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Abstract:Amultivariable deterministic extremum seeking (ES) is being evaluated to construct an adaptive

Proportional-Integral-Derivative (PID) control law for the functional Neuromuscular Electrical Stimulation

(NMES) of stroke patients. The developed scheme is applied to control the position of the patient’s arm so

that movements of flexion/extension for its elbow can be produced. The true limitations of a PID controller

for these types of applications is that a PID controller is designed for linear systems, but the system which is

being controlled is nonlinear. Moreover, it is worth mention that clinicians’knowledge of control systems is

limited. Therefore, their expertise in tuning controllers is limited. Also, in NMES applications each patient

is unique and requires a unique set of PID parameters. Since it can be time consuming and difficult to find

proper parameters for each patient, a better procedure, or a more intelligent adaptive controller, is needed.

The PID parameters are updated by means of ES in order to minimize a cost function which brings the

desired performance attributes. Experiments are performed with healthy volunteers and stroke patients,

including significant advances based on real data and validation. Quantitative results show a reduction of

64.1% in terms of RMSE (Root-Mean-Square Error) – from 8.94◦ to 3.21◦ – when comparing the tracking

curves of the last cycle to the first cycle in the experiments with all stroke patients.

Key words: NMES, stroke patients, adaptive systems, deterministic extremum seeking, PID control,

trajectory tracking.

INTRODUCTION

Neuromuscular Electrical Stimulation (NMES) is a technique based on the artificial activation of the second

motor neurons using exogenous electrical impulses (Sheffler and Chae 2007). This activation may be used

to increase muscle fatigue resistance, strength and in subjects with some neurological disorders such as

stroke it can help them to make movements that they would not be able to perform.
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NMES can be divided in two branches: the applications used as functional substitute and those ones

intended to therapeutic intervention. For example, in a stroke patient with drop-foot (Seel et al. 2016), the

NMES can activate the tibialis anterior muscle of the patient during swing phase. In this case, it is used

as a functional substitute of a damaged central nervous system that is not able to recruit the necessary

muscles during the gait. On the other hand, when a patient makes repetitive and voluntary training with his

paretic arm it is shown that the central nervous system can be able to adapt and recover some functions, in a

process called motor relearning (Sheffler and Chae 2007). The sensorimotor experience is believed to be of

paramount relevance to neural plasticity and motor relearning and it has been shown the NMES effects are

enhanced when it is used concomitantly with voluntary effort (Lynch and Popovic 2008, Maffiuletti 2010).

Most NMES devices used at clinics works in an open-loop approach are adjusted at the beginning of

the therapy (Lynch and Popovic 2008). The amount of stimulation follows a pre-determined profile and

demands user control to change stimulation parameters. This allows protocols aiming to enhance muscle

contraction, sometimes simultaneously to the execution of intended contractions (Knutson et al. 2015). The

drawback of this approach is that the device always gives the same amount of aid to the subject unless the

therapist intervenes (Hara 2008, Freeman et al. 2009). Also, it has been shown that the open-loop devices

are not well suited to promote an adequate association between the subject’s intended movement and the

artificial activation produced by NMES.

In this context, Proportional-Integral-Derivative (PID) controllers continue to represent a good option

to closed-loop control the NMES electrical current amplitude based on the angular displacement of the arms

because it has a simple implementation and its behavior is well known (Freeman et al. 2009). Although PID

controllers are widely used in many distinct and general control processes, their effectiveness is often limited

due to poor tuning. On the other hand, manual tuning is a time-consuming task and systematic methods rely

on knowledge of the plant model or require special experiments to identify a suitable plant model. However,

in NMES an exact plant model is not known, and it is not desirable to perform long system identification

procedures with the patients in open loop (Oliveira et al. 2017). Note that the neuromuscular model is highly

nonlinear and time-varying (Lynch and Popovic 2008), whichmeans those tests may be often unfruitful. This

adverse scenario of modeling motivates the application of robust and adaptive control techniques (Oliveira

et al. 2017).

As a model-free real time optimization approach, extremum seeking (ES) is well suited for systems with

unknown dynamics or those that are affected by high levels of uncertainty and or external dynamics (Krstic

2014). Thus, the method does not rely on the knowledge of system modeling parameters being robust to

parametric uncertainties and unmodeled dynamics. In particular, extremum seeking does not merely monitor

the direction of the output response but explores the measured response to estimate the gradient of the map

and update the control input in proportion to the gradient of the map. Extremum seeking has the dual benefit

of rigorously provable convergence and the simplicity of implementation, by employing only an integrator

as well as an optional high-pass filter (Krstic andWang 2000). For dynamic systems, it is enough to select the

extremum seeking probing frequency reasonably smaller than the highest frequency that can pass the system

without significant attenuation. This is justifiable in order to preserve the time-scale separation between

plant and controller dynamics. Then, it can be shown that an attractive manifold is revealed in the new

time scale by using a singular perturbation method (Khalil 2002), which essentially reduces the order of the

considered dynamical system to a static nonlinear map perturbed by some fast stable dynamics, which in

turn ultimately converges to a small residual set. In a nutshell, any stable plant dynamics (such as that in
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the human neuromuscular model) can be neglected for analysis and design purposes when the ES probing

frequency is chosen sufficiently small. In this case, the price to be paid is the time dilation which slows

down the closed-loop system responses.

From the early days of PID control, there has, additionally, been interest in providing recipes to the

user for not only safe choices, but the best choices of the three parameters. The Ziegler-Nichols procedure is

the best-known recipe, but also known to exhibit interior transients while asymptotically rejecting constant

disturbances (Krstic 2017). Most of the existing methods are developed based on the assumption of linearity

of the plant. The only method known to us in which the parameter optimization is conducted regardless

of the plant’s linearity or nonlinearity, or event the plant’s dimension, is the ES method, as discussed by

Killingsworth and Krstic 2006. This method views the system’s response as a map from the three gains into

a functional of the system’s response over a time interval of interest. For linear systems, ES matches or beats

the best performance attainable by linearity-based methods (Krstic 2017).

The paper presents a deterministic multivariable ES to adapt the gains of a PID controller used in

upper-limb flexion/extension tasks using neuromuscular electrical stimulation. Differently of our previous

publication based on healthy volunteers (Oliveira et al. 2016), experimental results are presented for stroke

patients. We believe this is a meaningful and relevant contribution since the self-tuning of PID controllers

for NMES-based rehabilitation would make their use much more practical in clinical settings by means of

closed-loop control. Unlike (Oliveira et al. 2016), a full statistical analysis of the results of the proposed

ES based PID controller is presented to show its efficacy in terms of Root-Mean-Square Error (RMSE).

Quantitative results show a reduction of 64% of the total RMSE (from 8.94◦ to 3.21
◦
).

In this sense, optimization and control seem to be fundamental tools to face the unknown neuromuscular

system (Alibeji et al. 2015, Bellman et al 2017, Merad et al. 2016, Sharma et al. 2009, 2011, 2012). In

particular, our ES approach for simple adaptation of PID controller parameters in NMES is model-free

having the interesting ability of controlling on multiple subjects without tediously tuning the controller,

which is the main novelty of the paper.

It is also worth mention that ES has already been used in NMES literature to generate the desired

trajectory (Zhang et al. 2006) or identify stimulation parameters for set-point regulation (Stegath et al. 2007)

in open-loop tests. On the other hand, we can even find adaptive feedback strategies based on recursive least

squares or general iterative learning control (Seel et al. 2016, Freeman et al. 2009, Freeman 2015), multiple-

model switched adaptive control (Brend et al. 2015) and robust feedback control (Sharma et al. 2012) applied

to NMES or rehabilitation. However, to the best of our knowledge, the present paper is the first work which

proposes the use of deterministic ES as a tool for adaptation of NMES closed-loop controllers experimental

validation with stroke patients.

MATERIALSAND METHODS

A custom NMES device with a USB communication has been developed. Briefly, its analog module is a

transconductance amplifier, which produces rectangular biphasic current with an amplitude controlled by a

voltage at its input. A computer has been used to control the applied amplitude, pulse width and frequency

of the electrical current stimulation. To restrain the arm movement of the subjects, a lightweight device

has been built (Figure 1). It measures the elbow-joint angle using a goniometer (a) and allows mechanical

adjustments to arm length (c) and lateral distance between two limbs (d).
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Figure 1 - Mechanical apparatus for NMES experimental tests. The

point a in the image indicates a goniometer (simple potentiometer)

linked to a steel axis b allowing angular displacement readings. Letter c

shows that the wrist has an attachment with linear freedom of movement

along the aluminium square rod, while d points out that there is an ad-

justment for the lateral distance of the elbows. In picture on the bottom,

the controlled joint angle, denoted by y, and the equipment are shown

in a different view. A pair of electrodes per muscle are been used for the

electrical stimulation. For instance, the pair of electrodes on the biceps

muscle of the volunteer can be seen in picture on the top.
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Patients were comfortably seated and had their arms adjusted to the device of Figure 1. Then, a pair

of self-adhesive square electrodes (with 5 cm each side) was positioned at the distal portion of the biceps

brachii muscle (BB) and another pair at the triceps brachii muscle (TB). The motor point was detected using

a small round electrode of 1 cm2 and defined as the point where the smallest amount of current could produce

a muscle twitch when 1 Hz stimulation was used.

With the electrodes placed, each muscle is briefly stimulated using progressively increasing current up

to the point that the subjects understood it was their limit before discomfort or when there was enough current

to produce full elbow flexion or extension. All subjects are instructed not to exceed their limits because the

results could be affected if they were not comfortable during the experimental protocols. The NMES pulses

were balanced symmetrical biphasic with 400 µs pulse width at 50 Hz. The controller only modulated the

current amplitude at each pulse.

Unilateral movements were made with one of the arms receiving NMES, while the output error signal

e(t) := r(t)− y(t) , (1)

to be decreased was calculated using the difference between the reference signal (r) and the angular position
of controlled elbow (denoted by y), measured with a goniometer.

The same trapezoidal-shape reference was used in all experimental conditions (Figure 2). Each flexion

and extension ramp has an angular velocity of 15o per second up to a maximum angle of 45o, and then a

return to the baseline angle at same angular velocity.

Figure 2 - Graphic of the reference signal and its divisions.

PRINCIPLES OF DETERMINISTIC EXTREMUM SEEKING

Many versions of extremum seeking exist, with various approaches to their stability study. Themost common

version employs deterministic (periodic) perturbation signals for the purpose of estimating the gradient of

the unknown map that is being optimized (Ariyur and Krstic 2003, Krstic 2014). To understand the basic

idea of extremum seeking, we start our discussion with the case of static maps and then we move on to the

more general setup of dynamic maps.
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EXTREMUM SEEKING FOR STATICAND LOCALLY QUADRACTIC MAPS

For the sake of simplicity and clarity, it is best to first consider the case of a static single-input map of the

quadratic form, as shown in Figure 3:

y := J(θ) = f ∗+
f ′′

2
(θ −θ

∗)2 , (2)

where f ∗, f ′′ > 0, θ ∗ are all unknown scalars. The map (2) is simply the local quadratic approximation (via

Taylor series) for any C 2 convex function in our optimization (minimum seeking) problem, where (θ ∗ , f ∗)
is the unknown extremum point and f ′′ is the unknown Hessian of the static map.

Three different θ ’s appear in Figure 3: θ ∗ is the unknown optimizer of the map, θ̂(t) is the real-time

estimate of θ ∗, and θ(t) is the actual input into the map. The actual input θ(t) is based on the estimate θ̂(t)
but is perturbed by the signal asin(ωt) for the purpose of estimating the unknown gradient f ′′ · (θ −θ ∗) of

the map f (θ). The estimate θ̂(t) is generated with the integrator−k/s with the adaptation gain k controlling
the speed of estimation.

Figure 3 - Block diagram of deterministic ES for a static map using periodic

perturbations. The simplest perturbation-based extremum seeking scheme for a

quadratic single-input map J(θ) = f ∗+ f ′′
2 (θ −θ∗)2, where f ∗, f ′′, θ∗ are all

unknown. The user has to only know the sign of f ′′(> 0), namely, whether the

quadratic map has a minimum, and has to choose the adaptation gain k such that
sgn(−k) =−sgn( f ′′). The user has to also choose the frequency ω as relatively

large compared to a, k, and f ′′. Regarding the Laplace symbol s, with some abuse

of notation, we mix the frequency and time domains for brevity and conceptual

clarity, i.e., the integrator transfer function k/s in the block diagram should be

understood as an operator on a time-domain function.
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The ES algorithm is successful if the error between the estimate θ̂(t) and the unknown θ ∗, namely the

signal

θ̃(t) := θ̂(t)−θ
∗ (3)

converges towards zero. Based on Figure 3, the estimate is governed by the differential equation
˙̂
θ(t) =

−kasin(ωt) f (θ), which means that the estimation error is governed by

dθ̃

dt
=−kasin(ωt)

[
f ∗+

f ′′

2
(
θ̃ +asin(ωt)

)2
]
, θ̃(0) = θ̂(0)−θ

∗ . (4)

By expanding the right-hand side one obtains

dθ̃

dt
= −ka f ∗ sin(ωt)− ka3 f ′′

2
sin3(ωt) (5)

− ka
f ′′

2
sin(ωt)θ̃(t)2 − ka2 f ′′ sin2(ωt)θ̃(t) .

A theoretically rigorous time-averaging procedure (Ariyur and Krstic 2003, Krstic 2014) allows to

replace the above sinusoidal signals by their means, yielding the “average system” (Khalil 2002):

dθ̃av

dt
=−k f ′′a2

2
θ̃av , (6)

which is exponentially stable since k f ′′ > 0. The averaging theory guarantees that there exists sufficiently

large ω such that, if the initial estimate θ̂(0) is sufficiently close to the unknown θ ∗, ∀t ≥ 0:

|θ(t)−θ
∗| ≤ |θ(0)−θ

∗|e−
k f ′′a2

2 t +O(1/ω)+a . (7)

For the user, (7) guarantees that, if a is chosen small and ω is chosen large, the input θ(t) exponentially
converges to a small interval around the unknown θ ∗ and, consequently, the output f (θ(t)) converges to
the vicinity of the optimal output f ∗.

FROM STATIC TO DYNAMIC MAPS

When we are interested in minimizing (w.l.o.g.) the output of an arbitrary, unknown, nonlinear dynamic

map, we can consider the following general representation

ẋ = f(x,u), (8)

y = g(x) , (9)

where x ∈ Rm is the m-dimensional state vector, u ∈ R and y ∈ R represent the scalar input and output,

respectively, and f : Rm ×R→Rm as well as g : Rm →R are smooth (Krstic and Wang 2000). Establishing

that a smooth control law α : Rm ×R→ R

u = α(x,θ) (10)

parametrized by a scalar parameter θ is acting upon the plant1, one obtains the closed-loop system

ẋ = f
(
x,α(x,θ)

)
. (11)

1For simplicity, we assume that we have a static state-feedback control law; it would be trivial to extend the result to dynamic

output feedback since y = g(x) in (9) (Krstic and Wang 2000).
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Its equilibria, characterized by the scalar parameter θ , are specified through the following assumptions

(Krstic and Wang 2000).

Assumption A1: There exists a smooth vector field l : R→ Rm such that

f
(
x,α(x,θ)

)
= 0 (12)

if and only if

x = l(θ) . (13)

Assumption A2: For every value of the parameter θ ∈ R, the equilibrium of the system (11) is locally

exponentially stable with decay and overshoot constants uniform in θ .

Assumption A2 is not restrictive since in a general context we can encompass a complete wide class

of nonlinear plants given by (8)–(9). Basically, we assume that we have a control law (10) which is robust

with respect to its own parameter θ in the sense that it exponentially stabilizes any of the equilibria that θ

may produce. It simply means that we have a control law designed for local stabilization and this control

law need not be based on modeling knowledge of either f (x ,u) or l(θ).
Thus, we assume that the output equilibrium map is

y(t) = g
(

l
(
θ(t)

))
, (14)

according to Assumptions A1 and A2.

Defining J : R→R as the composition of the SISO output function g in (9) and the state vector function
l in (13)

J(·) = (g◦ l)(·) , (15)

we formulate our optimization problem as

min
θ∈R

J(θ(t)) , (16)

where the corresponding minimizing value is denoted by θ ∗, according to the next assumption.

Assumption A3: There exists θ ∗ ∈ R in the interior of some (local) closed interval θ ∈ [a ,b] such that

∂J(θ)
∂θ

∣∣∣∣
θ=θ∗

= 0 ,
∂ 2J(θ)

∂θ 2

∣∣∣∣
θ=θ∗

= f ′′ > 0 . (17)

Hence, we assume the output equilibrium map y = J(θ) has a minimum at θ = θ ∗, and the objective

is to develop the feedback mechanism which minimizes the steady-state value of y, but without knowing
either θ ∗ or the functions g and l.

Under the conditions above, ES extends in a relatively straightforward manner from static maps to

dynamic systems, provided the dynamics are stable (or stabilized by the control law u = α(x,θ)) and the ES
algorithm’s parameters are chosen so that the algorithm’s dynamics are slower than those of the closed-loop

plant. In the presence of dynamics, the equilibrium map (14)–(15) will satisfy at least the same conditions

as in the static map (2) and, therefore, convergence is guaranteed. The main difference is that upper bound

for |θ(t)−θ ∗| in (7) would contain an exponential term with slower decaying rate and the residual set of

order O(1/ω) is replaced by a term of order O(ω).
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The stability analysis in the presence of dynamics employs both averaging and singular perturbations,

in a specific order. The design guidelines for the selection of the algorithm’s parameters follow the analysis.

Though the guidelines are too lengthy to state here, they ensure that the plant’s dynamics are on a fast time

scale, the perturbations are on a medium time scale, and the ES algorithm is on a slow time scale (Krstic

and Wang 2000).

ADAPTIVE PID CONTROL

In this section, we present a method for optimizing in real time the trapezoidal response of a closed-loop

system consisting of a PID-NMES controller and the unknown human neuro-motor system with a discrete

version of extremum seeking.

Specifically, ES minimizes a cost function which quantifies the performance of the PID controller and

iteratively modifies the arguments of the cost function (the PID parameters) so that it’s output reaches a

local minimum.

COST FUNCTIONAND PID CONTROLLER

ES is used to tune the parameters of a PID controller so as to minimize a given cost function. The cost

function, which quantifies the effectiveness of a given PID controller, is evaluated at the conclusion of a

trapezoidal-response experiment. We use the integrated square error (ISE) cost function2:

J(θ) :=
1

T − t0

∫ T

t0
e2(t,θ)dt , (18)

where the output error in (1), parametrized in θ , is the difference between the reference and the output signal

of the closed-loop system e(t,θ) = r(t)− y(t,θ) in (1), and

θ := [K ,Ti ,Td ]
T (19)

contains the PID parameters. The PID controller structure and the meaning of K, Ti, and Td are given in what

follows. Equation (15) is the general cost function for the generic nonlinear model (8)–(9). Equation (18) is

the cost function used in our particular NMES problem assuming that the neuromuscular plant is a specific

class of system which falls into (8)–(9).

The cost function J(θ) defined in (18) takes into account the error over the time interval [t0 ,T ]. By
setting t0 to approximate the time at which the trapezoidal response of the closed-loop system reaches the

flexion plateau (see Figure 2), the cost function J(θ) effectively places zero weighting on the initial transient
portion of the response. Hence, the controller is tuned to minimize the error beyond this phase without

constraints on the initial transient.

We use a standard PID controller, in particular the derivative term acts on the measured output error

(including the reference signal). This PID controller avoids large control effort once the reference signal is

chosen as a trapezoidal function with bounded first-order derivative.

2Acomparative study involving other cost functions, such as IAE, ITAE and ITSE was already carried out in (Killingsworth and

Krstic 2006) by showing that ISE produces responses with the smallest overshoots and fastest settling times. Considering that our

manuscript deals with a real-world application involving stroke patients, it is not trivial to perform innumerable comparisons with

these patients, which supports our choice for ISE as the unique cost function for experimental evaluation.
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The optimal operation of this kind of process is complicated to reach, mainly due to their highly non-

linear nature and by the substantial unmodeled dynamics (such as fatigue) present in the neuromuscular

system. In this way, optimization and control are fundamental tools to face such unknown plants. This re-

search proposes an extremum-seeking control based on periodic perturbation signals to adapt the PID control

parameters plugged into the closed-loop system and minimize the cost function which is chosen to reflect

the desired performance attributes. The controller is parametrized as:

u(t) = Kp e(t)+Ki

∫ t

0
e(τ) dτ +Kd

de(t)
dt

, ∀t ≥ 0 , (20)

where u(t) is the control signal and the constants

Kp = K > 0 (21)

Ki =
K
Ti

> 0 (22)

Kd = KTd > 0 (23)

are the proportional, integral and derivative gains.

EXTREMUM-SEEKING ONLINE TUNING

The cost function J(θ) should be understood as a mapping from the PID parameters K, Ti, and Td to the

tracking performance.Another possibility would be to optimize Kp, Ki, and Kd directly. ES seeks to tune the

PID controller by finding a minimum of J(θ). However, since ES is a gradient method, the PID parameters

found by ES are not necessarily a global minimum of J(θ).

Figure 4 - Block diagram of the closed-loop system for NMES using deterministic discrete-time

ES, where αi sin(ωik) is the perturbation vector.
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The time-domain implementation of the discrete-time ES algorithm in Figure 4 is given by

Killingsworth and Krstic 2006:

θ̂i(k+1) = θ̂i(k)− γαi sin(ωik)[J(θ(k))] ,

θi(k+1) = θ̂i(k+1)+αi sin(ωi(k+1)) , (24)

where k is the discrete iteration number, and the subscript i indicates the ith entry of a vector. The adaptation
gain is γ and αi are the perturbation amplitudes. Stability and convergence are influenced by the values

of γ , αi and the shape of the cost function J(θ) near the minimizer, as explained in section Principles of

Deterministic Extremum Seeking.

Since the system is multivariable, it has high dimensionality (i = 1, . . . ,3), thus the orthogonality re-

quirements on the elements of the periodic perturbation vector pose an implementation challenge.According

to Ghaffari et al. 2012,Ariyur and Krstic 2003, in order to guarantee convergence, the user should choose ap-

propriate frequenciesωi 6=ω j. The former is a key condition that differentiates the multi-input case (Ghaffari

et al. 2012) from the single-input case (Krstic and Wang 2000).

In a general context, the probing frequencies ωi’s can be selected as

ωi = ω
′
i ω = O(ω) , i ∈ 1,2, . . . ,n , (25)

where 0 < ω < 1 is a positive constant and ω ′
i is a rational number. One classical choice for the perturbation

vector (dither signals) in multivariable extremum seeking is given in (Ghaffari et al. 2012) as

ω
′
i 6∈

{
ω

′
j ,

1
2
(ω ′

j +ω
′
k) , ω

′
j +2ω

′
k , ω

′
j +ω

′
k ±ω

′
l

}
, (26)

for all distinct i, j,k and l. Here, for the three-dimensional case (i ∈ 1,2,3), the modulation frequency ωi is

simply chosen such that

ωi = ω
i
π , (27)

which satisfy (26) above.

ON THE ES PARAMETERS, THE SEARCH SPACE, COMPUTATIONAL COST AND HOW ES-BASED ADAPTATION

WORKS

• In general the deterministic method seems to behave better/faster with increasing dither frequencies ωi

(or ω) for static maps. However, in the presence of plant dynamics, it is prohibited in theory to increase

arbitrarily the perturbation frequency ω due to the application of the singular perturbation reduction

(Krstic andWang 2000) in order to “freeze” the dynamic state in its quasi-steady state value. In fact, the

frequency of the dither is forced to be sufficiently slow to guarantee the time-scale separation between

the plant and controller dynamics. Of course, the price to be paid in these cases is the decrease of the

algorithm’s convergence speed. On the other hand, the adaptation gain is γ and αi is the perturbation

amplitude.

Basically the speed of convergence and the ultimate residual sets of the ES algorithm are influenced

by the values of αi and γ in (24) and ω in (27). By reducing the parameters αi, γ and ω , lead us to

smaller convergence rates, but also smaller residual sets around the unknown extremum point.
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• Amajor concern is that ES algorithm must constrain the PID gains such that they are always positive.

This is a crucial point because these gains are required to be positive for stability, and instability of

the PID controller could cause harm to the participants. These dangers were carefully addressed in

our implementation by including them as optimization constraints for the search space. In a nutshell,

every time the adapted parameters achieve negative values, we have set randomly them to zero or to

the value of the previous iteration cycle, such that the output of the ES algorithm ensures the control

gains are always positive.

• As a model-free, real time optimization approach, ES is well suited for systems with unknown dynam-

ics or those that are affected by high levels of uncertainty or external dynamics. Thus, the method does

not rely on the knowledge of systemmodeling parameters being robust to parametric uncertainties and

unmodeled dynamics. In particular, ES does not merely monitor the direction of the output response

but explores the measured response to estimate the gradient of the map and update the control input

in proportion to the gradient of the map. ES has the dual benefit of rigorously provable convergence

and the simplicity of implementation.

• Regarding the computational cost, ES employs continuous oscillatory perturbation, also known as a

“probing function” and only an integrator (as well as optional high-pass and low-pass filters). For

dynamic systems, it is enough to select the extremum seeking probing frequency reasonably smaller

than the highest frequency that can pass the system without significant attenuation. This choice allows

for the time-scale separation (discussed before) between plant and controller dynamics facilitating the

convergence proof via singular perturbation and averaging theory.

• The trapezoidal-response experiment is run iteratively. The cost J(θ(k)) is calculated at the conclusion
of the trapezoidal-response experiment. The ES algorithm uses the value J(θ(k)) of the cost function
to compute new controller parameters θ(k). Another trapezoidal function experiment (cycle) is then

performed with the new controller parameters, and the process continues iteratively.

ES is a nonmodel-based method that iteratively modifies the input θ of the cost function J(θ(k))
to reach a local minimizer. ES achieves this optimization by sinusoidally perturbing the input pa-

rameters θ(k) of the system and then estimating the gradient ∇J(θ(k)). Note that k is the index of

the trapezoidal-response experiment, whereas t is the continuous-time variable within an individual

trapezoidal-response experiment. The gradient is determined by the multiplication of the discrete-time

signal J(θ(k))with a discrete-time sinusoid of the same frequency as the perturbation signal. This pro-

cedure estimates the gradient by picking off the portion of J(θ(k)) that arises due to perturbation of

the parameter estimate θ̂(k) (see section Principles of Deterministic Extremum Seeking). The gradient

information is then used to modify the input parameters in the next iteration; specifically, the gradient

estimate is integrated with a step size γ , yielding a new parameter estimate θ̂(k). The integrator both
performs the adaptation function and acts as a low-pass filter.
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EXPERIMENTS

Experimental results are presented in order to validate the proposed NMES controller following the protocol

in section Materials and Methods. A detailed discussion of the closed-loop responses is also provided. In

the next, all tests performed with healthy volunteers and stroke patients are given for the proposed NMES

controller in order to show the robust-adaptive nature of the proposed scheme.

A trapezoidal reference with multiple cycles depicted in Figure 2 is explored in the experiments. In par-

ticular, the second derivative of the trapezoidal curve contains impulse which offer an additional challenge

to the controller since it sets the desired angular acceleration of the controlled elbow. In general, we only

find in the literature of NMES sufficiently smooth trajectories (with smooth derivatives), which facilitates

the tracking control problem. It is worth mentioning that the final objective of our control application is for

motor rehabilitation of stroke patients. Thus, the use of more sophisticated trajectories is not the focus in this

kind of therapy, where simple and cyclic movements are applied to motor training. Despite the large number

of research papers working on more complex control algorithms for producing coordinate movements, we

can find few works focusing on physiotherapy. In this sense, the use of NMES oriented to physiotherapy

until the occurrence of fatigue should be avoided in a real scenario since the idea here is motor relearning.

In the experiments, we implemented the controller (20) with gains being adapted according to (24) and

(27). The initial values for the gains of the PID controllers applied to all subjects were: Kp = 0.4, Ki = 0.2
and Kd = 0. The ES parameters were set to: ω1 = 0.8π , ω2 = 0.64π , ω3 = 0.512π , or equivalently, ω ′

1 = π ,

ω ′
2 = 0.8π and ω ′

3 = 0.64π , with ω = 0.8, α1 = 0.06, α2 = 0.3, α3 = 0.01 and γ = 2.5.

The cost function (18) used in the minimization problem is defined with t0 = 5 and T = 20 for both

healthy volunteers and stroke patients. By increasing the time-range of evaluation in the cost function (mak-

ing t0 = 0), transient errors would impact the results in terms of larger errors to be minimized along of the

overall interval and, consequently, also in the steady-state portion of the output response (flexion plateau).

Since our final objective is oriented to stroke patients, the most important part in the execution of the phys-

iotherapy movement is the flexion segment, we have focused on minimizing this flexion errors to avoid

undesired oscillations rather than the tracking error along of the entire trapezoidal cycle. In addition, by

increasing the errors along of the overall trapezoidal cycle would make necessary a increased number of

iterations to achieve a better tracking performance, which may not be advantageous in the physiotherapy

procedure. Finally, for stroke patients, spasticity clearly helps the control task against the gravity effects be-

cause they naturally present flexor patterns, thus, smaller overshoots in the transient responses are expected

in comparison with healthy volunteers due to this “natural damping”. The joint stiffness in these patients and

their inability to make the movement with the injured limb reduce significantly their mobility, which means

the disturbance effect of gravity itself is not enough to produce the angular momentum necessary to move

the arm down, thus facilitating the control actuation. Even if the tracking accuracy for stroke patients were

not perfectly achieved as in healthy volunteers, it would not mean the proposed NMES controller could not

be potentially used for treatment since the objective in these cases is motor relearning for physiotherapy–

therapeutic application, as mentioned before. In a more general context, we can also find publications which

indicate that by choosing t0 beyond the rising time of the reference signal will bring advantages in terms

of achieving faster settling times and smaller overshoots in the output responses. Please see (Lequin et al.

1999, Killingsworth and Krstic 2006) for more details.
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TESTS WITH HEALTHYVOLUNTEERS

Initially, two volunteers with no orthopedic nor neurological injuries were recruited. Prior to participation,

written informed consent was obtained from each individual. The plots of Figures 5 and 6 present the repre-

sentative signals and movements for the subject 1, whereas Figures 7 and 8 show the results for the subject

2. Although all experiments were performed in a longer time-window, we have just shown the first cycles

of interested in our tests for the sake of clarity.

The control signal u was saturated according to the discomfort of each volunteer. Note that, when the

biceps and triceps are active, the control signals are always greater than some minimal value (non zero

lower bound) due to the dead-zone nature of the muscle actuator. Although the manuscript does not bring

explicitly statistical results showing the advantages of the proposed adaptive PID control scheme in com-

parison with classical fixed PID, quantitative/qualitative advances can be clearly verified by comparing the

tracking responses obtained in the first cycle (which would be the permanent results if we have fixed the

PID gains with those values) and the last cycle of adaptation displayed in the plots. The response curves

ratify the improved behavior of the proposed control scheme even in this adversary scenario for NMES. In

a few words, the adverse environment of modeling uncertainties inspires the application of adaptive-robust

control methodologies and automatic tuning techniques (Oliveira et al. 2017). In addition, results for PID

controllers with fixed gains can be found in some of our previous publications (Oliveira et al. 2017, Catunda

2016).

Observing the performance of the controller in Figures 5 to 8, it shows a low error in steady state and

low percentage overshoot for a practical scenario after the adaptation law had minimized the cost function

for each cycle of the trapezoidal curve given in Figure 2. The responses obtained during the experiments

were certainly influenced by the effects from external disturbances and the effects of nonlinearities in the

actuators (BB and TB), such as saturation and dead zones. These ingredients were ignored in the initial

modeling of the problem. Note that the control signal of volunteer 2 has saturated less than the control

signal of volunteer 1, making necessary a reduced number of iterations (k = 3) to achieve a better tracking
performance – see Figure 8.

The oscillatory movement (“chattering”) in the first 50 seconds in Figure 6 is due to the saturated control

signal observed in the current plots applied to biceps and triceps muscles. For instance, the graphics at the

bottom of Figure 6 show that the limits of current allowed for volunteer 1 are smaller than those used for

volunteer 2 in Figure 8. Hence, the stringent saturation of the stimulation signals is responsible for this larger

oscillatory behavior. However, it does not imply the volunteers are subject to any pain nor discomfort, as

discussed in Materials and Methods.

The most important condition in our experiments with healthy volunteers is that they need to be relaxed

and apart of the desired trajectory for the movement in order to minimize their active participation.Although

there is no guarantee that the volunteers are or are not adapting their reaction to the controller, our results

present an interesting approach to refine the performance of PID NMES control in a strongly nonlinear and

time-varying scenario for use in rehabilitation. This will be particularly important in the next tests with stroke

patients since the idea in this case is that the electrical stimulation increases progressively the participation

of the patient in the execution of the movement. In other words, if the proposed NMES controller helps the

stroke patient to participate in the movement execution, the treatment can be rated as highly successful.
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Figure 5 - Adaptive PID (volunteer 1): PID parameters during ES adaptation of the closed-loop system, the evolution of the cost

function, and the best response y ultimately obtained after k = 4 iterations. ES reduces the cost function J(θ(k)), which produces a
more favorable tracking response. Note that the derivative portion is barely activated during the experiments.

Figure 6 - Adaptive PID (volunteer 1): response y and reference r; control signal u.
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Figure 7 - Adaptive PID (volunteer 2): PID parameters during ES adaptation of the closed-loop system, the evolution of the cost

function, and the best response y ultimately obtained after k = 3 iterations. ES reduces the cost function J(θ(k)), which produces a
more favorable tracking response. Note that the derivative portion is again barely activated during the experiments.

Figure 8 - Adaptive PID (volunteer 2): response y and reference r; control signal u.
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TESTS WITH STROKE PATIENTS

Eight stroke patients were recruited. As shown in TABLE I, the stroke patients were classified according to

Ashworth and Rankin scales and Fugl Meyer assessment (see Bohannon and Smith 1987,Wilson et al 2002,

Meyer et al 1975, respectively). The plots of Figure 9 present the tracking signals for the stroke patients P1

to P8.

As a metric to evaluate the improvement of the proposed adaptive controller, the RMSE of the trajectory

was compared for both the first and last cycles using Wilcoxon signed rank test, a non parametric statistical

hypothesis test to compare small groups with repeated samples. In this case, it is not necessary to evaluate

if the data is normally distributed. TheWilcoxon signed rank test had p-value of 0.01, indicating significant
difference between the RMSEs.

The RMSE of the tracking signals for the eight stroke patients were calculated and are available in

TABLE II. The tests indicate that the RMSE are statistically less for the last cycle of evaluation for the

proposed ES based PID controller when compared to the first cycle, representing a reduction of 64% in

terms of the RMSE (from 8.94◦ to 3.21◦). The tests that indicate the individual RMSE for the patients are

also satisfactory by presenting a mean value of the RMSEs around 5◦.
Although good results have been obtained in our new experiments with stroke patients (rather than

healthy volunteers only), the main clinical use of the proposed controller is indeed for rehabilitation and

not for assistance. At the present stage of our research, it means we are not pursuing to outperform other

adaptive strategies, but introduce a new one which potentially achieves the control objectives.

TABLE I

Clinical Description of the Stroke Patients.

Subject Age Gender Lesion Time (months) Lesion Side Stroke Type MAS Scale1 Rankin Scale2 FMA-MS3

P1 58 F 121 L I 3 II 47/66

P2 35 M 134 R I 1+ II 22/66

P3 67 M 69 R I 2 IV 51/66

P4 40 M 162 L H 2 III 14/66

P5 28 F 197 R I 1+ II 36/66

P6 59 F 121 L H 3 III 9/66

P7 53 M 134 R I 1+ II 26/66

P8 59 M 69 L I 2 III 27/66

M - Male, F- Female, R - Right, L - Left, I - Ischemic Stroke, H - Hemorrhagic Stroke;

1 - Modified Ashworth Scale;

2 - Stroke Severity Scale;

3 - Upper Limb Fugl-Meyer Assessment Scale.
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TABLE II

Root-Mean-Square Error (RMSE) obtained for stroke patients.

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8 Mean

Total RMSE 6.29◦ 6.15◦ 5.99◦ 5.68◦ 10.28◦ 4.54◦ 2.06◦ 1.83◦ 5.35◦

RMSE of First Cycle 11.62◦ 10.37◦ 11.41◦ 6.02◦ 17.49◦ 8.16◦ 2.86◦ 3.31◦ 8.94◦

RMSE of Last Cycle 4.45◦ 3.46◦ 3.21◦ 4.35◦ 4.34◦ 2.50◦ 1.76◦ 1.65◦ 3.21◦

Figure 9 -Result of angular elbow joint movement with deterministic extremum seeking for eight stroke

patients and their individual RMS errors. The reference signal is represented by the dashed line.

CONCLUSIONS

In spite of the nonlinearities and time-varying properties of the NMES process, it was satisfactorily

approached by the proposed adaptive PID controller via ES.

The results achieved in experiments with stroke patients are commendable since in general only healthy

volunteers are recruited for closed-loop control tests. One of the main points of this paper was to introduce a

technique which requires little to none tuning procedures. Since there is a clear subject-to-subject variabil-

ity, the control parameters of a non-adaptive approach should be tuned for each person, which would take

a long time or even induce muscle fatigue, reducing the efficacy of the process and its clinical viability. On

the other hand, manual tuning is a time-consuming task and analytical methods are based on an exaggerated

knowledge of the plant, requiring particular experimental validations to the identification of an acceptable

plant model. Nevertheless, a precise plant model in NMES is not known, and very long identification proce-

dures are not desirable with the patients in open loop (Oliveira et al. 2017). Notice that a mathematical model

for the neuromuscular plant would be time-varying and highly nonlinear (Lynch and Popovic 2008), which

means these modeling/identification tasks may be totally unproductive. These drawbacks are not shared by

our model-free adaptive approach.

From the point of view of the proposed controller, it is not important if a linear or nonlinear model is

assumed for the neuromuscular system but whether its open-loop input-to-state stability (ISS) properties

(Khalil 2002) can be preserved.
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The time-scaling separation is the next key element to the solution of the problem. This procedure

reduces the order of the stable dynamic system to be studied and, hence, allows the analysis and design of

the ES based controller regardless of the order or relative degree of the model and the exact knowledge of

its parameters.

Good tracking performance can be achieved after a reduced number of the algorithm iterations.Accord-

ing to our experiments, the proposed adaptive control approach had presented good performance results to

reach the target angle and had ultimately assured comfort conditions for both healthy volunteers and stroke

patients with reduced tracking errors, by presenting an average of the RMSEs close to 5◦ in the latter group.
For future research, an alternative to deterministic ES (Krstic and Wang 2000) is the stochastic ES

method in (Liu and Krstic 2016). Hence, the papers (Krstic and Wang 2000, Liu and Krstic 2016) can be

viewed as companion references for the practical user of the results in the highlighted paper. However, the

user should be aware that, for nonlinear plants, optimal parameter choices will be dependent on the plant’s

initial condition and the setpoint value. Morevoer, other extremum seeking algorithms based on periodic

switching signals (Oliveira et al. 2011) or monitoring functions (Aminde et al. 2013) could be explored for

PID tuning applied to neuromuscular electrical stimulation.
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