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ABSTRACT
High salinity aff ects plants due to stimulation of osmotic stress. Cell signaling triggered by nitric oxide (NO) and 
hydrogen sulfi de (H2S) activates a cascade of biochemical events that culminate in plant tolerance to abiotic and 
biotic stresses. For instance, the NO/H2S-stimulated biochemical events that occur in plants during response to 
high salinity include the control of reactive oxygen species, activation of antioxidant system, accumulation of 
osmoprotectants in cytosol, induction of K+ uptake and Na+ cell extrusion or its vacuolar compartmentation among 
others. Th is review is a compilation of what we have learned in the last 10 years about NO participation during cell 
signaling in response to high salinity as well as the role of H2S, a new player in the mechanism of plant tolerance to 
salt stress. Th e main sources of NO and H2S in plant cells is also discussed together with the evidence of interplay 
between both signaling molecules during response to stress.
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Introduction
It is estimated that over 800 million hectares of land 

throughout the world are overloaded with salt, which 
represents more than 6 % of the world’s total land area 
(Munns & Tester 2008). High salinity leads to osmotic 
stress, cell toxicity by ions excess and ultimately nutrition 
disorders and oxidative stress in plants (Munns & Tester 
2008). A signaling cascade involving expression of specifi c 
genes and accumulation of certain metabolites is pivotal 
for plants successfully acclimating and tolerating high 
salinity (Gupta & Huang 2014). Nitric oxide (NO), and 

more recently hydrogen sulfi de (H2S), were recognized as 
important players in cell signaling triggered during plant 
response to biotic and abiotic stresses (Delledonne et al. 
1998; Durner et al. 1998; Zhang et al. 2008). Th e role of 
these signaling molecules in salt stress has been explored 
over the past few years.

Th e NO is a gaseous free radical widely produced in living 
organisms. Its production was fi rst reported in plants by 
Dr. Lowell Klepper by the end of the 1970s (Klepper 1979). 
Nevertheless, the advent of researches focusing on NO in 
plants took place 19 years later (Delledonne et al. 1998; 
Durner et al. 1998) when Drs. Robert F. Furchgott, Louis J. 
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Ignarro and Ferid Murad were jointly laureate with the Nobel 
Prize for the disclosure of NO as an endothelium-derived 
relaxing factor in mammals. Since then, NO has been shown 
to influence plant response to salt stress by improving seed 
vigor and germination (Hayat et al. 2012) and controlling 
the cellular levels of reactive oxygen species (ROS) (Keyster 
et al. 2012; Ahmad et al. 2016), nutrient (Kong et al. 2016; 
Liu et al. 2016) and osmoprotectants (Wu et al. 2011; Tian 
et al. 2015). The NO biosynthesis in plant cells can occur 
by non-enzymatic and enzymatic means. Nitrite (NO2

-) or 
nitrate (NO3

-), in the presence of ascorbic acid (AsA), may 
be non-enzymatically converted to NO (Klepper 1990). The 
acidic condition of aleurone layers was also demonstrated to 
favor NO production in apoplast (Bethke et al. 2004). The 
light-dependent production of NO from nitrogen dioxide, 
assisted by carotenoids, has been reported (Cooney et al. 
1994). On the other hand, the enzymatic mechanisms that 
drive NO production in plant cells are still under debate 
since a plethora of examples are reported in the literature. 

The H2S is a small and lipophilic molecule that was 
pointed out as a possible cellular signaling component 
in mammalians (Abe & Kimura 1996). Indeed, H2S is 
considered the third gas transmitter in addition to NO 
and carbon monoxide (Wang 2002). Its ability to induce 
seed germination and relief copper stress was demonstrated 
in the late 2000s (Zhang et al. 2008). However, earlier H2S 
was believed to be exclusively phytotoxic. Since then, H2S 
was implicated in the ROS control through the activation 
of antioxidant system (Yu et al. 2013; Shan et al. 2014; 
da-Silva et al. 2017), maintenance of high K+/Na+ ratio 

(Lai et al. 2014; Deng et al. 2016) and accumulation of 
osmolytes (Shi et al. 2013) during plant response to high 
salt concentrations. Recent research demonstrates that H2S 
is primarily produced in plant tissues from L/D-cysteine 
or sulfide (Li 2015).

This review describes the main enzymatic sources of 
NO and H2S in plants and compiles what it is known from 
the past 10 years on the role of these signaling molecules 
during plants response to high salinity. 

Biosynthesis of NO and H2S in 
plant cells
Enzymes involved in NO biosynthesis

A body of evidence indicates that the production of NO 
in plant cells may come from both reductive and oxidative 
pathways (Fig. 1). Reductive mechanisms for NO synthesis 
include NO3

- or NO2
- as the primary substrates for nitrate 

reductase (NR), a plasma membrane-bound nitrite:NO 
reductase (NI-NOR), a mitochondrial protein system or 
xanthine oxidoreductase (XOR). The oxidative pathway 
comprises the polyamines and hydroxylamines metabolisms 
by still unknown mechanisms (Fig. 1).

The NR, a cytosolic enzyme, is able to catalyze directly 
or indirectly the NO production from NO3

- (Yamasaki & 
Sakihama 2000; Modolo et al. 2005). The genes Nia1 and 
Nia2 encode for NR in Arabidopsis thaliana (Wilkinson 

Figure 1. Schematic representation of the main pathways of NO and H2S production reported in plant cells. CAS, β-cyanoalanine 
synthase; CS, cysteine synthase; D/L-DES, D/L-cysteine desulfhydrase; HA, hydroxylamines; H2S, hydrogen sulfide; NI-NOR, plasma 
membrane-bound nitrite-nitric oxide reductase; NiR, nitrite reductase; NO, nitric oxide; NR, nitrate reductase; PA, polyamines; SiR, 
sulfite reductase; XOR, xanthine oxidoreductase.
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& Crawford 1993). This enzyme promotes the NAD(P)
H-dependent reduction of NO3

- to NO2
- and then to NO 

(Magalhaes et al. 2000; Yamasaki & Sakihama 2000). The 
direct production of NO from NR, however, represents 
only 1−2 % of the nitrate-reducing capacity of this enzyme 
(Rockel et al. 2002; Planchet et al. 2005). This is because 
relatively high amounts of NO2

- (KM = 100 µM) are required 
for NR reducing NO2

- to NO, while the formation of NO 
is prevented in the presence of NO3

- in amounts as low 
as 50 µM (Rockel et al. 2002). The NR can also indirectly 
contribute to NO production by catalyzing the formation 
of the substrate (NO2

-) for other enzymatic systems. 
For instance, in vitro experiments showed that a plasma 
membrane-bound protein (NI-NOR) of tobacco (Nicotiana 
tabacum) roots was able to reduce NO2

- to NO (Stöhr et al. 
2001) that, in turn, yielded higher rates of tobacco root 
colonization by the arbuscular mycorrhizal Glomus mosseae 
(Moche et al. 2010). However, the gene that encodes for 
NI-NOR, the protein amino acid sequence and the electron 
donor that assists the NO2

- reduction remain unknown. 
Mitochondrial activities were also determined to contribute 
to NO production from NO2

- in Arabidopsis plants, tobacco 
cell suspensions and Oryza sativa (rice) (Modolo et al. 2005; 
Planchet et al. 2005; Stoimenova et al. 2007). The reduction 
of NO2

- to NO has also been reported to be catalyzed by the 
peroxisomal enzyme XOR. This enzyme mainly catalyzes 
the formation of uric acid and O2

- from xanthine oxidation. 
However, formation of NO from NO2

- was observed to be 
assisted by XOR in the presence of NADH or xanthine 
as reducing agents (Li et al. 2004). Production of O2

- or 
NO was recorded in pea (Pisum sativum) and attributed 
to XOR activity, depending on the cell redox state (Del 
Río et al. 2004) while white lupin (Lupinus albus) roots 
upon phosphate deficiency produced NO via XOR (Wang 
et al. 2010). The nitrite reductase (NiR) was also shown to 
be a possible source of NO in spinach (Spinacia oleracea) 
chloroplasts via reduction of NO2

- assisted by ferredoxin. 
Then, NO would be a byproduct of the pathway that leads 
to NH4

+ formation (Kuznetsova et al. 2004). The affinity of 
NO2

- for mitochondrial NiR (mNiR) was determined to be 
very low, indicating that NO production via mNiR activity is 
only relevant under conditions in which NO2

- accumulates 
in the organelle, such as hypoxia (Gupta et al. 2011).

Metabolization of polyamines constitutes an example 
of oxidative process that might drive NO production in 
plant cells. Arabidopsis supplemented with exogenous 
polyamines exhibited increased NO production in cells 
(Tun et al. 2006). Similar results were found in cadmium-
stressed wheat (Triticum aestivum) (Groppa et al. 2008) and 
drought-stressed cucumber (Cucumis sativus) (Arasimowicz-
Jelonek et al. 2009). The increment of arginase activity in 
tobacco leaves upon high salinity was recently determined 
to be accompanied of NO accumulation in cells (da-Silva et 
al. 2017). Arginase catalyzes the conversion of L-arginine 
to urea and L-ornithine, in which the latter may originate 

polyamines (e.g. putrecine, spermidine and/or spermine). 
The mechanism by which polyamines are oxidized to 
NO still remains to be elucidated. Another potential 
oxidative pathway that leads to NO production includes 
hydroxylamine as substrate. Treatment of NR-deficient 
tobacco cell cultures with exogenous hydroxylamine resulted 
in cellular accumulation of large amounts of NO (Rümer 
et al. 2009). The NO biosynthesis from the oxidation of 
hydroxylamine is believed to be involved in the regulation of 
ROS levels in plant cells, especially during the reoxygenation 
of anoxic tissues (Rümer et al. 2009). Nonetheless, both, the 
enzymatic system involved in the hydroxylamine-dependent 
NO formation and the site where such pathway takes place 
are still unknown. Many authors suggest that plant cells 
are also able to produce NO from L-arginine oxidation, 
with concomitant formation of L-citrulline, in a reaction 
catalyzed by a nitric oxide synthase (NOS)-like enzyme 
as it occurs in mammalian cells. Despite that, no gene or 
protein that encodes for an NOS-like enzyme has been so 
far isolated from plant cells. Likewise, the Nitric Oxide-
Associated protein 1 (ATNOA1) of Arabidopsis (Guo et al. 
2003) was initially believed to catalyze NO biosynthesis 
from L-arginine oxidation. Instead, evidence suggests that 
ATNOA1 somehow modulates NO accumulation in plant 
cells according to environmental conditions as ATNOA1-
defective mutant plants may present normal NO levels 
(Moreau et al. 2008).

Enzymes involved in H2S biosynthesis

Five enzymatic systems have been reported to contribute 
to H2S biosynthesis in plant cells (Li 2015; Fig. 1). The 
majority of publications that deal with H2S production 
in plants usually focus on the activity of L-cysteine 
desulfhydrase (L-DES) (Romero et al. 2013), a cytoplasmic 
enzyme that converts L-cysteine to pyruvate with release 
of H2S and NH4

+ (Harrington & Smith 1980; Álvarez et al. 
2010; Li 2015), using pyridoxal phosphate as a cofactor 
(Calderwood & Kopriva 2014). The L-DES was also shown 
to regulate the L-cysteine homeostasis in Arabidopsis 
(Álvarez et al. 2010). Under physiological conditions, 
DES1 expression, which encodes for L-DES, was induced 
by abscisic acid in Arabidopsis guard cells (Scuffi et al. 
2014). Furthermore, the treatment of alfalfa (Medicago 
sativa) or tobacco with high NaCl concentrations enhanced 
L-DES activity (Lai et al. 2014; da-Silva et al. 2017). The 
L-DES was also stimulated in heat-stressed maize (Zea 
mays) plants incubated with salicylic acid or H2O2 (Li et al. 
2015). Arabidopsis mutant plants exhibiting low expression 
of LCD, an L-DES encoding gene, presented low H2S levels 
under drought conditions (Jin et al. 2013). In addition to 
L-DES, D-DES catalyzes the production of H2S in plant cells 
by metabolizing D-cysteine, instead (Riemenschneider et 
al. 2005). Despite similar functions with discrimination of 
cysteine enantiomers, L-DES and D-DES are not related to 
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each other and their physiological implications remain to 
be clarified (Calderwood & Kopriva 2014). The expression 
of DCD1 (a D-DES gene) increased in cadmium-stressed 
chinese cabbage (Brassica rapa), which resulted in H2S 
accumulation in cells (Zhang et al. 2015). Increment of 
D-DES activity in a time-dependent manner was reported 
in salt-stressed alfalfa (Cui et al. 2014).

The mitochondrial enzyme β-cyanoalanine synthase (CAS) 
catalyzes the condensation of L-cysteine to cyanide (CN-) to 
yield H2S (Akopyan et al. 1975; Hatzfeld et al. 2000; Li 2015). 
Its activity helps plant to control the cell levels of CN- during 
ethylene production as this anion is a potent inhibitor of 
mitochondrial respiratory chain. Cysteine synthase (CS), 
present in cytosol, mitochondria and chloroplasts, catalyzes 
the reversible reaction between L-cysteine and acetate to 
form O-acetyl-L-serine and H2S (Wirtz & Hell 2006; Li 
2015). It is also documented that high concentrations of 
NaCl stimulated CAS and CS activities in tobacco and resulted 
in H2S accumulation in leaves (da-Silva et al. 2017). Besides 
these sources, plant cells are able to reduce SO3

2- to H2S in the 
presence of ferredoxin and sulfite reductase (SiR), a chloroplast 
enzyme (Nakayama et al. 2000; Li 2015). The SO3

2- may 
originate from either SO4

2- (through sulphur nutrition) or SO2 

(uptaken from atmosphere). In this sense, SO4
2- is activated 

by ATP sulfurylase to form adenosine 5′-phosphosulfate 
(APS). The formed APS is further reduced to SO3

2- via APS 
reductase activity (Nakayama et al. 2000; Li 2015). Notably, 
salt-stressed tobacco plants presented decreased SiR activity 
explained by the occurrence of stomatal closure, a condition 
that prevented SO2 from entering into plant leaves (da-Silva 
et al. 2017). Therefore, the enzymes L-DES, CAS and CS, 
but not SiR, contribute to H2S biosynthesis during tobacco 
response to high salinity.

Cell signaling in salt-stressed plants 
mediated by NO and H2S

Integrated plant cell signaling must be orchestrated 
to provide with metabolic and structural changes for 
individuals survival and tolerance to salt stress. The next 
three sections will focus on current knowledge about NO 
and H2S roles during plant responses to high salinity.

Nitric oxide

Important roles have been ascribed to NO in plants 
tolerance to abiotic stress, in which the increment of this 
signaling molecule in cells was associated to a variety of 
strategies used by plants to cope high salinity (Tab. 1). The 
Atnoa1 Arabidopsis mutant plants, that exhibit impaired 
NO biosynthesis, were demonstrated to be highly sensitive 
to high salinity, being more vulnerable to oxidative stress 
and presenting lower germination and survival rates under 
such condition (Zhao et al. 2007).

Activation of the antioxidant system is one of the NO 
roles in plants under salt stress. Several findings indicate 
an improvement in the performance of enzymatic and 
non-enzymatic antioxidant systems in salt-stressed plants 
treated with NO donors. Cucumber seedlings hydroponically 
grown in medium containing 50 mM NaCl and 100 μM 
sodium nitroprusside (SNP; NO+ donor) showed higher 
activity of superoxide dismutase (SOD), catalase (CAT), 
peroxidase and ascorbate peroxidase (APX) when compared 
to cucumber solely treated with 50 mM NaCl (Fan et al. 
2007). As a result, cells from these seedlings presented 
lower membrane permeability and decreased levels of O2

-, 
H2O2 and lipid peroxides (Fan et al. 2007). The NO was 
found to have dual role on SOD by positively modulating 
the FeSOD expression and negatively affecting Cu/ZnSOD 
one. With this, NO furnished a differential antioxidant 
protection to salt-stressed sunflower (Helianthus annuus) 
seedlings (Arora & Bhatla 2015). Likewise, the challenge of 
tobacco roots with NaCl led to accumulation of endogenous 
NO in leaves that was accompanied by an increment of 
SOD and CAT activities (da-Silva et al. 2017). The activity 
of monodehydroascorbate reductase, dehydroascorbate 
reductase (DHAR), glutathione reductase (GR), glutathione 
S-transferase, glutathione peroxidase (GPX), glyoxalase 
I and glyoxalase II (both related to methylglyoxylate 
detoxification) was also stimulated by SNP in wheat plants 
treated with 300 mM NaCl (Hasanuzzaman et al. 2011). 
Induction of non-enzymatic antioxidant system [AsA and 
reduced glutathione (GSH)] was observed in wheat seedlings 
treated with SNP prior to NaCl exposure (Hasanuzzaman et 
al. 2011). The treatment with SNP decreased ferritin levels 
in barley (Hordeum vulgare) seedlings, which contributed 
to the attenuation of oxidative stress triggered by high 
salinity (Li et al. 2008). Likewise, exogenous NO alleviated 
high-salinity-triggered oxidative stress in soybean (Glycine 
max; Simaei et al. 2012), mangrove (Aegiceras corniculatum; 
Chen et al. 2014), tomato (Solanum lycopersicum; Manai et 
al. 2014), cotton (Gossypium hirsutum; Dong et al. 2014), 
spinach (Du et al. 2015), sunflower (Kaur & Bhatla 2016) 
and bermudagrass (Cynodon dactylon; Liu et al. 2016).

The protective role of NO on plant photosynthetic 
apparatus is also documented. The SNP at 100 µM restored 
chloroplast pigments and maximum photochemical 
efficiency of photosystem II to normal levels in strawberries 
(Fragaria × ananassa cv. ‘Camarosa’) plants challenged 
with high salinity (Christou et al. 2014). Similar results 
were observed in salt-stressed cotton seedlings wherein 
application of 100 µM SNP to leaves improved plants 
photosynthetic performance (Liu et al. 2014). The treatment 
of chickpea (Cicer arietinum) plants with 100 mM NaCl and 
50 µM of S-nitroso-N-acetylpenicillamine (SNAP; an NO 
donor) provided higher amounts of chlorophylls a and b 
and carotenoids in plant leaves in comparison with those 
solely treated with NaCl (Ahmad et al. 2016). Aspersion of 
salt-stressed cotton plants with SNP delayed leaf senescence 
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Table 1: Roles of nitric oxide (NO) during plant response to salt stress.

NO effect Plant species

Activation of antioxidant system

Aegiceras corniculatum (Chen et al. 2014)
Cucumis sativus (Fan et al. 2007)

Cynodon dactylon (Liu et al. 2016)
Glycine max (Simaei et al. 2012)

Gossypium hirsutum (Dong et al. 2014)
Helianthus annuus (Arora & Bhatla 2015; Kaur & Bhatla 2016)

Hordeum vulgare (Li et al. 2008)
Nicotiana tabacum (da-Silva et al. 2017)

Solanum lycopersicum (Manai et al. 2014)
Spinacia oleracea (Du et al. 2015)

Triticum aestivum (Zheng et al. 2008; Hasanuzzaman et al. 2011)

Increase of K+/Na+ ratio

Avicennia marina (Chen et al. 2010)
Cucumis sativus (Shi et al. 2007)

Cynodon dactylon (Liu et al. 2016)
Gossypium hirsutum (Liu et al. 2013; Kong et al. 2016)

Kandelia obovata (Lang et al. 2014)
Aegiceras corniculatum (Lang et al. 2014)

Limonium bicolor (Ding et al. 2013)
Populus euphratica (Zhang et al. 2007)

Triticum aestivum (Tian et al. 2015) 

Induction of osmoregulators accumulation

Brassica juncea (Zeng et al. 2011; Khan et al. 2012)
Cicer arietinum (Ahmad et al. 2016)

Cucumis sativus (Fan et al. 2013)
Gossypium hirsutum (Liu et al. 2013)

Lycopersicom esculentum (Wu et al. 2011)
Solanum lycopersicum (Hayat et al. 2012)

Triticum aestivum (Tian et al. 2015) 

Induction of polyamines accumulation Cucumis sativus (Fan et al. 2013)

Protection of photosynthetic apparatus

Brassica juncea (Fatma et al. 2016)
Cicer arietinum (Ahmad et al. 2016)

Fragaria × ananassa (Christou et al. 2014)
Gossypium hirsutum (Kong et al. 2016)
Medicago truncatula (Jian et al. 2016)

Stimulation of seed germination
Arabidopisis thaliana (Zhao et al. 2007)
Triticum aestivum (Zheng et al. 2008)

Zea mays (Bai et al. 2011)

Stimulation of plant growth
Arabidopisis thaliana (Liu et al. 2015)

Glycine max (Egbichi et al. 2014; Vaishnav et al. 2016)
Gossypium hirsutum (Liu et al. 2014)

and increased chlorophylls content and photosynthetic rate 
(Kong et al. 2016). The NO and sulfur nutrition were found 
to prevent chloroplasts damage in salt-exposed mustard (B. 
juncea) plants (Fatma et al. 2016). The SNP stimulated the 
expression of AOX, a component of plant mitochondrial 
electron transport, in barrelclover (M. truncatula) under high 
salinity thus, alleviating oxidative stress and photosynthetic 
damages (Jian et al. 2016).

Inhibition of plasma membrane H+-ATPase and tonoplast 
H+-PPase caused by NaCl was prevented by 50 µM SNP in 
cucumber plants (Shi et al. 2007). Additionally, the gene 
expression of a plasma membrane H+-ATPase was stimulated 
by SNP in salt-stressed calluses of desert poplar (Populus 
euphratica), which in turn resulted in higher K+/Na+ ratio 

(Zhang et al. 2007). Plasma membrane H+-ATPase and 
tonoplast Na+/H+ antiporter proteins were also induced by 
SNP in salt-stressed Avicennia marina and caused an increment 
of K+/Na+ ratio due to Na+ efflux from cells towards salt 
glands (Chen et al. 2010). Similar results were observed in 
cotton (Kong et al. 2016), Kandelia obovate and A. corniculatum 
(Lang et al. 2014). Besides intense Na+ secretion from sea-
lavender (Limonium bicolor) leaves under stress, SNP caused 
an increment in the number of Na+-loaded salt glands in salt-
stressed plants (Ding 2013). In addition to increasing K+/Na+ 
ratio, SNP enhanced Ca2+ and Mg2+ uptake in salt-stressed 
plants (Liu et al. 2013; Tian et al. 2015; Liu et al. 2016).

Osmotic stress is a phenomenon also observed in plants 
under high salinity (Parihar et al. 2015). Soybean plants 
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incubated with SNP prior to salt stress exhibited higher 
relative water content (RWC) than salt-stressed plants devoid 
of NO treatment (Dinler et al. 2014). Exogenous NO also 
stimulated proline accumulation in several plant species (Wu 
et al. 2011; Zeng et al. 2011; Hayat et al. 2012; Khan et al. 
2012; Fan et al. 2013; Liu et al. 2013). The activity of pyrroline-
5-carboxylate synthetase and proline dehydrogenase, 
enzymes involved in L-proline biosynthesis, and L-proline 
accumulation were boosted by SNP in cucumber seedlings 
under high salinity (Fan et al. 2013). Then, cellular turgor 
was maintained at normal levels and seedlings overcame 
NaCl stress. Mustard plants subjected to salt stress exhibited 
higher amounts of glycine betaine when treated with SNP 
(Khan et al. 2012), while wheat plants accumulated soluble 
carbohydrates in cells (Tian et al. 2015). The NO released 
from SNAP also induced accumulation of L-proline, L-glycine 
betaine, soluble proteins and carbohydrates in leaves of salt-
stressed chickpea (Ahmad et al. 2016).

The combined treatment of cucumber seedlings with 
NaCl and SNP caused an increment of spermine levels 
and (spermidine + spermine)/putrescine ratio, which 
in turn helped plant cells to cope with the abiotic stress 
imposed (Fan et al. 2013). Polyamines, such as spermine 
and spermidine allows for protein, nucleic acid and cell 
membrane stabilization, besides being great osmolytes and 
inducers of plant growth and development (Fan et al. 2013).

The SNP-induced germination of salt-stressed wheat 
seeds was attributed to the maintenance of K+/Na+ balance, 
increase of SOD and CAT activities and decrease of the lipid 
peroxides, H2O2 and O2

- levels (Zheng et al. 2008). The SNAP, 
together with G-proteins, induced the protein accumulation, 

the antioxidant enzymes activity, the proteins related to 
cell defense, the energy metabolism and the cell division 
in salt-treated maize seedlings (Bai et al. 2011). 

The application of an NO donor on NaCl-treated soybean 
improved plants growth and biomass accumulation in shoot, 
root and nodules (Egbichi et al. 2014; Vaishnav et al. 2016). 
Indeed, the NaCl-triggered disruption of Pseudomonas simiae 
(rhizobacteria) colonization in soybean was reverted by 100 
µM SNP and allowed plant to tolerate salt stress (Vaishnav 
et al. 2016). Conversely, increased levels of NO triggered 
the decrease of root meristems growth through auxin 
depletion in NaCl-treated Arabidopsis (Liu et al. 2015). In 
fact, removal of endogenous NO from roots rescued, in part, 
PIN expression and destabilized IAA17 protein, involved 
in the repression of auxin signaling. 

Hydrogen sulfide

Many physiological processes were also found to be 
regulated by H2S in plants capable to tolerate different 
types of stress, including high salinity (Tab. 2).

Oxidative burst, an uncontrolled overproduction 
of ROS, is one of the first events elicited in plants cell 
upon salt stress, leading to intensification of electrolytes 
leakage, lipid peroxidation and protein oxidation. In fact, 
mitigation of oxidative stress in salt-stressed plants is one 
of the most studied roles of H2S. The activities of SOD, CAT, 
APX, GR, GPX and DHAR in stressed cucumber seedlings 
were increased by treatment with NaHS (an H2S-donor) 
while H2O2 and lipid peroxide levels decreased under the 
same experimental conditions (Yu et al. 2013). Undeniably, 

Table 2: Roles of hydrogen sulfide (H2S) during plant response to salt stress.

H2S effect Plant species

Activation of antioxidant system

Cucumis sativus (Yu et al. 2013; Sun & Luo 2014)
Cynodon dactylon (Shi et al. 2013)

Fragaria × ananassa (Christou et al. 2013)
Medicago sativa (Wang et al. 2012; Lai et al. 2014)

Nicotiana tabacum (da-Silva et al. 2017)
Oryza sativa (Mostofa et al. 2015)

*Triticum aestivum (Khan et al. 2017)
Zea mays (Shan et al. 2014)

Increase of K+/Na+ ratio

Fragaria × ananassa (Christou et al. 2013)
Hordeum vulgare (Chen et al. 2015)

Medicago sativa (Lai et al. 2014)
Triticum aestivum (Deng et al. 2016)

Protection of photosynthetic apparatus
Fragaria × ananassa (Christou et al. 2013)

Oryza sativa (Mostofa et al. 2015)

Stimulation of seed germination and plant growth

Arabidopsis thaliana (Li et al. 2014)
Cucumis sativus (Sun & Luo 2014)
Cynodon dactylon (Shi et al. 2013)
Medicago sativa (Wang et al. 2012)

Induction of osmoregulators accumulation
Cucumis sativus (Sun & Luo 2014)
Cynodon dactylon (Shi et al. 2013)
Oryza sativa (Mostofa et al. 2015)

*Osmotic stress using PEG8000
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the suppression of endogenous H2S by infiltration of 
tobacco leaves with hypotaurine negatively affected the 
activity of SOD, CAT and APX in NaCl stress plants (da-
Silva et al. 2017). The activity of enzymes involved in GSH 
(γ-glutamylcysteine synthetase) and AsA (L-galactono-1,4-
lactone dehydrogenase) biosyntheses and further increment 
of GSH/oxidized glutathione and AsA/DHR ratios were 
stimulated by NaHS in leaves of salt-treated maize (Shan 
et al. 2014). Similarly to the observed for NO donors, NaHS 
controlled methylglyoxylate levels in rice by increasing the 
activity of glyoxalase I and glyoxalase II (Mostofa et al. 
2015). In addition, NaHS decreased in plants the activity of 
lipoxygenase, an enzyme implicated in the formation of lipid 
peroxides. Alleviation of NaCl-induced oxidative stress by 
H2S exogenous was also observed in alfalfa, bermudagrass, 
strawberry and cucumber (Wang et al. 2012; Christou et 
al. 2013; Shi et al. 2013; Lai et al. 2014; Sun & Luo 2014).

The maintenance of high K+/Na+ ratio in plant cells under 
salt-stress was also reported to be induced by H2S. Wheat 
seedlings treated with 50 µM NaHS, followed by 100 mM 
NaCl exposure exhibited increased K+/Na+ ratio with augment 
of selective transport of K+ over Na+ through nonselective 
cation channels and salt overly sensitive 1 (SOS1), a plasma 
membrane Na+/H+ antiporter (Deng et al. 2016). Induction 
of plasma membrane Na+/H+ antiporter genes (e.g. SOS2-
like, SOS3-like and SOS4) by NaHS was also described in 
strawberry plants under high salinity, indicating a role for H2S 
in K+ uptake (Christou et al. 2013). The K+/Na+ homeostasis 
in salt-treated alfalfa was shown to be maintained by NaHS 
through the prevention of K+ efflux likely triggered by lower 
expression of shaker-like K+ outward-rectifying channel genes 
(Lai et al. 2014). Similar results were shown in roots of salt-
treated barley seedlings in the presence of NaHS (Chen et al. 
2015). Remarkably, H2S maintained low Na+ levels in cells by 
increasing the transcription of genes that encode for plasma 
membrane H+-ATPase, H+-ATPase subunit β and vacuolar 
Na+/H+ antiporter and augmenting Na+ compartmentation 
in vacuoles (Chen et al. 2015).

Germination of alfalfa seeds under 100 mM NaCl 
was stimulated by 100 µM NaHS (Wang et al. 2012). The 
improvement of seed germination rate caused by H2S may 
be a result of the induction of starch break down in the 
endosperm as the activity of α-amylase and β-amylase 
increased in salt-stressed cucumber seeds upon treatment 
with NaHS and ultimately led to hypocotyl and radicle 
growth (Sun & Luo 2014). The inhibition of root growth in 
Arabidopsis under salt stress was abolished by NaHS (Li et 
al. 2014), while this H2S donor improved the survival rate of 
salt-treated bermudagrass (Shi et al. 2013). The treatment of 
strawberry roots with NaHS prior to NaCl exposure resulted 
in increased photosynthetic rate, stomatal conductance and 
RWC in leaves in comparison with plants solely exposed to 
NaCl (Christou et al. 2013). Similarly, an H2S donor increased 
chlorophyll, carotenoid and total protein contents in rice 
under salinity (Mostofa et al. 2015).

Exogenous H2S also led to the accumulation of L-proline, 
sucrose and other soluble carbohydrates in NaCl-stressed 
bermudagrass cells (Shi et al. 2013). Soluble carbohydrates 
also accumulated in hypocotyl and radicle cells of cucumber 
plants stressed with sodium bicarbonate and treated with 
NaHS (Sun & Luo 2014).

Interplay between NO and H2S during plant response 
to salt stress

It is unquestionable that NO and H2S share roles in 
the signaling pathway that leads to plant tolerance to 
environmental stresses. Then, the extent of the cooperative 
function between these signaling molecules has received 
considerable attention recently.

Studies carried out with alfalfa seeds treated with NaCl 
for 24 h and barley seedlings challenged with NaCl for 48 
h suggested that H2S might induce NO production during 
the response to the stress (Tab. 2; Wang et al. 2012; Chen 
et al. 2015). The simultaneous treatment of alfalfa with 100 
μM NaHS (H2S donor) and 100 mM NaCl increased NO 
levels in cells by 30 %. This increment was accompanied of 
an increase in K+/Na+ ratio and transcription levels of SOD, 
CAT, APX and guaiacol peroxidase genes and a decrease 
in lipid peroxides (Wang et al. 2012). The use of a specific 
NO scavenger reversed the NaHS effects on alfalfa, clearly 
indicating the influence of exogenous H2S on NO endogenous 
levels. The NaHS (100 μM) also boosted NO production in 
barley seedlings by 30 % in comparison to control, detected 
in situ using a fluorophore specific to NO (Chen et al. 2015). 
Meanwhile, NaHS maintained ionic homeostasis through the 
decrease of K+ cell efflux and increase of Na+ in vacuoles. The 
gene expression of an inward-rectifying potassium channel 
(HvAKT1) and a high-affinity K+ uptake (HvHAK4) protein 
system also increased in barley upon concomitant treatment 
with NaCl and NaHS. Up-regulation of transcriptional levels 
of vacuolar Na+/H+ antiporter (HvVNHX2), H+-ATPase 
subunit β (HvVHA-β) and protein expression of vacuolar 
Na+/H+ antiporter (NHE1) was also observed in barley under 
the experimental conditions tested (Chen et al. 2015). In 
contrast, the treatment of NaCl-exposed strawberries plants 
with NaHS (100 μM) decreased NO levels in plant cells by 
1.7-fold (Christou et al. 2013; Tab. 2). The decrease in the 
NO levels in strawberry was attributed by the authors to 
a possible control of nitrosative stress. Likewise, the lipid 
peroxide levels decreased while increment of expression of 
genes encoding for antioxidant enzymes and biosynthesis of 
AsA, GSH and SOS was recorded. Another line of evidence 
shows that endogenous NO and H2S stimulate the production 
of one another in tobacco leaves after NaCl stress for 10 
days, as hypotaurine (an H2S scavenger) compromised NO 
accumulation in ca. 1.3-fold and cPTIO (an NO scavenger) 
undermined H2S production in ca. 1.6-fold (da-Silva et al. 
2017; Tab. 2). Accumulation of NO and H2S stimulated the 
activity of CAT and SOD, decreased stomatal conductance to 
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Figure 2. Events triggered by nitric oxide (NO) and hydrogen sulfide (H2S) during plant response to high salinity. Panel A: main 
findings reported for alfalfa (Wang et al. 2012) and barley (Chen et al. 2015) in response to an H2S donor; Panel B: main findings 
reported for strawberry (Christou et al. 2013) in response to an H2S donor; Panel C: main findings reported for tobacco (da-Silva et al. 
2017) highlighting the endogenous increment of both NO and H2S in plants challenged with high salinity. Standard arrows indicate 
stimulation of a certain event while flat-headed arrows stand for repression of a certain event. AKT1, inward-rectifying potassium 
channel; APX, ascorbate peroxidase; AsA, ascorbic acid; CAS, β-cyanoalanine synthase; CAT, catalase; CS, cysteine synthase; GPX, 
glutathione peroxidase; GR, glutathione reductase; GSH, reduced glutathione; HAK4, high-affinity K+ uptake system; L-DES, L-cysteine 
desulfhydrase; LOOH, lipid peroxides; NHX2, Na+/H+ antiporter; NR, nitrate reductase; SOD, superoxide dismutase; SOS, salt overly 
sensitive 1 protein. 
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prevent water loss and drove to the control of oxidative stress 
assisted by GSH. Additionally, 200 μM S-nitrosoglutathione 
(an NO donor) enhanced the levels of L-cysteine by 10 % 
and the activity of L/D-DES and CS that, in turn, led to 20 
% higher amounts of H2S in wheat seedlings under osmotic 
stress (Khan et al. 2017). The increase of H2S, provoked by 
exogenous NO, controlled oxidative stress by improving 
SOD, CAT, APX, GR, NR and peroxidase activities in plant 
cells and relieving H2O2 and O2

- effects. Accumulation of 
L-proline and glycine betaine was also observed in osmotic-
stressed wheat seedlings supplemented with exogenous NO 
(Khan et al. 2017).

Figure 2 summarizes the known interactions between 
NO and H2S, regardless of their origin (endogenous or not), 
determined during plant response to high salinity.

Concluding remarks
Both NO and H2S may originate in plants from several 

pathways in which NR seems to be indirectly the main 
source of NO while the majority of H2S produced comes 
from L-DES activity. The role of NO in the mitigation 
of oxidative burst in plants upon (a)biotic stress is 
known for roughly two decades and most recently, H2S 
has emerged as a new player in such signaling pathway, 
orchestrating biochemical events that lead plants tolerance 
to high salinity. Recent studies show that NO and H2S act 
together and influence the production of one another 
during plant response to relatively long periods of salt 
stress to improve plant antioxidant system, K+ uptake 
over Na+ and production of osmoprotective molecules. 
The extent of the interaction between these signaling 
molecules deserves more investigation, since there is still 
controversy with respect to which molecule triggers the 
cascade. Understanding this interplay will expand our 
knowledge on the complex biochemical cascade activated 
in plant cells with competence to cope with high salinity. 
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