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ABSTRACT
The input of particulate and dissolved organic matter (POM and DOM, respectively) from terrestrial ecosystem drai-
nage basins is an important energy and nutrient source in limnic food chains. Studies indicated that semi-deciduous 
seasonal forests located in drainage areas in Brazil have the potential to produce 7.5 – 10.3 Mg ha−1/year of POM. 
The global increase in vegetation destruction, such as forests, threatens this allochthonous resource and can have 
significant impacts on river and lake communities and food chains. Therefore, it is critical that exploitation and oc-
cupation protocols are updated to protect the transition areas between terrestrial and limnic ecosystems. This review 
highlights the existing knowledge of these ecosystem interactions and proposes responsible sustainable methods for 
converting the vegetation in drainage basins. This was based on Brazilian ecosystem data and the new “Brazilian 
Forest Code.” This study also considers the importance of including flood tracks in permanently protected areas to 
improve Brazilian legislation and protect hydric resources.
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Review

Introduction
According to the United Nations GEO-5 report (United 

Nations Environment Programme 2012), the global loss in 
forest cover is occurring at an alarming rate. Although the 
deforestation rate decreased by approximately 3 million 
ha/year from 1990 (losses of 16 million ha/year) to 2000 
(losses of 13 million ha/year), this is still an insufficient 
reduction. The destruction of forested areas, stimulated 
by economic exploitation and demographic expansion 
(Angelsen & Kaimowitz 1999), should be closely observed. 
In the past 50 years, a considerable loss of biodiversity 
and ecosystem impairment has been observed primarily 
because of non-sustainable agricultural practices (Tilman 
et al. 2002). Watershed vegetation provides an important 
energy and nutrient input in limnic ecosystems (Lampert 
& Sommer 2007) and will ultimately lead to its suppression 
when exploited (Naiman & Decamps 1997; Naiman et al. 

2000; Aitkenhead-Peterson et al. 2003; Bertilsson & Jones 
2003; Davies et al. 2008). This loss of vegetation threatens 
food chains through on-going eutrophication, chemical 
contamination, and sedimentation (Moss 2010). 

In 2009, 3.3 and 1.5 billion hectares of land were occupied 
worldwide by pastures and fields, respectively, of which Latin 
America and the Caribbean accounted for 27% and 8.4%, re-
spectively (United Nations Environment Programme 2012). 
Because of the suppression process in natural landscapes for 
the deployment of agroecosystems, Latin America and Africa 
were responsible for the highest rates of global deforestation. 
Brazil comes under increasing pressure from consumers for 
their commodities, and non-governmental organizations, 
with their policy for environmental protection, could con-
tribute significantly to the reduction of illegal logging (United 
Nations Environment Programme 2012). 

In this context, discussions prior to the approval of Law 
12.651/12, which established the so-called new “Brazilian 
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Forest Code,” were marked by concerns from conservation-
ists. They warned both civil and political societies about 
the likely threats to terrestrial and limnic ecosystems if 
developmental bias takes precedence over sustainability 
and the preservation of natural resources. These warnings, 
which were issued to legislators by researchers and special-
ists in the conservation of Brazilian natural resources, were 
motivated by the risks arising from a law that proposed to 
assure “the continuity of national agricultural development.” 
This new legislation would regulate the exploitation of the 
forest ecosystem, define the extension of riparian and gallery 
forest cover, and influence the function of limnic ecosystems 
(Ramírez et al. 2008). According to Ab’Saber (2010), the 
new law may increase the human interference of natural 
ecosystems and biodiversity by permitting, for example, a 
reduction in riparian forest cover. The expansion of eco-
nomic activities such as agriculture, livestock production, 
and logging that would be sanctioned by the new legisla-
tion could lead to considerable environmental impacts on 
limnic ecosystems and the species that are dependent upon 
them (Casatti 2010; Tundisi & Tundisi 2010; Magalhães et 
al. 2011; Ferreira et al. 2014). 

The concerns of researchers and conservationists are 
clearly recognized when the losses of the original Brazilian 
vegetation cover that occurred prior to 2004 is examined. 
The Cerrado (Brazilian savanna), a highly threatened Brazil-
ian biome and unique ecoregion, had lost 55% of its original 
area by 2004, and the Pantanal, a tropical wetland area, saw 
a 17% suppression of its vegetation (Machado et al. 2004; 
Harris et al. 2005; Carranza et al. 2014). The area occupied 
by savannah formations, primary and secondary forests, 
mangroves, and sandbank vegetation was reduced by 3.8 
million hectares (SMA 2005) between 1962 and 2001 in the 
state of São Paulo alone. Some regions of Brazil have suf-
fered large losses in vegetation cover because of the biofuel 
agribusiness, which flourishes to the detriment of natural 
ecosystems (Lewinsohn 2011). All of these recent losses in 
natural vegetation corroborate the concerns raised about 
environmental degradation by researchers and activists.

Importance of drainage basins

The vegetation of drainage basins and riparian forests is 
known for its role in maintaining local biodiversity (Turner 
et al. 2001) and acting as corridors for animal migration 
(Metzger 2010). Their influence on limnic bodies is also 
important through the deposition of particulate and dis-
solved organic matter (POM and DOM, respectively) and 
nutrients via mineralized accumulated litterfall (Naiman & 
Decamps 1997; Allan 2004; Moss 2010). POM and nutrients 
can be transported to these limnic bodies from distant areas 
by floods as well as by wind (Chapin et al. 2002; Baldock 
2007; McNeill & Unkovich 2007). Watershed deforestation 
may lower the DOM and nutrient inflow into rivers, streams, 
and lakes (Lawton et al. 2001). This decrease in nutrients 

such as nitrogen (N), phosphorus (P), silicon, and organic 
carbon modifies the chemical composition of the water, 
thereby influencing food chains and leading to a decrease in 
primary limnic productivity (Neill et al. 2001; Aitkenhead-
Peterson et al. 2003; Lampert & Sommer 2007). 

An equally important function performed by riparian 
forests is the sequestration of stress agents such as pesticides 
and fertilizers that come from adjacent agricultural areas 
(Vaithiyanathan & Correll 1992; Schönborn 2003; Sweeney 
et al. 2004; Wantzen et al. 2008; Gücker et al. 2009). The 
riparian forests reduce the harmful disturbance of those 
stressors on biotic components, maintains limnic body 
function (Allan 2004; Ramírez et al. 2008; Winemiller et 
al. 2008), and maintains the edaphic water percolation that 
occurs at the margins of rivers and streams (Sternberg 1987). 
Despite their importance, riparian forests and vegetation 
in drainage basins are still suffering from deforestation, 
particularly in tropical regions (Pinay et al.1990; Barrela 
et al. 2000).

Natural vegetation suppression in drainage basins can 
change the chemical characteristics of rivers and streams 
(Fig. 1; Ramírez et al. 2008). Phytoplankton productivity 
is also affected (Phlips et al. 2000) because a lack of tree 
cover increases solar radiation and water temperatures (Al-
lan 2004). Waterways in deforested areas have significantly 
decreased levels of nutrients and organic matter (França et 
al. 2009), which influences the structure of limnic habitats 
and food chains (Araújo-Lima et al. 1986; Junk et al. 1989; 
Loverde-Oliveira & Huszar 2007). This interferes with the 
physiology of invertebrates (Bilby & Likens 1980) and fish 
(Maia & Chalco 2002; Gomiero et al. 2007), particularly 
in smaller rivers (Vannote et al. 1980). In addition, large-
scale removal of natural vegetation in flood areas could 
represent a considerable impact not only on the biota of 
these plant formations but also on the communities found 
within limnic bodies. The black water rivers of the Amazon 

Figure 1. View of the Tijuco River (18°56’34”S 49°26’54”W), Ituiutaba 
municipality, Minas Gerais state, Brazil. Note the accumulation of sediments 
in the river as a result of deforestation of riparian forest and slope vegetation.
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basin, for example, are darkened by the presence of humic 
compounds (Leenheer 1980; Moreira-Turcq et al. 2003). 
However, the marked deforestation of local drainage areas 
interfere directly with DOM input (Sombroek 2000; Moss 
2010), thereby reducing the dark color of the water. The 
dependency of aquatic communities on allochthonous 
nutrients and energy (Henderson & Walker 1986) makes 
them vulnerable to deforestation. 

The society must consider the disturbance that vegeta-
tion suppression will have on endemic species such as the 
cichlid Apistogramma pertensis (Haseman, 1911). This fish 
is found in Amazon rivers such as the Negro and Tefé that 
have a high concentration of DOM (humic acids) (Kullander 
& Ferreira 2005). Increased deforestation will alter the char-
acteristics of these trophic niches in dark water Amazon riv-
ers (Henderson & Walker 1986) and will have a significant 
impact on the numerous specialized biota associated with 
these habitats (Wantzen et al. 2008). In regions where clear 
water rivers are typical, such as the Atlantic forest, many 
endemic fish species such as Deuterodon iguape (Eigenmann 
1907), Imparfinis piperatus (Eigenmann & Norris 1900), and 
Hollandichthys multifasciatus (Eigenmann & Norris 1900) 
are sensitive to human intrusion (Esteves & Lobón-Cerviá 
2001) and may suffer if vegetation loss results in a decrease 
in allochthonous food resources. 

The scarcity of information of the interactions between 
tropical terrestrial and limnic ecosystems (Wantzen et al. 
2008), as observed in the Atlantic and Amazon forests and 
other Brazilian biomes (Ab’Saber 2010), coupled with the 
rapid expansion of global exploitation of natural resources 
and the consequential suppression of plants (United Nations 
Environment Programme 2012) prompted this review. In 
the following sections, we discuss the potential conse-
quences to riverine environments associated with reduced 
vegetation cover in drainage basins, thus highlighting the 
problems related to limnic biota preservation (Ramírez et al. 
2008). Moreover, we propose criteria for valley occupation 
protocols by focusing on vegetated areas that are subject to 
flooding, thus emphasizing a Brazilian case study. 

Our review was based on the practical experience and 
knowledge of the authors as well as published scientific 
data available from various databases. The objective was 
to address the theme of ecological changes to limnic envi-
ronments and the consequences caused by a reduction of 
vegetation cover in drainage basins. In addition, we used 
this information as a basis for discussing the importance of 
floodplain protection as a fundamental practice during the 
occupation of drainage areas for agricultural and livestock 
activities.

Drainage basins and nutrient input

The flood pulse concept (Junk et al. 1989) predicted the 
transport of POM, DOM, and nutrients from inundated 
areas into limnic compartments, which were influenced by 

a number of factors, including soil and vegetation charac-
teristics, rainfall variation, and relief (Tockner et al. 2000). 
The methods and protocols by which valley bottoms are 
occupied with agricultural and silvicultural activities should 
prioritize sustainability when their management protocols are 
designed. For example, in areas occupied by plains (regions 
with a low slope), plant formations located beyond the ripar-
ian forest but within the river floodplain may be potential 
sources of energy and nutrients for a limnic system, i.e. they 
contribute to system function and maintenance of its food 
chains. To fully understand these functions, differences in 
litter production and decomposition rates between forest and 
savannah formations must be understood. Tropical forests 
often accumulate greater annual quantities of litterfall than 
savannahs (Tab. 1). This greater litter volume decomposes 
over relatively short periods, and the high decomposition rate 
(k) (Olson 1963; Morellato 1992; Cunha et al. 1993; Backes 
et al. 2005) corresponds to infra-annual periods. One may 
conclude that high decomposition rates in tropical forests 
define these litterfalls as important sources of DOM and 
nutrients. Conversely, the litter produced in savannahs often 
remains on the soil without decomposing for years at a time 
(Cianciaruso et al. 2006; Valenti et al. 2008). Thus, savannah 
formations adjacent to riparian forests and within inundated 
areas may supply limnic bodies with large quantities of POM, 
which is composed mainly of leaves with a large quantity of 
recalcitrant material such as lignin and cellulose (Bourlière 
& Hadley 1970; Coutinho 1990).

The Cerrado (Brazilian savannah) comprises tropical 
vegetation composed of different vegetation types that are 
frequently found on dystrophic soils (Oliveira-Filho & 
Ratter 2002). One edaphic feature of the Cerrado is the low 
availability of soil nutrients. According to the hypothesis 
of “oligotrophic scleromorphism” (Arens 1958; Coutinho 
1990), this could produce plant structures with recalcitrant 
characteristics, such as leaves and twigs that are more rigid 
from lignin and cellulose accumulation. The slow litter de-
composition in Cerrado limnic bodies (Gonçalves et al. 2007) 
favors leaf accumulation on the bottom of lotic and lentic 
systems (Tockner et al. 2000) because POM is being con-
tinuously deposited (Moretti et al. 2009). This environment 
benefits detritivores (Wantzen & Wagner 2006), and limnic 
disturbance may interfere with the biota diversity (Lampert 
& Sommer 2007; Jacobsen et al. 2008). Aquatic organisms 
show a variety of feeding preferences, and they have adapted 
to the low nutritional value of this accumulated litterfall 
(Graça & Canhoto 2006). For example, insect and crustacean 
larvae are stimulated by nutritional quality, abundance, and 
chemical characteristics of POM when searching for food 
(Rincón & Martínez 2006; Janke & Trivinho-Strixino 2007; 
Moretti et al. 2009; Wood et al. 2012). Therefore, the chemical 
composition of the litterfall influences aquatic food chains 
because nitrogen concentration varies and there are limited 
nutrients for phytoplankton productivity (Hecky & Kilham 
1988; Vitousek & Howarth 199l; Garnier 2004).
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Table 1. Production of particulate organic matter (POM) or total litterfall, nitrogen (N) and phosphorus (P) levels, and respective N:P ratios in several regions of 
Brazil. Values are in mg ha−1/year. Vegetation formation (VF) is as follows: semi-deciduous seasonal forest (sf), dense ombrophilous forest (of), gallery forest (gf), 
and cerrado (cd).

POM N P N:P VF Sites References

10.3 0.21 0.01 21 sf Pantanal, MT (Haase 1999)*

9.40 0.18 0.01 18 sf São Paulo, SP (Meguro et al. 1979)

9.28 0.12 0.07 2 of Maracá, AM (Scott et al. 1992)

8.76 0.13 0.01 13 gf Pantanal, MT (Haase 1999)#

8.64 0.19 0.007 27 sf Rio Claro, SP (Pagano 1989a; Pagano 1989b)

8.30 0.15 0.003 50 of Manaus, AM (Luizão 1989)

8.04 0.11 0.003 37 of Capitão Poço, PA (Dantas & Phillipson 1989)

7.47 0.14 0.01 14 sf Pantanal, MT (Haase 1999)

7.01 0.16 0.01 16 of Santo André, SP (Domingos et al. 1997)

6.31 0.1 0.004 25 of Ilha do Cardoso, SP (Moraes et al. 1999)

5.04 0.07 0.004 17 of Capitão Poço, PA (Dantas & Phillipson 1989)

4.86 0.06 0.005 12 cd Pantanal, MT (Haase 1999)

Plots 3FE*; 1FE#; 7NS‡; 5ND ; primary forest ; secondary forest

Influence of different vegetation types

The N:P ratio of the various vegetation types (Tab. 1) 
differs under the influence of both biotic and abiotic factors, 
such as the nutrient use strategies of different plant species 
(McGroddy et al. 2004) and soil features such as texture 
(Vasconcelos & Luizão 2004). Thus, it may be presumed 
that these formations will interfere with the evolutionary 
processes of limnic communities. In general, terrestrial sys-
tems provide a limited source of nutrients for limnic bodies 
(Moss 2010), supplying just enough nutrients to maintain 
limnic food chains. 

Evolutionary responses to various food sources define 
feeding niches (Pianka 2000). Therefore, changes in the 
quality of available food may considerably affect limnic food 
chains and communities. A number of factors, including 
temperature and variation in rainfall, influence the produc-
tion and decomposition of plant matter. The example below 
demonstrates the significant environmental impact that 
vegetation suppression in river basins can have on limnic 
food chains. The clearing of a 100 ha of semi-deciduous 
seasonal forest led to an annual decrease of 1030 mg of 
POM, 210 mg of N, and 1 mg of P from the soil compart-
ment [Tab. 1; Haase 1999]. When this forest patch flooded, 
the loss of these nutrients and POM greatly affected the 
associated limnic system and interfered with the dynamics 
of the aquatic trophic chain.

The reforestation of natural vegetation in floodplains 
beyond the riparian vegetation with species used in agri-
cultural or forestry activities can also significantly impact 
aquatic biota not only through the reduction of accumu-
lated litterfall but also by changing the chemical quality of 
the litterfall produced by the anthropogenic ecosystems. 
Many agricultural and forestry ecosystems produce smaller 

amounts of litter than natural ecosystems. Moreover, the 
plant biomass deposited on the agroforestry ecosystems soil 
is lower in nitrogen and phosphorus concentrations. This is 
an ecological disturbance to freshwater food chains because 
of the lower nutrient input that is necessary to sustain biota 
longevity. An exception was the cultivation of pearl millet 
Pennisetum glaucum (L.) (Boer et al. 2007) that showed the 
amount of POM produced in 100 hectares equaled 1080 
mg, and 12 mg to N and 2 mg to P (Tab. 2). These values 
were similar to those observed in some natural ecosystems 
(Tab. 1). Nevertheless, values for gum Eucalyptus dunnii 
(Maiden) (Corrêa et al. 2013) and loblolly pine Pinus taeda 
(L.) reforestations (Schumacher et al. 2008) indicated that 
these values were still below those observed in natural eco-
systems, particularly N (0.03 mg.ha−1) for both tree species. 

The chemical characteristics of litterfall produced by 
pine species Pinus (L.) reflects high levels of organic com-
pounds that result in decomposition difficulty (Barnes et 
al. 1997) and very low decomposition rates (Olson 1963). 
Therefore, the time required for complete needleleaf 
decomposition would be considerably higher than the de-
composition rates of litter accumulated in tropical forests. 
This information suggests that the replacement of natural 
vegetation formations, present in rivers and streams subject 
to flooding, with species used in agricultural or forestry 
activities over the years, interferes considerably with biota 
longevity and limnic food chains.

Protocol improvement: the Brazilian case

The so-called permanent protection areas of Brazil 
(Áreas de Proteção Permanente [APP]) were first created 
in the Forest Code of 1965 (Law 4.771/65) and included 
vegetation areas on the margins of Brazilian lakes and riv-
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ers. The size of these protected areas was based on the size 
of the limnic bodies themselves. A recent paper by Metzger 
(2010) corroborated the criteria and parameters used by 
this law; however, an increase in the size of some protected 
areas is required.

Neither the old nor the new law considered important 
characteristics such as the slope of the river body margins. 
However, the flood pulse concept (Junk et al. 1989) showed 
that the relief of water margins was one of the most impor-
tant factors in determining the flooding extent (Tockner et 
al. 2000). Therefore, the slope of areas close to limnic bod-
ies and the extent of the inundations are important factors 
that determine erosion and sedimentation risks. The slope 
profile also influences the amount of POM, DOM, and 
nutrients that make their way into limnic bodies.

Vegetation located beyond the riverine forests may 
strongly contribute to the transport of organic material 
into limnic bodies (Richey et al. 1990). The legislation that 
regulates the size and exploitation of riparian forests must 
not only consider the extent of the marginal areas but also 
the factors that influence the flood pulse (relief of the ter-
rain), extent of the river basins, and soil characteristics. 
The protocols adopted by the new “Brazilian Forest Code” 
should be modified based on these considerations to guar-
antee an unaffected interaction between terrestrial and 
limnic ecosystems and facilitate the survival of plant and 
animal species therein.

Ensuring input continuity

Because of the highly complex nature of ecosystem 
interactions considered in this study (Junk et al. 2014), the 
above proposition may sound overly simplistic (Palmer & 

Febria 2012; Woodward et al. 2012). However, including 
the described topographic approach would increase the 
number of parameters currently considered by the Brazilian 
law. Moreover, other factors that also influence POM and 
DOM inputs into limnic bodies, such as soil and chemical 
characteristics, ground slope, and inundation level, would 
be used to decide the occupation of valley bottoms. In order 
for the proposed changes to be effective (Woodward et al. 
2012), their application in different Brazilian rural com-
munities must be feasible.

A continuous supply of POM, DOM, and nutrients from 
the vegetation of drainage basins must be protected for Bra-
zilian waterways. Thus, the current “Brazilian Forest Code” 
should adopt an additional extension method that considers 
flood pulses. The protection of additional vegetation strips 
is essential to guarantee the on-going transport of energy 
and nutrients into limnic ecosystems because inundations 
can extend beyond the limits established by the present law. 
Variations in production periods and flood strength occur, 
thereby making it difficult to quantify these inputs (Wantzen 
et al. 2008). However, an understanding of their transport 
patterns into limnic bodies will provide indispensable in-
formation on the influence that vegetation in drainage areas 
has on the functioning of limnic ecosystems.

Final considerations

The influx of POM, DOM, and nutrients into limnic 
systems from the accumulated litterfall and decomposition 
in drainage areas varies in intensity and duration. These 
characteristics should be considered in proposals for the 
management of valley bottoms. If the law adopted an addi-
tion to the riparian strips to include those areas affected by 

Table 2. Production of particulate organic matter (POM) or total litter and nutrient (N, P) soil input by litterfall deposition in agroforestry ecosystems in different 
regions of Brazil. Notations: nitrogen (N), phosphorus (P) levels, and respective N:P ratios in several agroforestry ecosystems (AF) of different regions of Brazil. 
Values are in Mg ha−1/year. Abbreviated genera: Eucalyptus, Pinus.

POM N P N:P AF Sites References

7.8 0.16 0.01 16 Sabia Itambé, PE (Ferreira et al. 2007)

5.8 0.1 0.003 33 Black-wattle Butiá, RS (Schumacher et al. 2003)

10.2 0.07 0.003 23 E. grandis Bofete, SP (Kolm & Poggiani 2003)

4.1 0.03 0.001 30 E. dunnii Alegrete, RS (Corrêa et al. 2013)

- 0.02 0.001 20 E. saligna Itatinga, SP (Câmara et al. 2000)

- 0.01 0.001 10 P. taeda Cambará do Sul, RS (Viera & Schumacher 2010)

4.5 0.03 0.002 15 P. taeda Cambará do Sul, RS (Schumacher et al. 2008)

5.9 0.1 0.007 14 Cocoa Itajuípe, BA (Fontes et al. 2014)1

4.6 0.08 0.006 13 Cocoa Itajuípe, BA (Fontes et al. 2014)2

10.8 0.12 0.02 6 Pearl millet Rio Verde, GO (Boer et al. 2007)

8.7 0.13 0,02 6 Finger millet Rio Verde, GO (Boer et al. 2007)

2.9 0.05 0.007 7 Amaranthus Rio Verde, GO (Boer et al. 2007)

1 Cocoa under natural vegetation (cabruca); 
2Cocoa under Erythrina glauca as vegetation cover.
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annual floods as defined by slope relief, this single measure 
would significantly promote aquatic food chain permanence 
and biodiversity. In addition, there would be benefits to 
terrestrial ecosystems through the protection of unique 
forest formations. Furthermore, ecological corridors could 
be more easily implemented in regions heavily deforested 
by the expansion of agribusiness activities.

Reforestation costs by implementing the principles 
that we stand for could be circumvented in two ways: (1) 
allowing natural re-vegetation, thus ensuring that the seed 
bank or allochthonous propagules can help in the recovery 
of suppressed vegetation; and (2) simple land protection by 
adding them to the APP strips and renouncing some of the 
taxes paid by landowners. There are possibilities where new 
areas to be added to the respective APP’s would cover many 
hectares. This strategy could bring a considerably reduced 
economic gain to the owners through the decrease of arable 
land or pastures. In these cases, we suggest that the services 
provided by the interaction between terrestrial and limnic 
ecosystems are calculated and reverted to the owners who 
had already planted the areas and reduced grazing.
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