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ABSTRACT

Based on a new approach to symmetries of the fundamental interactions we deal, in this paper, with the

electroweak interactions of leptons. We show that the coupling constants, arising in the way leptons are

coupled to intermediate bosons, can be understood as parameters associated to the breakdown of SU (2) and

parity symmetries. The breakdown of both symmetries is characterized by a new parameter (the asymetry

parameter) of the electroweak interactions. This parameter gives a measure of the strength of breakdown of

symmetries. We analyse the behaviour of the theory for three values of this parameter. The most relevant

value is the one for which only the electromagnetic interactions do not break parity (the maximally allowed

left-right asymetric theory). Maximamally allowed parity asymmetry is a requirement that is met for a

value of Weinberg’s θ -angle that is quite close to the experimental value of this parameter.
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1 INTRODUCTION

Search of symmetry is a relevant tool in order to discover the laws of nature and the purist guiding principles

to achieve a logical description of nature. Symmetry is probably the only thing one has do know besides

quantum theory. Symmetries play an essential role in the model building process for understanding the

properties of the Elementary Particles and their interactions. Differences in the electric charges of fermions

and in the masses of the particles indicate that some symmetries are not exact. This makes the understanding

of breakdown of symmetries an equally important issue in Particle Physics.

In Particle Physics we deal with a large number of symmetries: translational, rotational, Lorentz

invariance, chiral symmetry, dual symmetry, C (charge), P (parity) and T (time reversal) symmetries,

gauge symmetry, and internal symmetries, like SU (2) and SU (3) group symmetries. Different interactions

are (in the usual framework) governed by different symmetries [1-4].
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The Standard Model [1] makes use of two interactions exhibiting SU (2) and U (1) gauge symmetries.

In the GWS theory these symmetries are broken trough the use of two mechanisms. The mixings of the

electromagnetic and neutral weak interaction boson fields take into account differences in the interactions

of leptons (including differences in their electric charges). Spontaneously symmetry breakdown is used as

a mechanism for providing masses to particles.

Parity violation is taken into account, in the Standard Model, by assigning chiral components of

fermionic fields to different representations of the SU (2) group.

In this paper we propose a different view on the symmetries of the electromagnetic and weak inter-

actions. We show that the underlying symmetry of the interactions of leptons is the SU (2) symmetry. In

our approach, there is only one type of interaction and only one coupling constant. We are proposing also

different mechanisms for the breakdown of parity and SU (2) symmetries.

Breakdown of symmetries introduces a free parameter in the theory (the assymetry parameter – ξ ). The

parameter ξ gives a measure of breakdown of symmetries. As we shall see, the theory exhibits different

types of symmetries (or asymmetries) for three different values of this parameter. For ξ = 1 one gets a

symmetry that is related to parity breakdown in the charged and neutral sector. For ξ = 0 one gets an

SU (2) symmetric theory for which parity is completely broken. As we shall see later, the most relevant

case is the one for which ξ 2 = 1/3.

The dynamical variables, used in the description of spin 1 particles, are chiral components of rank 2

spinor fields [5-11]. In our approach fermions belongs to doublet representations of the SU (2) group. No

use is made of fermionic field components transforming as singlets under SU (2) transformations.

The use of spinor fields for the description of bosons and fermions allows us to formulate a model of

the fundamental interactions based on space-time, discrete symmetries (C PT ) [8, 9] and internal SU (3)×
SU (2) global symmetries [10, 11].

The plan of this paper is the following:

In Section 2 we present our dynamic variables by using rank 1 spinor fields (for fermions) and rank 2

spinor fields (for bosons). We discuss also how we deal with internal symmetries, like SU (2) symmetry.

The most general theory involving the interaction of fermions is presented in Section 3.

The relevant aspect of breakdown of isospin and space-reflection symmetries, and our way of dealing

with these questions is discussed in Section 4. We introduce a parameter – ξ – that establishes the strength

of the breakdown of both symmetries. All coupling constants, electric charges included, can be expressed

in terms of this parameter.

In Section 5 we present an application of our approach. We discuss how SU (2) and parity symmetry

breakdown gives rise to two different interactions and how these interaction strengths depend on the symme-

try breakdown parameter. Electromagnetic interactions arises in the process of breaking SU (2) symmetry.

Electric charges of leptons depend on the asymmetry parameter in such a way that electric charges has to

vanish in order to restore SU (2) symmetry.

We end this paper with some conclusions in Section 6.
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2 DYNAMICAL VARIABLES

We take for grant that an unified theory can be formulated based on space-time, discrete and global internal

symmetries [9-11]. This is so because we work, in our framework, with spinor fields. We would like to

call the attention to the fact that depending on how we couple some components of rank-2 spinor fields one

can end up with a theory that, besides being globally symmetric, is also locally symmetric. The general

conditions under which this happens is, up to this point, not clear. One can give however, some explicit

examples [9, 10]. The point is that, by working with spinor fields we do not discard a gauge invariant theory.

In order to take into account the necessary Lorentz invariance of the theory we deal with two different

types of fields.

Fermions are described by a doublet of rank 1 spinor fields. In this paper we will be concerned only

with left-handed neutrinos. For left-handed particles it is convenient to define the L(F) (where F stands for

the F-family) fields

L(F)i1, a1
= P i1i2, a1a2 �

(F)
i2, a2

(2.1)

where the matrix Pi1i2, a1a2 in (2.1) is given by:

Pi1i2, a1a2 =



1

2

(
1 − γ 5

)
a1a2

0

0 1a1a2


 . (2.2)

The important difference in dealing with fermions, as we compare with the Standard Model, is that we

do not use singlet representations for fermions.

For the description of the intermediate bosons one uses a rank 2 spinor field. Being a rank 2 spinor

field it carries two spinor indices (a1a2) running from 1 to 4. This spinor field will be denoted by:

ψ
(2)
i1i2, a1a2

(x) i1, i2 = 1, 2 , (2.3)

where the i-indices are internal symmetry indices. From (2.3) it follows that the fundamental spinors

associated to bosons transform as a direct product of two fundamental representations of the Lorentz and

SU (2) groups.

The use of rank 2 spinor fields introduces, however, a large number of field components (in the Lorentz

indices). This requires that, in dealing with spinor fields, we treat the chiral components of these fields as

independent dynamical variables of the theory [6-10]. The chiral components of a rank 2 spinor field are

defined, in close analogy with the way we define chiral components of rank 1 spinor fields, as:

ψi1i2 R R = 1

2

(
1 + γ 5

) ⊗ 1

2

(
1 + γ 5

)
ψi1i2 (2.4)

ψi1i2 RL = 1

2

(
1 + γ 5

) ⊗ 1

2

(
1 − γ 5

)
ψi1i2 (2.5)

ψi1i2 L R = 1

2

(
1 − γ 5

) ⊗ 1

2

(
1 + γ 5

)
ψi1i2 (2.6)

ψi1i2 L L = 1

2

(
1 − γ 5

) ⊗ 1

2

(
1 − γ 5

)
ψi1i2 . (2.7)
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Our Unified Model will be formulated for a generic family F in terms of just two dynamical variables.

We use one rank 1 spinor field for describing leptons and one rank 2 spinor field for the description of the

intermediate bosons.

By definition, the bosonic field transforms as a direct product of fundamental representations of the

groups. By using a basis of orthogonal matrices we can decompose any such a product as a sum over fields

transforming as irreducible representations of the symmetry groups. This can be done if one decomposes

the fields ψa1a2 into the basis formed by a convenient set of k matrices M (k)
a1a2

. They are assumed to be

traceless, orthogonal and linearly independent matrices. That is, one writes a decomposition under the

form

ψa1a2(x) =
∑

k

M (k)
a1a2

ψ(k)(x) , (2.8)

in such a way that the ψ(k) components of the field ψ transform (as we shall see later) as irreducible

representations of the group.

Let us analyse first the Lorentz Group. In this case one needs a basis of 16 matrices. We take these

matrices as the set of the 16 linearly independent γ -matrices [8]: γ µC, γ 5γ µC, σµνC, C and γ 5C . We

write:
ψi1i2, a1a2 = (γ µ C)a1a2

(
GV
µ

)
i1i2

+ (
γ 5 γ µ C

)
a1a2

(
G A
µ

)
i1i2

+ (σµνC)a1a2

(Fµν)i1i2

+ (C)a1a2 (φ)i1i2 + (
γ 5 C

)
a1a2

(
φA
)

i1i2
.

(2.9)

Expression (2.9) allows us to decompose a rank 2 spinor field in terms of an antisymmetric tensor field

(Fµν), two rank 1 vector field (GV
µ and G A

µ) and two scalar fields (φ and φA).

In order to describe the weak interactions, we need both the vector
(
GV
µ

)
i1i2

and the pseudovector(
G A
µ

)
i1i2

fields. For the SU (3) group one needs to take only symmetric (in the spinor indices) rank 2 spinor

fields, so that one needs only a vector
(
G(3)
µ

)
k1k2

field. The difference has to do with breakdown of parity in

the weak interactions.

By using the expansion (2.9) one can write the chiral components for an SU (2) rank 2 spinor, defined

in (2.4)– (2.7), in terms of the usual vector and tensor fields as:

ψ
(2)
R R i1i2, a1a2

=
(
(1 + γ 5)

2
σµνC

)
a1a2

(Fµν)i1i2
+
(
(1 + γ5)

2
C

)
a1a2

(
φ + φA

)
i1i2

(2.10)

ψ
(2)
L L i1i2, a1a2

=
(
(1 − γ 5)

2
σµνC

)
a1a2

(Fµν)i1i2
+
(
(1 − γ5)

2
C

)
a1a2

(
φ − φA

)
i1i2

(2.11)

ψ
(2)
RL i1i2, a1a2

=
(
(1 + γ 5)

2
γ µ C

)
a1a2

(
GV
µ + G A

µ

)
i1i2

(2.12)

ψ
(2)
L R i1i2, a1a2

=
(
(1 − γ 5)

2
γ µ C

)
a1a2

(
GV
µ − G A

µ

)
i1i2

. (2.13)

In our approach all tensor fields are independent variables. The equations of motion satisfied by the

chiral components leads to the usual relations between Fµν and derivatives of vector fields and, for internal
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symmetries, the fields themselves [7-9]. In this sense, gauge invariance can be derived [8, 9]. The scalar

fields give rise to gauge fixing terms in the Lagrangian [10].

One decomposes the fields GV
µ and G A

µ in terms of singlet fields
(
a(0)µ and a(0)5µ

)
and triplet fields

(
a(�)µ

and a(�)5µ

)
by using the basis formed by the Pauli matrices σ (�) (� = 1, 2, 3) and the unit matrix as:

(
GV
µ

)
i1i2

= 1

4

(
a(0)µ δi1i2 − a(�)µ σ

(�)
i1i2

)
(
G A
µ

)
i1i2

= 1

4

(
a(0)5µ δi1i2 − a(�)5µ σ

(�)
i1i2

) (2.14)

In view of its relevance, from the point of view of the approach here proposed, let us consider the sum

over the chiral components ψ(2)
RL and ψ(2)

L R:(
ψ
(2)
RL + ψ

(2)
L R

)
i1i2

= γ µ
(
GV
µ, i1i2

− γ 5 G A
µ, i1i2

)
C ≡ γ µ

(
Gµ

)
i1i2

C . (2.15)

The above expression is a parity conserving combination of spinor components.

By using the usual expressions for the Pauli σ matrix one writes the vector and axial vector compo-

nents
(
GV
µ and G A

µ

)
given in (2.14), as the matrices:

GV
µ = 1

4


 a(0)µ − a(3)µ −a(1)µ + i a(2)µ

−a(1)µ − i a(2)µ a(0)µ + a(3)µ


 (2.16)

G A
µ = 1

4


 a(0)5µ − a(3)5µ −a(1)5µ + i a(2)5µ

−a(1)5µ − i a(2)5µ a(0)5µ + a(3)5µ


 . (2.17)

In the next section we shall use the axial component G A
µ (2.17) in order to develop a theory in which

parity is broken.

3 INTERACTIONS

In this section we shall discuss how an unified theory can be formulated by using spinor fields in the

description of bosons and fermions.

The most general Lagrangian involving the interaction of fields can be written as

L = L0 + LI , (3.1)

where L0 is the kinetic term of the Lagrangian. This term contains only space-time derivatives of fields.

We shall see that by using spinors the kinetic term involves only first order space-time derivatives of the

dynamical variables. LI in is the interaction Lagrangian.

By assuming left-handed neutrinos, we write the kinetic Lagrangian for fermions as:

L(F)0 = L
(F)
(i � ∂) L(F) (3.2)
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Whereas the kinetic Lagrangian for bosons, written in terms of the chiral components, is given by:

L(B)0 = ψ R R • (i � ∂ ψRL)+ ψ RL • (i � ∂ ψL L)+ ψ L R • (i � ∂ ψR R)+ ψ L L • (i � ∂ ψL R) . (3.3)

The Interaction Lagrangian can always be written as a sum involving powers of fields

LI = L2
I + L3

I + L4
I . (3.4)

The term involving quadratic interactions of fields is L2
I . The cubic interactions are described by the

L3
I term and, if one has scalar fields, the term L4

I contains quartic interactions. Renormalizability of the

theory restricts the number of possible couplings.

The most general interaction Lagrangian is a functional of the dynamical variables under the general

form

LI = LI

[
L(F)i , q(F)i, k , ψ

(2)
L R, i1i2

. . . ψ
(2)
L L , i1i2

, ψ
(3)
L R, k1k2

. . . ψ
(3)
L L , k1k2

, ϕ
]

(3.5)

where ϕ, in (3.5), represents scalar fields.

When dealing with rank 2 spinors some of the quadratic interaction terms involves masses as coefficients

of product of fields. One can provide masses to the W (+)
µ ,Wµ, Zµ particles through the use of the Higgs

mechanism or without invoking the Higgs mechanism. Masses will be discussed in a future publication.

We shall assume here that the photon is massless and that W (+)
µ ,Wµ, Zµ are massive. We do not assume,

in this paper, a specific mechanism for providing masses to particles.

The most general, renormalizable and invariant Lagrangian describing the interaction of fermions with

the intermediate bosons is:

L f ermions
I = g L

(F)
(
ψ
(2)
RL + ψ

(2)
L R

) (
C−1

)
L(F) (3.6)

where g is the electroweak SU (2) coupling constant. By writing the Lagrangian interaction in terms of

the fields L (F) we break parity. This is due to the fact that, from expression (2.1), we are coupling, in

Lagrangian (3.6), chiral components of some leptonic fields.

By using expressions (2.12) and (2.13) for the ψRL and ψL R fields we write the fermionic Lagrangian

defined in (3.6) as:

L fermions
I = g L

(F)
γ µ
(
GV
µ − γ 5 G A

µ

)
L(F) (3.7)

The above electroweak Lagrangian is SU (2) symmetric. In the next section we will break the SU (2)

symmetry by expressing a sum of singlet fields and the third component of triplet fields as mixings of the

neutral electroweak fields Aµ and Zµ. This is very similar (but not equal) to Weinberg´s mixings. The way

we break parity is, however, completely different.

Within the V -A [16, 17] theory the coupled currents have a vector and an axial component. In our

approach we have a two component theory at the level of the dynamic variables associated to the intermediate

bosons.
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4 BREAKDOWN OF SPACE-REFLECTION AND SU(2) SYMMETRIES

We shall discuss in this section some aspects of discrete symmetries [12-14]. For this reason we shall start

this section by introducing the transformation properties of rank 2 spinor fields under discrete symmetries.

Under space reflection (�x → −�x) a rank 1 spinor field transforms as

ψa1 (�x, t) → λP γ
0
a1a′

1
ψa′

1
(−�x, t) (4.1)

whereas a rank 2 spinor field transforms as

ψa1a2 (�x, t) → λP γ
0
a1a′

1
γ 0

a2a′
2
ψa′

1a′
2
(−�x, t) (4.2)

Under C PT a rank 1 spinor field transforms as

ψa2(x) → λC PT γ
5
a1a′

1
ψa′

1
(−x), (4.3)

whereas a rank 2 spinor field transforms, under C PT , as

ψa1a2(x) → λC PT γ
5
a1a′

1
γ 5

a2a′
2
ψa′

1a′
2
(−x). (4.4)

The extension from the rank 1 to rank 2 spinor fields for other symmetries is straightforward [15].

One of the distinctive features of the weak interactions is that space-reflection symmetry is broken by

these interactions. The possible existence of just one left-handed neutrino seems to emphasize this aspect.

In the Glashow-Weinberg-Salam (G.W.S.) model [1, 2] some of the dynamical variables of the theory

are left and right-handed components of fermionic fields. Left and right components belongs in this

formulation to different representations of the SU (2) group. A differentiation between left and right lies

in the very foundations of the theory. This asymmetric treatment of chiral components allows for the

incorporation of parity violation in the theory.

Another relevant feature, from the point of view of symmetries, is that an internal – SU (2) symmetry

– is also broken by these interactions. In order to break SU (2) symmetry usually one makes use of two

mechanisms.

The first mechanism is the spontaneous breakdown of gauge symmetry [3]. The particles associated

to the Zµ,W +
µ ,Wµ fields can acquire mass through the Higgs mechanism [18-22].

The second mechanism is the electroweak mixing of fields [3]. The electroweak mixings break SU (2)

symmetry in such a way as to introduce electromagnetic interaction of leptons. It is, in this way, a mecha-

nism to assign electric charges to leptons.

In this paper we pursue further the idea that breakdown of parity is an intrinsic property of the weak

interactions and that this should be described through the choice of variables. Since space-reflection

asymmetry is manifested in phenomena involving the interactions of the intermediate vector bosons we

prefer, however, to use parity asymmetric boson variables. As we shall see in this section, this can be done

by using rank 2 spinors.

A rank 2 spinor field has enough degrees of freedom to make possible the breakdown of parity and

SU (2) symmetries at the level of the bosonic variables. SU (2) symmetry and space-reflection will become,

in this way, broken symmetries.
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Let us analyse first the breakdown of parity. We shall use the axial component fields a(0)5µ , a(1)5µ and a(2)5µ

in order to build a parity breaking theory. We break parity in the charged sector by choosing:

a(1)5µ = a(1)µ , a(2)5µ = a(2)µ . (4.5)

The above choices are needed in order to reproduce the V -A theory of the weak interactions [16-17].

In order to break parity in the neutral sector we choose:

a(0)5µ = √
1 + ξ 2 Zµ, (4.6)

where ξ is a fundamental parameter of the electroweak model (ξ = tan θw). This is the only free parameter

to be introduced in our model. This parameter is an asymmetry parameter. It gives a measure of an

asymmetry between the neutral and charged sectors resulting from different parity breaking interaction

strengths. For ξ = 1 the neutral and charged sectors break parity with equal strengths. We shall see that

for ξ = 0 the SU (2) symmetry is restored.

From the above expressions one can see that space-reflection asymmetry becomes an asymmetry which

is dealt with at the level of the dynamic variables of the intermediate bosons. This brings breakdown of

parity to the realm of the weak interactions.

One can easily check that by substituting pseudovector fields by vector fields one is led to a theory in

which parity is broken. By means of the choices (4.5) and (4.6) one is making an explicit breakdown of

parity.

We notice that up to this point we have broken only space-reflection symmetry. By using the most

general rank 2 spinor, one can have two components each of them SU (2) symmetric. The two singlets

associated to the components are the a(0)µ and the redefined a(0)5µ fields.

One breaks global SU (2) symmetry by introducing the following ξ dependent electroweak mixings:

a(0)µ + a(0)5µ = 2ξ√
1 + ξ 2

(
Aµ − ξ Zµ

)

a(3)µ + a(3)5µ = 2√
1 + ξ 2

(
ξ Aµ + Zµ

) (4.7)

One writes the Wµ and W +
µ fields as the linear combinations:

Wµ= 1√
2

{
a(1)µ + i a(2)µ

}
, W +

µ = 1√
2

{
a(1)µ − i a(2)µ

}
. (4.8)

By taking ξ = tan θw, one can see, from (4.7) and (4.8), that the choice:

a(3)5µ = 0 , (4.9)

permit us to identify our vector triplet fields with the triplet fields of Weinberg [3].

It follows from the first definition in eq. (4.7), that the sum over the singlet fields introduced by us play

the role of the U (1) vector field of the GWS theory [1-3]. That is,

a(0)µ + a(0)5µ = 2ξ Bµ . (4.10)
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For the choices (4.5)– (4.9) we get the following expressions for the GV
µ and G A

µ matrices, defined in

(2.16) and (2.17):

GV
µ =




0 0

0
1√

1 + ξ 2

(
ξ Aµ + Zµ

)

+




−3

4

√
1 + ξ 2 Zµ − 1

2
√

2
W +
µ

− 1

2
√

2
Wµ −3

4

√
1 + ξ 2 Zµ


 (4.11)

G A
µ =




1

4

√
1 + ξ 2 Zµ − 1

2
√

2
W +
µ

− 1

2
√

2
Wµ

1

4

√
1 + ξ 2 Zµ


 (4.12)

The conclusion is that we can use the GV
µ and G A

µ components of a rank 2 spinor ψ in order to get a

set of dynamical variables that incorporates the breakdown of symmetries at the level of bosonic variables.

Besides incorporating both asymmetries through the choice of the bosonic field variables, we break

these symmetries in the same way. In both cases the symmetries are broken by imposing that certain

fields
(
a(0)5µ , a(1)5µ , a(2)5µ and a(3)µ

)
transforms in a way that is different from the way we would expect if the

symmetries were realized in nature.

In this section we have shown how one can use both components
(
GV
µ and G A

µ

)
of a rank 2 spinor as

SU (2) and space-reflection broken dynamical variables describing the intermediate bosons. The asymme-

tries are reflected in the lack of symmetries of these bosonic variables.

5 COUPLING CONSTANTS AND ASYMMETRIES

By substituting expressions (4.11)– (4.12) in (3.7), we get the electroweak interaction Lagrangian for

fermions belonging to the F-family. For the first family this Lagrangian is:

L electroweak = g ( νeL , e ) γ µ






−√1 + ξ 2 Zµ 0

0
ξ Aµ√
1 + ξ 2

− ξ 2√
1 + ξ 2

Zµ




+ 1 − γ 5

4


−√1 + ξ 2 Zµ −√

2 W +
µ

− √
2 Wµ +√1 + ξ 2 Zµ





(
νeL

e

)
(5.1)

Where e is the electron field and νeL is the left-handed neutrino field.

The electroweak interactions involves, from (V.1), 4 different coupling constants. They depend on the
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parameter ξ as follows:

g
1√

1 + ξ 2
ξ (5.2)

g
1√

1 + ξ 2
ξ 2 (5.3)

g
1

4

√
1 + ξ 2 (5.4)

g
1

4

√
2 (5.5)

The first ξ -dependent parameter is the electric charge of the positron. As can be seen from (V.1), the

electromagnetic interaction of leptons is, in our approach, a consequence of the lack of SU (2) symmetry

of the fundamental interactions.

Let us analyse some specific values of the parameter ξ . Let us consider first the value of this parameter

for which one gets a symmetry between the charged and the neutral sectors in the parity broken couplings.

As pointed out before, this situation occurs when ξ = 1. For this value of ξ the theory contains only two

coupling constants. One coupling for the parity broken piece of the lagrangian and another coupling for

the parity preserving term of the lagrangian. They differ by just a factor of 2.

We shall analyse now the aspect of space reflection symmetry. A theory is left-right asymmetric if the

theory is not invariant under the exchange of left components by rigth components (R ↔ L).

We define a theory as being completely left-right asymmetric (under the exchange of R ↔ L) if only

left-handed components are coupled. Under these circumstances the Lagrangian is term by term left-right

asymmetric. One can define a theory as maximally allowed parity broken if the electromagnetic interaction

is the only parity preserving interaction of the Lagrangian. This differentiation is needed in view of the fact

that electromagnetic interactions are parity conserving.

We analyse now the conditions under which leptonic interactions (for left-handed neutrinos) become

completely space-reflection asymmetric. A completely broken parity symmetry occurs when ξ = 0. For

this value of the ξ parameter the lagrangian (5.1) becomes:

L electroweak = g �L




− 1

2
Zµ − 1√

2
Wµ

− 1√
2

W +
µ

1

2
Zµ


 �L + g q L




− 1

2
Zµ − 1√

2
Wµ

− 1√
2

W +
µ

1

2
Zµ


 qL (5.6)

where qL and �L are the all left-handed components of the q and � variables.

As we can see from (5.6) the ξ = 0 limit leads us to a SU (2) symmetric model in which we turn off

electrodynamics and the Zµ field plays the role of the third component of the triplet field. In this limit parity

is totally broken. We get, in this limit a model quite similar to unbroken SU (2) model of GWS model.

The conclusion is that a theory for which parity is completely broken, is a theory for which SU (2)

symmetry is restored. This is possible only when we get rid of the electromagnetic interactions.
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Let us consider finally the conditions under which electromagnetic interactions is the only interac-

tion preserving parity. In order to do so we separate out the electromagnetic interaction from the weak

interactions. We write

L electroweak = − ge e γ µ e Aµ + gw ( νeL , e ) γ µ







− 1

cos θw
Zµ 0

0 −sin2 θw

cos θw
Zµ




+ (1 − γ5)




1

4 cos θw
Zµ − 1

2
√

2
Wµ

− 1

2
√

2
W +
µ

1

4 cos θw
Zµ







(
νeL

e

)
.

(5.7)

Where in the last equation we have written the ξ parameter as

ξ = tan θw (5.8)

The last four terms of the Lagrangian (5.7) of the electroweak interactions couples only left-handed

components of electrons and neutrinos. In order to analyse under which circunstances there are no parity

conserving terms in the weak interactions of leptons one needs to consider only the weak interaction of

electrons with the neutral boson Zµ.

The choice

sin2 θw = 1

4
, (5.9)

leads us, for left-handed neutrinos, to a Lagrangian of the weak interactions that can be written in terms of

chiral components, as:

L weak = gw
4 cos θw

(
eL γ

µ Zµ eL − eR γ
µ Zµ eR − 2 νeL γ

µ Zµ νeL

)

− gw√
2

(
νeL γ

µ W +
µ eL + eL γ

µ W −
µ νeL

)
.

(5.10)

One can easily check that for the value (5.9) of Weinberg’s θ -angle the weak interaction of leptons

is maximally allowed left-right asymmetric. An example of a simple gauge group for the electroweak

interactions for which sin2 θw = 1

4
is given in ref. (23).

If maximally allowed asymmetry between left and right in the weak interaction is a requirement to be

satisfied by the weak interaction, then the θw parameter would no longer be a free parameter. It would be

determined from symmetry arguments. The fact that the experimental value of θw is so close to (5.9) means

that the weak interactions is very close to being left-right asymmetric.

6 CONCLUSIONS

In this paper we have presented an unified theory of the fundamental interactions by using spinor fields [5].

The use of spinors brings to the particle description a new set of tools. No use is made, when using spinors,
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of gauge invariance. The dynamical variables, in the spinorial approach, is a set of 22s chiral components

for each spin s particle.

The use of a rank 2 spinor fields allows us to built explicit space reflection asymmetric theories. This

is done, formally, by interchanging pseudovector fields with vector fields. The use of spinors allows us to

see that the electroweak interactions are intrinsically asymmetric with regard to space reflection and that

this asymmetry can be dealt with at the level of the variables associated to the intermediate bosons.

The theory of the fundamental interactions deals with coupling constants and other fundamental pa-

rameters, like masses, whose understanding is a great scientific challenge today. As an application of our

approach, we have discussed in this paper how the coupling constants of the electroweak interactions are

related to breakdown of symmetries.

In the electroweak interactions we deal with 4 coupling constants. These couplings arises in the process

of breaking SU (2)×U (1) symmetry as suggested by the Standard Model, or as a result of parity and SU (2)

symmetries as proposed here. There are great conceptual differences between our approach and the one

proposed by Glashow, Weinberg and Salam. In both theories the 4 couplings depend on just one parameter.

In the Standard Model this parameter is the θw parameter whereas in our approach this parameter is the ξ

parameter.

In our approach there is an interplay between breakdown of parity and SU (2) symmetries. This

interplay is reflected in the values of the four coupling constants. When we recover SU (2) symmetry, in

the ξ = 0 limit, we loose parity in a complete way. This happens in the limit in which the electric charges

of all fermions are zero.

We have also suggested that symmetry arguments can be evoked in such a way as to guess a value

for the asymetry parameter that is very close to the experimentally observed value of this parameter. We

suggest also that the value of sin2 θw is expected, from parity asymmetry arguments, to assume the value
1

4
.

At this value the usual weak interactions becomes a parity breaking interaction with no parity preserving

terms in the Lagrangian. The theory of the electroweak interactions is close to a maximally allowed parity

violating theory. From this argument it follows that gw should be, from (5.7), equal to 2 ge. An example of

a simple gauge group for the electroweak interactions for which sin2 θw = 1

4
is given in ref. (23).

The fact that quarks and leptons have different charges can be explained on the other hand as a

consequence of an extra symmetry (SU (3)) of the interactions of quarks (Marques and Spehler 2007,

unpublished data).

The conclusion is that symmetries can be evoked in order to give an account for relations among

coupling constants and for the values of the electric charges of fermions.
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RESUMO

Com base em uma formulação nova para simetrias das interações fundamentais nós lidamos, neste trabalho, com

interações eletrofracas de leptons. Mostramos que as constantes do acoplamento, associadas aos acoplamentos de

bósons intermediários, podem ser entendidas como parâmetros associados à quebra de simetrias SU (2) e paridade.

A quebra de ambas as simetrias é caracterizada por um parâmetro novo (o parâmetro de assimetria) das interações

eletrofracas. Este parâmetro dá uma medida da intensidade com que a simetria é quebrada. Analisamos o comporta-

mento da teoria para três valores deste parâmetro. O valor mais relevante é aquele para o qual apenas as interações

eletromagnéticas não quebram a paridade (a teoria assimétrica esquerda-direita permitida da maneira máxima). A

assimetria máxima permitida é uma exigência que leva a um ângulo de Weinberg cujo valor é próximo daquele ob-

servado experimentalmente.

Palavras-chave: simetrias, constantes do acoplamento, interações eletrofracas.
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