-

sion by different T. cruzi infective forms of distinct

strains, we used MDCK cells transfectants that ex-

press variants of RhoA, Rac1 and Cdc42 proteins

(Jou and Nelson 1998). We demonstrated that meta-

cyclic trypomastigotes from strains of T. cruzi I pre-

sented lower infectivity than T. cruzi II parasites for

the different target cells, with no apparent specific

requirement for GTPases (Fernandes and Mortara

2004). As previously noted, regardless of the strain

analyzed, intracellular amastigotes were not only

susceptible to complement lysis but also showed

very low infectivity towards the different transfec-

tants. Extracellular amastigotes from G strain in-

fected transfected MDCK cells more efficiently

than the other strains. Invasion was particularly

high in Rac1V12 cells and was specifically reduced

in the corresponding dominant negative line

Rac1N17 suggesting a key role for Rac in this inva-

sion process (Fernandes and Mortara 2004).

CELL INVASION BY EXTRACELLULAR
AMASTIGOTES AND METACYCLIC

TRYPOMASTIGOTES OF STRAINS FROM
THE TWO MAJOR PHYLOGENETIC LINEAGES

Several laboratories have confirmed the observation

that T. cruzi infective forms from different strains

display distinct infectivities towards cells and ani-

mals (Alves et al. 1986, Meirelles et al. 1982b,

Melo and Brener 1978). Recent characterization of

two major phylogenetic lineages of the parasite es-

tablished that T. cruzi I strains are associated

with the sylvatic cycle whereas T. cruzi II isolates
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are found mainly in patients and vectors in human

dwellings (Souto et al. 1996). The comprehen-

sive work by Nobuko Yoshida and co-workers (see

below) established that metacyclic trypomastigotes

from T. cruzi I (G strain) engage different signaling

mechanisms to invade HeLa cells when compared

to T. cruzi II (CL strain) (Neira et al. 2002).

When we initiated the studies of extracellu-

lar amastigote infection, it soon became apparent

that these forms of the G strain (T. cruzi I) were

usually much more infective than the correspond-

ing metacyclic trypomastigotes. This was true not

only for Vero and HeLa cells (Mortara 1991, Procó-

pio et al. 1998, Procópio et al. 1999) but also for

the sialic acid mutant Lec-2 cells (Stecconi-Silva

et al. 2003). Of all target mammalian cells em-

ployed so far, only in the case of MDCK cells and

the Rho transfectants, was metacyclic trypomastig-

otes infectivity higher than the corresponding extra-

cellular amastigotes (see Table I and Fernandes and

Mortara 2004).

When the infectivity of extracellular amastig-

otes derived from sylvatic type I strains was system-

atically compared to type II parasites, we always

found that the former, particularly of the G strain,

were much more infective (Barros 1996, Fernandes

and Mortara 2004, Mortara et al. 1999). Interest-

ingly, this higher infectivity trend followed the ex-

pression of a surface carbohydrate epitope defined

by Mab 1D9 (Barros et al. 1997), that is correspond-

ingly high in extracellular amastigotes of T. cruzi I

strains and low in T. cruzi II isolates (Mortara et al.

1999, Verbisck et al. 1998). Moreover, the carbo-

hydrate epitope defined by Mab 1D9 is present in

the same protein that also contains another epitope

designated Ssp-4, defined by Mab 2C2 (Andrews

et al. 1987, Barros et al. 1997). Unlike 2C2 that

is restricted to the surface of intracellular and ex-

tracellular amastigotes, the epitope defined by Mab

1D9 is also present in intracellular compartments

such as cytoplasmic vesicles and Golgi apparatus

(Barros et al. 1997). Consistent with the higher ex-

pression on the more infective T. cruzi I extracellular

amastigotes, Mab 1D9 and its Fab fragments were

also shown to specifically inhibit parasite invasion

(Barros et al. 1993, Barros 1996). Unfortunately,

due to the nature of the immunoglobulin (IgG3) that

precipitated upon isolation, the identification of this

epitope of extracellular amastigotes has so far not

been possible.

Why extracellular amastigotes of highly infec-

tive strains such as Y and CL are poorly infective

when compared to type I parasites, particularly G

forms, showing the opposite behavior of the related

trypomastigotes? This is a trend that we constantly

found and that, so far we don’t have a reasonable

explanation. One highly speculative possibility is

that subpatent infection caused by type I parasites

(such as that found in experimental mice) could be

at least in part sustained by the generation of in-

fective extracellular amastigotes. Scharfstein and

Morrot (1999) proposed that extracellular amastig-

otes (of either T. cruzi type) could also play a role

by aggravating the pathology in the chronic phase of

the disease. Possible differences in the expression

of surface ligands required for cell invasion should

also being considered (see below).

Signalling Mechanisms: Role of Calcium Ions

from Acidocalcisomes or IP3-dependent

Compartments

As indicated above, metacyclic trypomastigotes of

the two major phylogenetic lineages use highly di-

vergent signaling mechanisms to invade host cells.

Using drugs to inhibit specific pathways, Yoshida

and collaborators demonstrated that T. cruzi I try-

pomastigotes (the prototype being G strain) engage

adenylate cyclase activation for cellular invasion

whereas CL strain parasites (T. cruzi II prototype)

depend on tyrosine phosphorylation to accomplish

this process (Neira et al. 2002). Also, G strain

metacyclics appear to mobilize intracellular calcium

from acidocalcisomes whereas CL strain parasites

preferentially use (1,4,5-inositol-triphosphate, IP3-

dependent) endoplasmic reticulum stores during in-

vasion (Neira et al. 2002). Preliminary results

from comparative studies between metacyclic try-

pomastigotes and extracellular amastigotes of the
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G strain, indicated that drugs that interfere with ER

calcium mobilization (thapsigargin, A23187 iono-

phore) do not affect invasion of treated amastig-

otes (Stecconi-Silva et al. 2003). Further analy-

sis with other IP3-interfering compounds (caffeine,

neomycin and U73122) confirmed that calcium mo-

bilization in the parasite through IP3 mobilization

is not relevant for cellular invasion by extracellu-

lar amastigotes of either G or CL strains (Table I,

Fernandes A.B., unpublished observations). Inter-

estingly, drugs that interfere with calcium mobiliza-

tion from acidocalcisomes (ionomycin, nigericin,

NH4Cl) inhibit cell invasion by parasites of both

strains (Fernandes A.B., unpublished observations),

in contrast to the results of metacyclic trypomastig-

otes (Neira et al. 2002). From the host cell point

of view, contact with TCT (Tardieux et al. 1994)

or metacyclic trypomastigotes (Dorta et al. 1995),

but not epimastigotes (Tardieux et al. 1994) give

rise to transient calcium influxes. We have observed

that cell extracts of extracellular amastigotes of both

G and CL strains also induce calcium influxes in

HeLa cells loaded with Fura-2 (Fernandes A.B., un-

published observations). These observations sug-

gest that the distinct signaling pathways detected in

metacyclics are not retained by extracellular amasti-

gotes from the two phylogenetic lineages (Table I).

A comprehensive study of these signaling routes is

currently being carried out in our laboratory.

CELL INVASION AND INTRACELLULAR FATE
OF INFECTIVE FORMS

As mentioned earlier, an increasing number of both

cellular and parasitic components that may be rel-

evant for T. cruzi cell invasion have been identified

over the last decades. A pragmatic analysis over

the extensive and varied types of studies could lead

the outsider to conclude that it is still not known

precisely how T. cruzi invades host cells. For inva-

sion to occur the parasite first has to attach, a pro-

cess that can be separated from invasion by lower-

ing temperature or fixing target cells (Andrews and

Colli 1982, Meirelles et al. 1982a, Schenkman et

al. 1991b). Several lines of evidence indicate, how-

ever, that motile trypomastigotes (both TCTs and

metacyclics) promptly attach to fixed cells and in-

vade live cells through an active (meaning parasite-

dependent) mechanism that does not require intact

host cell microfilaments (Schenkman et al. 1991b,

Schenkman and Mortara 1992) but depends on par-

asite energy (Schenkman et al. 1991b). By con-

trast, extracellular amastigote attachment to fixed

cells does not occur (Barros 1996) and invasion de-

pends on functional host cell microfilaments (Mor-

tara 1991, Procópio et al. 1998). A brief glance

into these data immediately uncovers the complex-

ity of the task.

Among the paradigmatic studies that laid new

insights into the invasion mechanism is the descrip-

tion by the group of Norma Andrews that calcium-

dependent lysosomal recruitment takes place dur-

ing trypomastigote invasion (Tardieux et al. 1992,

1994). According to this model, TCTs engage sig-

naling processes that culminate with the formation

of parasitophorous vacuole (Burleigh and Andrews

1998, Burleigh and Woolsey 2002).

New evidences on the participation of compo-

nents of the early endocytic traffic such as dynamin

and Rab5 have indicated that the lysosomal pro-

cess might be more elaborate and downstream of

earlier events (Wilkowsky et al. 2002). We have

also recently obtained evidence that about 20% of

CL strain (T. cruzi II) metacyclic trypomastigotes

may also recruit the early endosome antigen EEA-1

when invading Vero cells harboring the bacterium

Coxiella burnetii (Andreoli and Mortara 2003a).

Using a more quantitative approach to identify

the role of phosphatidyl-inositol 3-kinase (PI3-K)

on the lysosomal pathway, Woolsey et al. (2003)

were able to firmly confirm previous observations

by Wilkowsky et al. (2001) that this cellular key

component could be involved in a lysosome-

independent T. cruzi internalization pathway by

TCTs. Trypomastigotes that use this route mobilize

phosphorylated inositides during the formation of

the parasitophorous vacuole that then matures to be-

come enriched in lysosomal marker LAMP-1. One

important input of this work was that for the first
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time the relative contributions of each mode of en-

try, namely PI3-K (50%), lysosome (20%), and en-

dosomal route (20%) were estimated (Woolsey et al.

2003).

The available information on the mechanisms

of amastigote penetration is comparatively scarcer

than for trypomastigote. In studies on the interac-

tion with macrophages, it has been described that

members of the transialidase-like surface antigens

engage mannose receptors to enter the professional

phagocytes (Kahn et al. 1995). In non- phagocytic

cells we so far have been able to identify the previ-

ously mentioned carbohydrate epitope (defined by

Mab 1D9) as one of the potential molecular can-

didates on extracellular amastigote surface that in-

teract with cultured mammalian cells. The rela-

tive role of PI3-K, endosomal and the already de-

scribed LAMP-1 (Procópio et al. 1998) pathways in

extracellular amastigote invasion will be examined

with the appropriate GFP constructs, described by

Woolsey et al. (2003) that recently became avail-

able to us.

Once inside host cells, trypomastigotes are

thought to secrete TcTOX, a complement 9 (C9)

factor-related molecule that at low pH will destroy

the PV membrane and lead the parasite to the cy-

tosol (Andrews et al. 1990). This lytic activity is

likely to be facilitated by the parasite transialidase

activity on lumenal glycoproteins that protect the

parasitophorous vacuole (Hall et al. 1992). Infec-

tive extracellular amastigotes also secrete TcTOX

(Y and G strains) and transialidase (Andrews and

Whitlow 1989, Ley et al. 1990, Stecconi-Silva et

al. 2003, L’Abbate and Fernandes unpublished ob-

servations). In recent studies we compared how

pH affected cellular invasion and intracellular traf-

fic of metacyclic trypomastigotes and extracellular

amastigotes. We had previously confirmed that re-

cently internalized amastigotes and metacyclic try-

pomastigotes (G strain) can be found in LAMP-1-

containing PVs (Procópio et al. 1998). Raising in-

tracellular pH with weak bases affected metacyclic

invasion and escape from the PV, that was substan-

tially delayed (from 2 to about 10h). By contrast,

the kinetics of amastigote invasion and escape was

not affected (Stecconi-Silva et al. 2003). In agree-

ment with the idea that glycosylation of lysosomal

lumenal glycoproteins is relevant for the protection

of the PV membrane, both parasite forms promptly

escape from PVs formed in CHO cells deficient in

sialylation (Stecconi-Silva et al. 2003).

So far we have been able to identify TcTOX

activities in isolated extracellular amastigotes

(Stecconi-Silva et al. 2003) and tissue-culture de-

rived trypomastigotes (Andreoli and Mortara

2003a). In contrast, metacyclic trypomastigotes

display very weak transialidase activity and unde-

tectable TcTOX (Andreoli and Mortara 2003a,

Stecconi-Silva et al. 2003). Therefore, whereas

extracellular amastigotes display a somewhat pre-

dictable behavior regarding cell invasion and escape,

at present we do not have a consistent model to un-

derstand how metacyclic trypomastigotes actually

escape from their PVs. Using polyclonal antibod-

ies to C9, we have recently been able to detect by

immunofluorescence what appears to be a TcTOX-

related component on intracellular amastigotes

(Andreoli W.K., unpublished observations) and this

tool may be useful to map this component through-

out the intracellular traffic of the different infective

forms. Another interesting observation regarding

metacyclic trypomastigote traffic is that the acquisi-

tion of LAMP-1 molecules by the forming PV does

not parallel its acidification, monitored in vivo by

Lysotracker, a fluorescent probe for acidic intracel-

lular compartments (Molecular Probes, OR, USA,

Andreoli W.K., unpublished observations). This

may indicate that the precise events that lead to PV

maturation might be more elaborate than previously

imagined.

INVASION BY T. cruzi OF Vero CELLS
COLONIZED WITH Coxiella burnetii

The study of cell co-infection may allow the ob-

servation of the behavior of pathogens in the pres-

ence of one another, and provide new insights on

the course of infection and interaction of each

pathogen with the endocytic pathway (Rabinovitch

An Acad Bras Cienc (2005) 77 (1)



86 RENATO A. MORTARA ET AL.

Fig. 5 – Bafilomycin A1 induces dispersion of EGFP-LAMP1-labeled C. burnetti vacuoles. Sequential series of DIC images with the

corresponding fluorescence in cells treated with Baf 1A. Bar in µm.

et al. 1999, Rabinovitch and Veras 1996). In the last

years, we began to examine the behavior of T. cruzi

trypomastigotes upon invasion of cells that had

been previously colonized with Coxiella burnetii,

an obligate intracellular bacterium and causative

agent of Q fever, an opportunistic human pneumo-

nia. C. burnetii may inhabit both phagocytic

and non-phagocytic cells (Baca and Paretsky 1983)

where it forms large cytoplasmic vacuoles with lyso-

somal characteristics by acquisition of hydrolases

and lysosomal markers (LAMP-1 and LAMP-2).

C. burnetii is a well adapted organism that accom-

plishes all metabolic processes at low pH (Hackstadt

and Williams 1981), as it has been established that

their vacuoles maintain an acidic pH during infec-

tion (Maurin et al. 1992). A previously demon-

strated hallmark of C. burnetii vacuoles is their fu-

sogenicity: from inert particles to different intra-

cellular pathogens can easily be targeted to this new

compartment (Rabinovitch et al. 1999). A very use-

ful quality of this system is that persistent infection

can be easily established and cells harboring large

C. burnetti vacuoles can be maintained in culture for

several weeks. We began to exploit this feature to

examine the co-infection with T. cruzi.

Trypomastigotes

The presence of the bacterium (in persistent infec-

tions) per se can hinder infection by trypomastig-

otes (TCTs and metacyclics, CL strain) inVero cells.

However, inhibitors of vacuolar ATPases and weak

bases that also raise intravacuolar pH have a dra-

matic effect on the invasion processes (Andreoli and

Mortara 2003a). Whereas in Vero cells, raising pH

reduces infectivity, presumably by affecting the

lysosomal pathway (Andrews 1995, Tardieux et al.

1992), cells colonized with C. burnetii are more

susceptible to trypomastigote invasion than the un-

treated controls. This unexpected effect probably

reflects the fragmentation of the large vacuole when
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cells are treated with these drugs (Figure 5). One

possibility is that LAMP-1 molecules become in-

creasingly exposed at the cell surface thus facilitat-

ing the lysosomal route for internalization (Kima

et al. 2000).

The ultimate goal of these experiments was

to transfer trypomastigotes from the cytoplasm to

the C. burnetii vacuole, through the fusion between

the bacterium vacuole and PV. Metacyclic trypo-

mastigotes were readily transferred but TCTs es-

caped from their PVs and released themselves into

the cytoplasm. This difference can be accounted

for by the low TcTOX and transialidase activities

in metacyclics: since these forms remain longer in

their PVs (Stecconi-Silva et al. 2003), they have

more opportunities to be transferred to the C. bur-

netii vacuole (Andreoli and Mortara 2003a). In-

travacuolar pH measurements in live cells indicated

that trypomastigotes are preferentially transferred

to more acidic vacuoles (pH 4.0–4.7), and raising

vacuolar pH with the compounds mentioned above,

dramatically decreased transfer efficiency (Andreoli

and Mortara 2003a). A previously undescribed re-

lease of LAMP-1 from the PV is shown in figure 6.

In these studies with cells transfected with GFP-

LAMP-1 we have also obtained evidence that in-

ternalization of metacyclic trypomastigotes may in-

volve erratic translocations of parasites surrounded

by PV membrane through the cytoplasm (Figure 6).

Comparative studies between TCTs and metacyclic

trypomastigotes of T. cruzi I and T. cruzi II strains

suggested, again, that trafficking in Vero cells colo-

nized with C. burnetii may vary substantially among

the different isolates and infective forms (Table I,

L’Abbate C., unpublished observations).

Amastigotes

Bearing in mind our previous experience with

amastigote invasion of HeLa andVero cells, we have

been examining how the intracellular bacteria per-

sistently growing inside Vero cells could affect the

process. We compared T. cruzi I (G strain) extra-

cellular amastigotes with T. cruzi II parasites (CL

strain). Unlike to what was seen for the trypo-

Fig. 6 – T. cruzi metacyclic PVs move inside Vero cells harboring

C. burnetti leaving trails of LAMP-1. Vero cells colonized with C.

burnetii were transfected with eGFP-LAMP1 then infected with

metacyclic trypomastigotes (CL strain). A, B: sequential RGB

merged images (10 seconds interval between images), showing

moving parasites (in colors) with the LAMP-1 trail (arrows) and

large vacuole (V) labeled with eGFP-LAMP-1 that remain still

(thus in gray tones) in the timeframe of the experiment.

mastigotes, the presence of the bacterium per se in-

creased amastigote infectivity of parasites of both

strains (Table I). The observation that the transfer-

ence of amastigotes to the C. burnetii vacuole was
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enhanced by weak bases but reduced by vacuolar

ATPase inhibitors (Fernandes M.C., unpublished

observations) is a strong evidence that the intra-

cellular trafficking compartments used by amasti-

gotes (and possibly their maturation) are different

form those used by trypomastigotes (Andreoli and

Mortara 2003a).

Growth and Differentiation of

Trypomastigotes Within the

Coxiella burnetii Vacuole

Once inside the C. burnetii vacuole, metacyclics

differentiate into amastigotes as well as in epimas-

tigote-like forms. This can be demonstrated by

morphological examination and immunolabeling

parasites with specific anti-amastigote (Barros et al.

1997) and anti-epimastigote (Almeida-de-Faria et

al. 1999) antibodies. Intravacuolar pH measure-

ments in vivo indicate that in spite of the acidic

milieu, amastigotes retained a neutral pH in their

cytoplasm while growing in the bacterium vacuole

(Andreoli and Mortara 2003b). Using T. cruzi trans-

fected with histone 2-GFP (Yamauchi et al. 1997)

we confirmed that amastigote division takes about

70 min (Figure 7). In spite of several attempts,

we could not demonstrate the transformation of

amastigotes growing inside the C. burnetii vacuole

into trypomastigotes.

Indications that cytoplasmic parasites grew

substantially outside the vacuole in doubly-infected

cells after 48-72h, without parallel infection by

new trypomastigotes, led us to investigate whether

amastigotes and/or epimastigotes could be escap-

ing from the bacterium vacuole. Studies involving

live cell video imaging, confocal and electron mi-

croscopy strongly suggested that these forms can

escape from the bacterium vacuole (Andreoli and

Mortara 2003b). We also demonstrated that amas-

tigotes express C9-related TcTOX inside the C.

burnetii vacuole that might be important for disrup-

tion of the bacterium vacuolar membrane.

PERSPECTIVES

It is clear that the mechanisms of invasion used by

T. cruzi extracellular amastigotes, TCTs and meta-

cyclic trypomastigotes are divergent. Added to this

complexity is the finding of variation between iso-

lates of the two main phylogenetic groups. The

molecular information available for trypomastigote

penetration, with the identification of putative lig-

ands and their receptors, has not been paralleled

in amastigote studies. So far, only a few parasite

components, most of carbohydrate nature have been

identified as important components for cell inva-

sion. Emerging evidence suggest that these infective

forms might, presumably by engaging different re-

ceptors, be trafficking in cytoplasmic compartments

of distinct composition and maturation characteris-

tics. The introduction of the companion pathogen,

C. burnetii, has revealed new insights into these in-

tricate processes. Mapping amastigote ligands and

their putative receptors should provide molecular

tools to explore these interactions in deeper detail.

Also, the availability of GFP-tagged components

acting in host cell endocytic and lysosomal path-

ways will offer the unique opportunity to carry out

live cell experiments.
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RESUMO

O agente etiológico da doença de Chagas, Trypanosoma

cruzi, ocorre como cepas ou isolados que podem ser agru-
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Fig. 7 – T. cruzi amastigotes divide within C. burnetti vacuole. Metacyclic trypomastigotes invade

Vero cells colonized with C. burnetti and after 48h the resulting amastigotes (here labeled with

Histone H2-GFP, in black, over grey DIC background images) are seen dividing. Bar in µm.

pados em duas grandes linhagens filogenéticas: T. cruzi I

associada ao ciclo silvestre e T. cruzi II ligada à doença

humana. No hospedeiro mamífero o parasita tem que in-

vadir células, e vários estudos relacionam as formas flage-

ladas tripomastigotas neste processo. Diferentes compo-

nentes de superfície dos parasitas e alguns dos respectivos

receptores foram identificados. Em nosso trabalho temos

procurado compreender como amastigotas, que normal-

mente são encontrados crescendo no citoplasma, podem

invadir células de mamíferos com infectividade compa-
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rável às dos tripomastigotas. Encontramos diferenças

nas respostas celulares induzidas por amastigotas e tripo-

mastigotas em relação a componentes de citoesqueleto e

projeções de membrana ricas em actina. Amastigotas de

cepas de T. cruzi I gerados extracelularmente, podem apre-

sentar infectividade maior que tripomastigotas metacícli-

cos para linhagens celulares e células com expressão al-

terada em diferentes classes de componentes celulares.

Células albergando a bactéria Coxiella burnetii tem nos

permitido obter novos enfoques sobre as propriedades de

tráfego intracelular das diferentes formas infectivas do T.

cruzi, revelando requerimentos inesperados para o para-

sita transitar entre seu vacúolo parasitóforo até seu destino

final no citoplasma da célula hospedeira.

Palavras-chave: Trypanosoma cruzi, invasão celular,

amastigotas, tripomastigotas, escape do vacúolo parasi-

tóforo, tráfego, Coxiella burnetii, linhagens filogenéticas.
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