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ABSTRACT
Changes in climate, which can be understood as fluctuations in climate patterns as a reflection of natural or anthropic 
interventions, can generate changes in the environment and consequently affect the diversity of organisms. Fungi 
are extremely important in organic matter cycling in different environments, mainly forest areas, decomposing dead 
wood. To better understand the effects of climate change on two wood-degrading Agaricomycetes, their potential 
neotropical distribution was modeled using known occurrence data, available in the GBIF database and in specific 
literature, and associated with predictor variables extracted from Worldclim. A modeling package in R environment 
was used to analyze the present and future suitability for the optimistic and pessimistic scenarios. The results 
indicate the climate as an important factor in the distribution of Auricularia brasiliana and Megasporoporia neosetulosa. 
The suitability factors for the metrics used indicate that the models can be used to analyze climatic areas and that 
temperature and precipitation strongly influence the permanence of species in these locations. The results also indicate 
areas that can be affected by climatic effects, consequently causing a decrease in the occurrence and permanence 
of these fungi in the Neotropics. Our models can be useful as future guidelines in conservation studies for fungi.
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Introduction
Over thousands of years, humans have been responsible 

for promoting changes in the environment causing 
significant ecological impacts and loss of its diversity, 
in addition to promoting the dispersion of species over 
long distances around the planet (Whittaker et al. 2005; 
Tylianakis et al. 2008; Bullock et al. 2018). Climate change 

(CC) is understood as changes in weather patterns caused 
by natural factors (Yue & Gao 2018) or by human action 
(Huang et al. 2020) that are mainly evident through the 
emission of gases into the atmosphere.

Changes in climate indicators are generally related to 
abiotic factors such as precipitation, temperature, rising 
levels and acidification of the ocean (Fawzy et al. 2020). 
These changes can trigger extreme natural phenomena and 
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affect genetic diversity within populations (Pauls et al. 2012), 
causing extinction events for some ecological populations 
in tropical environments, including fungi (Sheldon 2019; 
Lughadha et al. 2020).

Fungi correspond to a group of organisms whose spatial 
patterns are still poorly explored compared to other groups 
of living beings (Hawksworth & Lücking 2017). In addition, 
they play an important role in recycling products resulting 
from their organic activity (Deacon 2006; Kendrick 2017) 
and are important bioindicators for conservation and 
management of forest areas (Jiménez et al. 2020).

Therefore, a fundamental question for conserving 
fungal diversity under the uncertainties of climate change 
would be the extent to which we will have compatible 
substitutes to perform the important ecological functions 
for the ecosystem dynamics in relation to genetic diversity 
(Nilsson et al. 2018). While the conservation of fungal 
species and ecosystems is the foundation of diversity 
preservation, there is a need to expand the concept of 
conservation to include new methodologies that add 
techniques and include an updated framework of new 
resources to track and catalog known species through 
potential predictions of their real functional and ecological 
diversity (Lofgren & Stajich 2021).

Species distribution model (SDM) is one of these new 
techniques, which uses existing species occurrence data 
associated with environmental predictor layers to generate 
presence probability models and suitable areas for new 
occurrences (Elith & Leathwick 2009; Guisan & Thuiller 
2005). This technique has been recently developed and 
shows increasing use and applicability in delimitation of 
conservation areas (Guillera-Arroita et al. 2015; Keeley 
et al. 2017; Bosso et al. 2018), and that the Geographic 
Information System (GIS) tools can be useful in the 
management of areas and organisms relevant to their 
conservation and ecosystem balance, respectively (Brambilla 
& Saporetti 2014; Soberón et al. 2017; Kaky et al. 2020).

In recent years, studies have been intensified for most 
of organisms (Urbina-Cardona et al. 2019) mainly due 
to concerns related to climate change (Větrovský et al. 
2019), species fertility (Walsh et al. 2019), expansion of 
invasive species in native areas (Barbet-Massin et al. 2018), 
divergence, conservation and niche delimitation of cryptic 
species (Culumber & Tobler 2016; Scriven et al. 2016; Zhao 
et al. 2019) and diversity through integrative taxonomy for 
wood-decomposing fungi (Fernández-López et al. 2019).

The number of works using SDM to analyze the 
distribution of fungi is currently increasing. Hao et al. 
(2020) recently reviewed 283 studies and highlighted 
three main approaches: 1) pathogenic fungi, 2) lichens 
and 3) mushrooms and other macro and microfungi of 
ecological importance. SDM showed to be a viable technique 
to analyze new potential areas of occurrence, as well as 
the relationship with the processes that influence them. 
Different methodologies and algorithms that incorporate 

cataloged data available, mostly of them herbarium records, 
have already been used for Agaricales (Wollan et al. 2008), 
ectomycorrhizal fungi (González-Ávila et al. 2013; Guo et al. 
2017; Pietras & Kolanowska 2019), lichens (Szczepańska et 
al. 2015; Dymytrova et al. 2016; Oh et al. 2019; Menezes et 
al. 2020), Hymenochaetaceae (Yuan et al. 2015; Fernández-
López et al. 2019), Ophiocordyceps (Yan et al. 2017; Wei et al. 
2021), Boletales (Banasiak et al. 2019) and other organisms 
similar to fungi, such as Myxomycetes (Almadrones-Reyes 
& Dagamac 2018).

These studies showed that the presence of sporophores 
in certain areas is more strongly related to climatic factors, 
although the distribution patterns of macrofungal 
communities can also be correlated with other factors 
depending on the modeled species, and that the processes 
of global transformation underway can affect the richness 
of these organisms (Andrew et al. 2019). Thus, we assess the 
potential impact of climate change for two wood-degrading 
Agaricomycetes species in the pessimistic and optimistic 
scenarios in the Neotropical area, through ecological 
modeling for suitable areas.

Materials and methods
Occurrence data

A dataset with the records of the Agaricomycetes 
Auricularia brasiliana Y. C. Dai & F. Wu and Megasporoporia 
neosetulosa C.R.S. Lira & Gibertoni available on GBIF – 
Global Biodiversity Information Facility (https://www.
gbif.org/pt/) was used to SDM analysis. Occurrences 
for A. brasiliana from 1906 to 2021 were downloaded 
from GBIF.org on January 24, 2022 (https://doi.
org/10.15468/dl.dqmgbz) and M. neosetulosa from 1887 
to 2020 from GBIF. org on May 17, 2022 (https://doi.
org/10.15468/dl.6nmbfx). We only included in our 
analyses records of samples deposited in herbaria and 
with coordinates or with information about locality/city/
municipality from which approximate coordinates could 
be found. Data with wrong or incomplete information, 
of doubtful reliability, i. e. arising from human, machine 
or empty observations, and of occurrence outside the 
Neotropics were excluded.

Due to the lack of reliable data on their actual absences, 
here we worked only with the presence data and pseudo-
absence for model calibration and/or background points 
(Chefaoui & Lobo 2008; Phillips & Dudik 2008). In this 
sense, for this study, the environmental restriction method 
was used, which is based on the smallest suitable region 
predicted by a bioclimatic model (Engler et al. 2004). The 
application of this method has greater explanatory power in 
relation to models that randomly allocate pseudo-absences. 
Finally, the package reduced the number of duplicated points 
during the analysis.

https://www.gbif.org/pt/
https://www.gbif.org/pt/
https://doi.org/10.15468/dl.dqmgbz
https://doi.org/10.15468/dl.dqmgbz
https://doi.org/10.15468/dl.6nmbfx
https://doi.org/10.15468/dl.6nmbfx
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Biology and taxonomic status of the species
Auricularia brasiliana belongs to Auriculariales and has 

effuse-reflexed basidiomata usually adhered to the substrate, 
monomitic hyphal system surrounded by a gelatinous matrix 
that gives the possibility of rehydration after periods of 
drought. Megasporoporia neosetulosa belongs to Polyporales 
and presents resupinate basidiomata, completely adhered 
to decomposing branches. Both species are ecologically 
important as angiosperm decomposers in Amazon, Atlantic 
Rain Forest, Caatinga, including montane forests, and 
Cerrado. Auricularia brasiliana is potentially edible, since 
other species of the genus are traditionally used for food.

Auricularia brasiliana was segregated from the A. 
mesenterica complex and is only known in Brazilian biomes  
so far (Wu et al. 2015), while M. neosetulosa was described 
as a new species, phylogenetically separated from the 
morphologically similar M. setulosa (Henn.) Rajchenb., 
from which differs in the slightly larger basidiospores, and 
the occurence in the Neotropics, while M. setulosa seems 
to be restricted to Africa (Lira et al. 2021). However, the 
databases have not yet been updated and the cited records 
appear as A. mesenterica and M. setulosa. Thus, previous 
records of these species in the Neotropics are considered 
as A. brasiliana and M. neosetulosa, respectively.

Bioclimatic variables
All 19 environmental climate layers were included, 

as well as the topographic variable (Elevation) in two 
sets (current and future), available in WorldClim (Fick 
& Hijmans, 2017, available at: https://www.worldclim.
org/). For future projections (2061~2080), the CNRM-
CM6-1 climate model was used with a spatial resolution of 
2.5 minutes, from the National Center for Meteorological 
Research. The package used, detailed below, carried out the 
current model and the future projection simultaneously.

 Two scenarios of Shared Socio-economic Pathways, 
SSP1-2.6 – optimistic scenario and SSP5-8.5 – pessimistic 
scenario were assumed. SSP 1-2.6 represents the imposition 
of policies to mitigate global CO2 emissions, with temperature 
rise stabilizing at around 1.8°C by the end of the century, 
while SSP 5-8.5 represents one of the sets of scenarios that 
describe the highest emissions of CO2 gases until 2050. 
In this scenario, the world economy grows rapidly, driven 
by the exploitation of fossil fuels, with an increase in the 
average temperature of the planet by up to 4.4 °C to 2100 
and with emissions high enough that they will produce a 
radioactive forcing of 8.5 W m-2 (O’Neill et al. 2016). The 
data used here were obtained from the Coupled Model 
Intercomparison Project Phase 6 (CMIP6) (Eyring et al. 
2016, available at https://www.worldclim.org/). Finally, 
the study was conducted only for the Neotropics, here 
defined according to One Earth (https://www.oneearth.
org/bioregions-2020/, accessed in April/04/2023). Thus, the 
environmental variables were cut with a focus on the studied 

area, through the Q-GIS program version 3.16.14 (https://
www.qgis.org/pt_BR/site/forusers/download.html).

Algorithms and model calibration
For the species modeling process, the “ENMTML” 

package (Andrade et al. 2020) was used in the R environment 
(R Core Team 2023) which is divided into three stages: 
pre-processing, processing and post-processing (Andrade 
et al. 2020). In the pre-processing stage, the occurrences 
and predictor variables were inserted. No parameter was 
used to reduce the autocorrelation of the occurrence data. 
An important point for the construction of the model is the 
reduction of the collinearity of the predictor variables, since 
the use of many climatic variables can generate misleading 
models and, consequently, an increase in the commission 
errors of the predicted distributions, that is, the area 
climatically adequate where the species does not actually 
occur (Beaumont et al. 2005). In this sense, the Variance 
Inflation Factor (VIF) was used to reduce the collinearity of 
the predictor variables and the final set of climatic predictors 
used for modeling had VIF values >2 (Marquaridt 1970). The 
script can be accessed in https://github.com/ailtonm4th3us/
Script-for-modelling-distribuition-species.

The argument (sp_accessible_area) that defines the 
hypothetical geographically accessible area for the species 
over time was also used for the construction of the models 
in relation to what is already known about their ecology and 
biogeography (Barve et al. 2011; Peterson et al. 2011). This 
area can be represented by the BAM (Biotic interactions, 
Abiotic conditions, and Movement) diagram (Soberón & 
Peterson 2005) which demonstrates the main factors that 
influence the distribution patterns of the species. However, 
this information is not available for the species studied 
here, so for this study we defined the accessible areas in 
a single shape-file of the ecoregions for the Neotropics, 
extracted from the World Wildlife Fund website (https://
www.worldwildlife.org/biomes, accessed in April/26/22) 
in the modeling process (Peterson et al. 2001; Andrade et 
al. 2020). The extrapolation of the model is controlled by 
this method, as the SDM adjust the models based on the 
conditions in which the occurrences, pseudo-absence and/
or background data are found. In this sense, when forecasts 
are made, the models will present new conditions, especially 
when projections are made for different time periods and/
or geographic regions. In this case, as there is uncertainty, 
the models will perform extrapolations, as they were not 
adjusted for the conditions found in the occurrence data 
(Fitzpatrick & Hargrove 2009; Andrade et al. 2020).

Modeling process
Here, to perform the data partitioning, the Bootstrap 

method was used, which comprises a random partition 
between the training and test subsets (Fielding & Bell 1997; 
Andrade et al. 2020). Thus, 10 replicates of each model 
were performed, with 70% of the data destined for the 

https://www.worldclim.org/
https://www.worldclim.org/
https://www.worldclim.org/
https://www.oneearth.org/bioregions-2020/
https://www.oneearth.org/bioregions-2020/
https://www.qgis.org/pt_BR/site/forusers/download.html
https://www.qgis.org/pt_BR/site/forusers/download.html
https://github.com/ailtonm4th3us/Script-for-modelling-distribuition-species
https://github.com/ailtonm4th3us/Script-for-modelling-distribuition-species
https://www.worldwildlife.org/biomes
https://www.worldwildlife.org/biomes
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training models and 30% for the validation of the models. 
In the processing step, we consider three algorithms for 
modeling: 1) Maximum Entropy (MXS) (linear and quadratic 
characteristics), 2) Support Vector Machine (SVM), both 
Machine Learning methods (Karatzoglou et al. 2004; Phillips 
et al. 2017) and 3) Random Forest (RDF), a classification 
method and linear regression (Liaw & Wiener 2002).

In the post-processing stage for evaluating the models, 
the metrics Area Under the Curve (AUC, Fielding & Bell 
1997), Kappa (Cohen 1960), True Skill Statistics (TSS, 
Allouche et al. 2006), Jaccard (Leroy et al. 2018) and 
Sorensen (Leroy et al. 2018) were used. AUC, Kappa and 
TSS range from 0 to 1, and the closer to 1, the most excellent 
performance has the model, while the closer to 0, the poorer. 
Jaccard and Sorensen metrics, which refer to the similarity 
index, indicate that, if the value is close to 1, the predictions 
are similar to the observations, while the inverse indicates a 
higher number of errors, with possible extrapolations, thus, 
a lower similarity with a greater number of false positives 
and false negatives (Leroy et al. 2018). As the similarity 
indexes are not influenced by the prevalence of the species 
and by the unequal number of pseudo-absence (Leroy et al. 
2018; Nascimento et al. 2022), we used the threshold that 
maximizes the Jaccard values, thus considering the values 
of sensitivity and specificity as limits for creating binary 
maps (Allouche et al. 2006). To adjust the models with 
the different algorithms and create an ensemble model, 
we used the Mean of the Best Models (SUP, acronym used 
in the ENMTML package, Andrade et al. 2020), which 
evaluates the best algorithms based on Jaccard values, 
that is, those algorithms that presented the Jaccard index 
above the average (Velazco et al. 2019). Subsequently, the 
maps generated were edited in the Q-GIS.

Results
Species data processing

We modeled the current distribution of two wood-
degrading Basidiomycota species using SDM to predict 

suitable areas for their occurrence. We designed the models 
to analyze two future scenarios and understand which areas 
are expected to change over the 2061 to 2080 range due to 
the effects of climate change. Initially, A. brasiliana had 176 
and M. neosetulosa 237 occurrence records downloaded from 
the database and the consulted literature. After the removal 
of incomplete data or incorrect information regarding the 
place of collection, the number of records was reduced to 55 
records to A. brasiliana and 157 to M. neosetulosa. However, 
for the species modeling process, 40 occurrence points were 
used for A. brasiliana and 72 for M. neosetulosa, according 
to the spatial resolution of 2.5 minutes.

Model performance
The species presented a good performance of the 

explanatory values of suitability for all algorithms in the 
construction of the binary maps (Table 1). For AUC, the 
three algorithms presented training values of 0.946 and 
SVM had the best performance. For Kappa, the algorithms 
totaled a SUP average of 0.842, whereas the value of TSS was 
close to 1, with SVM once again being the algorithm with 
the highest performance value. For Jaccard, the average was 
0.861 and for the Sorensen index the adequacy value was 
0.922. For these two adequacy metrics, SVM also presented 
the best contribution values, so it seems that the SVM 
algorithm presents better applicability to the data training 
provided for these species.

The product of the training data thus represents 
the suitability in known and potential areas for the two 
species. Low values represent areas with less suitability and 
correspond to paler colors in the maps (Fig. 1), while those 
that correspond to stronger colors have greater climatic 
suitability for the occurrence of fungi and represent optimal 
values, which approach to 1.

Contribution of biovariables
Of the 20 variables used to perform the analysis, 10 

were selected by the model during execution for the two 
species in relation to the three algorithms used. For A. 
brasiliana, five predictors presented better performance in 

Table 1. Contribution values of the algorithms with the best performance for the models of A. brasiliana and M. neosetulosa in bold.

Species
Model Evaluation

Algorithms AUC Kappa TSS Jaccard Sorensen

Auricularia 
brasiliana

MXS 0,854 0,550 0,550 0,681 0,808

RDF 0,916 0,775 0,775 0,797 0,883

SVM 0,926 0,792 0,792 0,827 0,901

SUP 0,946 0,842 0,842 0,861 0,922

Megasporoporia 
neosetulosa

MXS 0,827 0,577 0,577 0,678 0,805

RDF 0,919 0,745 0,745 0,774 0,870

SVM 0,849 0,577 0,577 0,685 0,811

SUP 0,920 0,755 0,755 0,782 0,876
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the execution of the model, being the predictor Bio2 (Mean 
diurnal range) with the highest corresponding value for the 
three algorithms, while M. neosetulosa had its performance 
with the best correspondence for Bio3, Bio9, Bio18, Bio19 
and Elev, being Bio18 (Precipitation of warmest quarter) 
and Bio19 (Precipitation of coldest quarter) with higher 
values for the SVM algorithm, Bio18 for the MXS and Bio19 
for RDF (Table 2). The climatic suitability for A. brasiliana 
seems to have the temperature as the greatest climatic factor 
influencing its occurrence, while M. neosetulosa would have 
the precipitation.

Species climate scenarios
The models showed three scenarios that allow 

visualization of the climatic suitability of the species in 
the present and over time in an optimistic and pessimistic 
perspective, respectively (Fig. 1).

In the Neotropical region, A. brasiliana currently has 
a wide distribution from Central America to the central 
region of South America, with points of greater climatic 

suitability also in the Caribbean islands (Fig. 1A). The 
Amazon rainforest stand out as areas of countries with 
a hot-humid climate. Some of these areas seem to have 
greater aptitude for the permanence of this species and 
consequently other potential areas are predicted by the 
model.

In an optimistic future scenario, there would be a 
significant reduction in the suitability of A. brasiliana, 
observed by the color differences (Fig. 1B). For the 
pessimistic scenario, most areas that maximize suitability 
are drastically reduced to some points at the coastal strip 
of South America, corresponding to the Atlantic Forest in 
Brazil, thus comprising a diminution in the niche of this 
species (Fig. 1C).

For M. neosetulosa, its current distribution is more 
concentrated in southern South America, in Central America 
and the Caribbean Islands (Fig. 1D). Brazil has a greater 
number of suitable areas compared to other South American 
countries, which, however, also have potential points of 
suitability for the current scenario (Fig. 1D). We were able 
to identify that, in addition to the humid tropical forests 

Figure 1. Climate scenarios for A. brasiliana and M. neosetulosa. A- Current scenario, B- Optimistic scenario and C- Pessimistic scenario 
for A. brasiliana. D- Current scenario, E- Optimistic scenario and F- Pessimistic scenario for M. neosetulosa.
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of Brazil, Central America, Caribbean and South America, 
the species seems to be well adapted to Cerrado, which is 
characterized by a seasonal tropical climate, with rainy 
periods and well-delimited drought.

In the optimistic scenario, the species has its niche 
reduced almost entirely in the northern region of South 
America, being most likely to be restricted to dry regions 
in the Andes and the southern region of South America 
(Fig. 1E). We also found that for northern South America, 
a small area of the Guiana plateau remained suitable for 
the species, which could lead to the isolation of the species 
(Fig. 1E). The niche was also significantly reduced to the 
central region on the map which previously presented several 
potential areas for the species. For the pessimistic future 
scenario, the model admits that this reduction to the north 
could be even more severe, and that the species will only 
occur in small fragments along Central and South America, 
and the Cerrado with greater potential of its occurrence, in 
addition to the coastal strip of the country where we find 
the Atlantic Forest (Fig. 1F).

Our analyses showed that the two species share, in some 
cases, equal access points for each suitability grid, but with 
different values for each distribution range, although A. 
brasiliana seems to be better distributed in the northern 

part of the Neotropics while M. neosetulosa in the southern 
part. Our suitability values for both models performed 
excellently and the maps indicate that most suitable areas 
are in Amazonian Forest for A. brasiliana and Cerrado and 
mountainous areas for M. neosetulosa. Furthermore, some 
areas of Atlantic Forest in Brazil would remain suitable for 
both species in different scenarios.

Discussion
Although the distribution of fungi is still poorly 

explained and there are difficulties in predicting climate 
change for these organisms, the use of SDM presents a 
good technique to predict the occurrence of these organisms 
in space over time (Hao et al. 2020). We found that the 
challenges to apply SDM to fungi are linked to detection 
and sampling, as well as the taxonomic changes underway. 
This is due to the inclusion of genetic data to better delimit 
and identify the species, which causes uncertainties in 
the choice of the taxa to be modeled (Stefani et al. 2014; 
Hawksworth & Lücking 2017) Therefore, the species in 
this study were selected following recent literature that 
confirmed their taxonomic position and delimitation from 

Table 2. Contribution of predictor variables for each algorithm to A. brasiliana and M. neosetulosa. Bio2: Mean diurnal range (mean 
of monthly (max temp−min temp); Bio3: Isothermality (bio2/bio7) (x100); Bio8: Mean temperature of wettest quarter; Bio9: Mean 
temperature of driest quarter; Bio13: Precipitation of wettest month; Bio14: Precipitation of driest month; Bio15: Precipitation 
seasonality (coefficient of variation), Bio18: Precipitation of warmest quarter; Bio19: Precipitation of coldest quarter Elev: Elevation.

Species
Variables Algorithms

ID MXS RDF SVM

Auricularia brasiliana

Bio2 0.390 0.226 0.236

Bio3 0.009 0.088 0.053

Bio8 0.041 0.055 0.069

Bio9 0.029 0.038 0.112

Bio13 0.130 0.154 0.161

Bio14 0.106 0.107 0.126

Bio15 0.022 0.154 0.074

Bio18 0.160 0.078 0.039

Bio19 0.027 0.067 0.100

elev 0.080 0.034 0.025

Megasporoporia neosetulosa

Bio2 0.078 0.052 0.059

Bio3 0.065 0.073 0.096

Bio8 0.089 0.052 0.042

Bio9 0.152 0.228 0.106

Bio13 0.086 0.091 0.000

Bio14 0.022 0.097 0.097

Bio15 0.031 0.124 0.035

Bio18 0.196 0.098 0.238

Bio19 0.153 0.135 0.237

elev 0.124 0.051 0.087
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DNA sequences. Although A. brasiliana and M. neosetulosa 
have phylogenetic support that justify their delimitation 
to the Neotropics, the confirmation of their distribution 
is not fully resolved and new complementary studies with 
broader DNA sampling of material collected in other regions 
of the Neotropics other Brazil are needed. Furthermore, 
revising deposited material in herbaria and updating the 
databases is of paramount importance to optimize this 
process. Despite being an initial study, our work paves the 
way for the ecological understanding and the limits of the 
distribution of the studied species, knowing that for fungi 
the effects of taxonomic inaccuracies have been little studied 
when dealing with distribution models (Elith et al. 2013; 
Fernández-López et al. 2019).

There is currently an emerging interest in predicting 
new environments in which fungal species have not been 
observed, mainly to guide biodiversity management and 
conservation processes (Sequeira et al. 2018). Studies 
show that the areas modeled according to the points of 
occurrence correspond to places in which the species 
already exists and that the models introduce new areas 
climatically similar (Nascimento et al. 2022) which can 
be reached by the species and serve as potential areas for 
their establishment depending on their dispersion capacity 
(Barve et al. 2011). The planet is undergoing transformations 
resulting from climate change, which are a reflection of 
different impacts. Among these, forest deforestation is 
one of the aggravating factors that lead to loss of substrate 
and temperature rising, generating extreme phenomena 
and atypical events that can lead to the extinction of 
organisms such as fungi (Walker et al. 2018; Lughadha 
et al. 2020). Additionally, other important factors may be 
already affecting the distribution of these organisms more 
than climate changes, such as land and sea use that reduces 
biodiversity on the planet, followed by the exploitation of 
natural resources and pollution (Jaureguiberry et al. 2022). 
However, the results obtained here demonstrate the current 
panorama of the distribution caused by the effect of climate 
change and alert to the causes of alterations in the future, 
which come from the set of successive actions and events 
listed above that drive the global loss of biodiversity and 
compromising the conservation of organisms.

Our models show that the areas of greatest climatic 
suitability are reduced and that for A. brasiliana and M. 
neosetulosa the potential range will change in some regions, 
mainly central and northern South America in response 
to climate change. Although these areas remain suitable 
for both species over the years, the decrease in suitability 
for central-northern regions including countries in this 
territorial range, especially Brazil, is worrying, as they are 
areas that hold a large part of Amazon Forest and shelter a 
good part of the diversity of fungi (Gazis & Chaverri 2015) 
that act in different roles in ecosystem dynamics (Fukasawa 
& Matsukura 2021).

With the reduction of the Amazon Forest in these 
areas, it is assumed that the occurrence of A. brasiliana 
will drastically be reduced, since dependence on climatic 
conditions can alter its presence and interfere with ecological 
interactions with plants due to its role as a decomposer, and 
also affecting its diversity (Větrovský et al. 2019; Naranjo-
Ortiz & Gabaldón 2019). For M. neosetulosa, the Cerrado 
biome in Brazil seems to have the highest percentage of 
suitable areas, which indicates that the conditions present in 
this environment may favor the permanence of the species 
in this habitat. The Cerrado is the second largest biome in 
Brazil, a hostspost that has suffered strong pressure from 
agribusiness through legal and illegal deforestation and 
has few protected areas compared to other biomes in the 
country such as the Amazon (Colli et al. 2020; Rajão et al. 
2020). Even for an optimistic future scenario, the suitability 
of this species seems to disappear in the central-north 
region of South America, leaving few areas appropriate 
for its occurrence.

In addition, areas of the Atlantic Forest biome show to be 
suitable for both species even in the pessimistic scenario. It 
is worth mentioning that this Brazilian hotspot is currently 
undergoing changes in its remnants as a result of habitat 
reduction and fragmentation that negatively impact species 
richness (Püttker et al. 2020). It is, therefore, an area that 
urgently needs conservation. This concern extends to climate 
change that can further exacerbate and reduce the size of 
distribution areas for fungal species (Bidartondo et al. 2018).

Areas of importance for conservation in South America, 
such as the islands of the Caribbean Sea, the Chilean forests, 
the coastal zone of Colombia, the Amazon rainforest and 
the Brazilian Cerrado are considered biodiversity hotspots 
and constantly suffer from threats over the years that reflect 
in the reduction of existing lives in these environments 
(Higgins 2007; Brum et al. 2019; Zabel et al. 2019; Rosa 
et al. 2021). The two future scenarios show that suitable 
biomes in Brazil for the analyzed species appear to be the 
most important centers for conservation. It can be seen 
that even for the optimistic scenario, the reduction of 
climatically suitable habitat is dramatic and with that, our 
models suggest climate impacts on the populations of A. 
brasiliana and M. neosetulosa. Finally, we dialogue with the 
need for actions that prioritize the conservation of areas 
and biodiversity in order to avoid future devastation and 
disturbances that affect the diversity of wood-decomposing 
fungi (Fukasawa & Matsukura 2021) and, consequently, the 
ecological relationships they establish mainly with plants 
in the Neotropics.

The application of ecological modeling to wood-
decomposing fungi brings a new perspective to analyze 
the distribution of species in areas of ecological importance. 
These areas have a high degree of biological diversity, 
showing strong signs of disturbance. Our models indicate 
climatic suitability for regions considered hostspots of 
biodiversity in the Neotropics and the need for intervention 
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to preserve, at least, the species modeled here. The values of 
the tests performed were explanatory and reliable, showing 
that the annual temperature and the level of quarterly 
precipitation are strongly influencing the species in the 
study and that all these factors may probably be associated 
with the effects of anthropic changes and consequently of 
the climate change.

The species mostly occur in places of climatic 
vulnerability, with more critical points for the north of South 
America, as well as for the Central America region. In both 
optimistic and pessimistic future scenarios, A. brasiliana 
will have its niche drastically reduced, while M. neosetulosa 
will be restricted to dry regions of the Andes and southern 
South America. Thus, our models may serve as guides for 
conservation plans that seek to protect areas from their 
expansive reduction, as well as presenting factors associated 
with climatic interferences that impact the occurrence of 
fungal species and their ecosystem biodiversity.
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