

Distribution of epiphytic macroalgae on the thalli of their hosts in Cuba

Yander Luis Diez García¹, Abdiel Jover Capote^{2,6}, Ana María Suárez Alfonso³, Liliana María Gómez Luna⁴ and Mutue Toyota Fujii⁵

Received: 4 April, 2012. Accepted: 14 October, 2013

ABSTRACT

We investigated the distribution of epiphytic macroalgae on the thalli of their hosts at eight localities along the southeastern coast of Cuba between June 2010 and March 2011. We divided he epiphytes in two groups according to their distribution on the host: those at the base of the thallus and those on its surface. We determining the dissimilarity between the zones and the species involved. We identified 102 taxa of epiphytic macroalgae. There were significant differences between the two zones. In 31 hosts, the number of epiphytes was higher on the surface of the thallus, whereas the number of epiphytes was higher at the thallus base in 25 hosts, and the epiphytes were equally distributed between the two zones in five hosts (R=-0.001, p=0.398). The mean dissimilarity between the two zones, in terms of the species composition of the epiphytic macroalgae, was 96.64%. *Hydrolithon farinosum* and *Polysiphonia atlantica* accounted for 43.76% of the dissimilarity. Among macroalgae, the structure of the thallus seems to be a determinant of their viability as hosts for epiphytes.

Key words: Chlorophyta, epiphytism, distribution, Phaeophyceae, Rhodophyta

Introduction

The structure of intertidal marine communities is determined by a combination of physical factors and biotic interactions (Little & Kitching 1996; Wernberg & Connell 2008). The establishment of marine macroalgae involves a number of complex physical interactions, as well as biological, ecological and chemical processes at the microscale, from the release of propagules by reproductive adults to their migration to appropriate substrates, initial adhesion to a surface, permanent attachment and development (Reed 1990a; Brawley & Johnson 1992; Vreeland & Epstein 1996). Because macroalgae constitute a key component of coastal communities, they are associated with other organisms and processes and have been central to the debate about the nature and scope of the structure and dynamics of those communities (Foster 1990, 1991; Paine 1991; Underwood 2000).

In the intertidal zone, environmental gradients also occur at smaller scales, such as within the host zone of receptivity, where there is a light intensity gradient between the periphery and the interior of the thallus, and along host fronds, where there is a gradient in biomass, which decreases progressively from the holdfast to the frond tip. The investigation of the distribution of epiphytes at different scales is a potentially productive approach. It is important to understand the patterns of abundance of all sympatric epiphytic species along the various gradients, because interspecific relationships could represent one of the factors that explain their distribution (Longtin *et al.* 2009).

The texture and structure of the host thalli are frequently exploited by epiphytes, thus increasing habitat complexity (Hacker & Steneck 1990). The epiphytic macroalgae with a filamentous or branched structure usually present a high degree of structural complexity and might therefore increase the suitability of host algae as habitats for mesoherbivores (Martin-Smith 1993).

In marine communities, the plant substrates that are the most widely colonized by are seagrasses and macroalgae, because they provide the necessary space, shelter and nutrition (Aguilar-Rosas & Galindo 1990). Macroalgae morphology might be related to the density of the community (Reed 1990b; Ang & DeWreede 1992). High densities of adults can help reduce desiccation during low tide due to overlapping thalli, as well as reducing water flow, providing shade and microhabitats below, which can affect the structure of the community (Bruno *et al.* 2003).

The host macroalgae differ considerably in their suitability as substrates for epiphytes. This difference might be

¹ Administración Portuaria Santiago de Cuba, Santiago de Cuba, Cuba

² Universidad de Oriente, Departamento de Biología, Santiago de Cuba, Cuba

³ Universidad de La Habana, Centro de Investigaciones Marinas, Ciudad Habana, Cuba

⁴ Universidad de Oriente, Centro Nacional de Electromagnetismo Aplicado, Laboratorio de Ecotoxicología, Santiago de Cuba, Cuba

⁵ Instituto de Botânica, Seção de Ficologia, São Paulo, SP, Brazil

⁶ Author for correspondence: abdiel@cnt.uo.edu.cu

related to the longevity of the species, which is a determining factor in the process of substrate colonization by epiphytes; in some cases, this phenomenon is more evident in the older parts of the thallus (Aguilar-Rosas & Galindo 1990). In *Zostera noltii*, Lebreton *et al.* (2009) found that the number of diatoms was higher on young leaves than on old leaves.

The suitability of macroalgae as substrates for epiphytes can also vary depending on the morphological characteristics of the base; the degree of branching; the roughness and texture of the surface; the production of allelopathic substances such as mucilage; and the thallus growth rate (Lobban & Harrison 1997). When the thallus surface has little mucilage, it provides favorable conditions for the establishment of epiphytes (Paula & Oliveira-Filho 1980; Széchy *et al.* 2006).

In tropical and subtropical regions, studies have shown reductions in the size of communities that develop on rocky shores, especially communities of macroalgae and epiphytes. Such studies have been limited to identifying epiphytic macroalgae species without studying the basic aspects of their ecology (Aguilar *et al.* 1998; Saad-Navarro & Riosmena-Rodrígez 2005). Understanding the spatial scales at which the rocky intertidal zone communities vary provides the necessary information to initiate the study of the relative importance of the various factors that can affect these communities and how those factors interact (Underwood *et. al.* 2000). Therefore, the objective of the present study was to determine the distribution of epiphytic macroalgae on the thallus of their hosts.

Material and methods

Study area

The study was conducted in the rocky intertidal zone between the municipalities of Aguadores and Baconao, Cuba, within the Baconao Biosphere Reserve (Managed Resource Protected Area), at eight locations (Fig. 1.): Aguadores 1, Aguadores 2; Sardinero; Juticí; Cajobabo; Verraco, Acuario and Baconao. Located east of the city of Santiago de Cuba, the study zone occupies an area of 5635 hectares of sea on the southeastern coast of the country, between Maisí and Cabo Cruz. It is characterized by a rocky intertidal zone with extensive fields of limestone (surface karst formation).

Sampling design

Samples were collected on a quarterly basis between June 2010 and March 2011, although inclement weather precluded sample collection in the month of September. Therefore, with the aim of collecting the greatest number of epiphytic species (Lecha & Chugaev 1989), we performed three samplings: one during the rainy season (in June); and two during the dry season (in December and in March). Samples were collected at low tide in the intertidal zone, which is characterized by short intervals of immersion and emersion.

We collected all epiphytic macroalgae and their hosts in 15 square metal containers (25 cm \times 25 cm \times 25 cm) distributed at random (Jover *et al.* 2012). All macroalgae

Figure 1. Location of the Aguadores-Baconao coastal sector and of the individual sampling sites.

that were growing on other macroalgae were classified as epiphytes, according to the criteria of Borowitzka *et al.* (2006). In accordance with Montañés *et al.* (2003), the epiphytic macroalgae were separated into two groups by their location on the thallus of the host: at the base or on the surface. The morphofunctional classification of the groups followed the criteria established by Littler & Littler (1984) and Steneck & Dethier (1994).

The macroalgae were identified down to the lowest possible taxonomic level on the basis of the specialized literature (Børgesen 1915-20; Taylor 1960; Littler *et al.* 1989; Littler & Littler 1997, 2000; Castro *et al.* 2008; Dawes & Mathieson 2008; Littler *et al.* 2008). The species list was created according to the taxonomic criteria established by Wynne (2011). For the higher classes (class, division, and kingdom), we followed the criteria established by Guiry & Guiry (2011) in Algaebase (http://www.algaebase.org/).

Data analysis

For each host macroalga and each zone of the thallus, we determined epiphyte species richness on the basis of the number of species observed (Ludwing & Reynolds 1988).

The origin and significance of differences between the zones of the host thalli were determined by analysis of similarity, with 999,999 permutations applied to the similarity matrix (Clarke & Warwick 2001). The similarity matrix was derived from the species presence and absence data using

the Jaccard index. The principal species responsible for the dissimilarity were identified by similarity percentage analysis (Clarke 1993). These nonparametric multivariate tests were conducted with the statistical program Primer, version 6 (Clarke & Gorley 2006).

Results

Epiphytic macroalgae and their hosts: flora

The observed number in the rocky intertidal zone of the Aguadores-Baconao sector, we observed 102 taxa of epiphytic macroalgae (18 Phaeophyceae, 53 Rhodophyceae and 31 Chlorophyceae), belonging to 14 orders, 25 families and 52 genera. The most well-represented order was Ceramiales, with 30 species, accounting for 29.4% of the total. Among the Phaeophyceae and Chlorophyceae, respectively, the most well-represented orders were Dictyotales and Cladophorales, with 13 species each.

Among the host macroalgae, we identified 61 taxa: 17 Phaeophyceae, 25 Rhodophyceae and 19 Chlorophyceae, belonging to 14 orders, 23 families and 39 genera. The most well-represented orders were Dictyotales and Ceramiales, with 11 species each. The orders Cladophorales and Siphonocladales presented six species each. The Phaeophyceae genus *Dictyota* presented the greatest number of species, with six.

Systematic list of epiphytic macroalgae (species listed)

Domain: Eukaryota Kingdom: Chromista Subkingdom: Chromobiota Division: Heterokontophyta Class: Phaeophyceae Order: Dictyotales Family: Dictyotaceae Genus: Dictyopteris 1- Dictyopteris delicatula J.V.Lamour. Genus: Dictyota 2- Dictyota bartayresiana J.V.Lamour. 3- Dictyota ciliolata Sonder ex Kützing 4- Dictyota crenulata J.Agardh 5- Dictyota guineensis (Kützing) P.L.Crouan & H.M.Crouan 6- Dictyota menstrualis (Hoyt) Schnetter, Hörning & Weber-Peukert 7- Dictyota mertensii (Martius) Kützing 8- Dictyota pulchella Hörnig & Schnetter Genus: Canistrocrpus 9- Canistrocarpus cervicornis (J.V.Lamour.) DePaula & De Clerck 10- Canistrocarpus crispatus (J.V.Lamour.) De Paula & De Clerck Genus: Lobophora 11- Lobophora variegata (J.V.Lamour.) Womersley ex E.C.Oliveira Genus: Padina 12- Padina sanctae-crucis Børgesen

13- Padina gymnospora (Kützing) Sonder
Order: Sphacelariales
Family: Sphacelariaceae
Genus: Sphacelaria
14- Sphacelaria novae-hollandiae Sonder
Order: Ectocarpales
Family: Scytosiphonaceae
Genus: Chnoospora
15- Chnoospora minima (Hering) Papentuss
Family, Sanagasa
Family: Sargassaceae
Genus: Sargassum
10- Saregassum baluceretium Montogno
17- Surgussum polyceratium Montagne
18- Turbinaria tricostata E S Barton
Kingdom: Dantae
Subkingdom: Bilinbyta
Division: Rhodophyta
Class: Florideophyceae
Order: Corallinales
Family: Hapalidiaceae
Genus: Mesophyllum
19- Mesophyllum sp.
Family: Corallinaceae
Genus: Hydrolithon
20- Hydrolithon farinosum (J.V.Lamour.) D.Penrose & Y.M.Chamberlain
Genus: Jania
21- Jania adhaerens J.V.Lamour.
22- Jania capillacea Harvey
23- Jania cubensis Montagne ex Kützing
24- Jania rubens (Linnaeus) J.V.Lamour.
Genus: Amphiroa
25- Amphiroa beauvoisii J.V.Lamour.
26- Amphiroa fragilissima (Linnaeus) J.V.Lamour.
27- Amphiroa rigida J.V.Lamour.
Order: Ceramiales
Family: Ceramiaceae
Genus: Ceramium
28- Ceramium brasiliense A.B. Joly
29- Ceramium brevizonatum var. caraibicum H.E.Petersen & Børgesen
30- Ceramium cimbricum H.E.Petersen
31- Ceramium codii (H.Richards) Mazoyer
32- Ceramium comptum Børgesen
33- Ceramium corniculatum Montagne
25 Concernium and South A.D.JOIY
55- Cerumium sp.
36 Cavialla transversalis (Collins & Hervey) TO Cho & Erederica
Genus: Controcoras
37- Centroceras clavulatum (C. Agardh) Montagne
Family. Wrangeliaceae
Genus: Griffithsia
38- Griffithsia globulifera Harvey ex Kützing
Genus: Ptilothamnion

39- <i>Ptilothamnion speluncarum</i> (Collins & Hervey) D.L.Ballantine & M.J.Wynne Family: Dasyadaceae Genus: Dasya
40. Dasya sp
40- Dusyu sp. Genus: Heterosiphonia
Al-Heterosiphonia crispella (C Agardh) M I Wynne
41- Interosiphonia crispetia (C.Agardii) M.J. Wyline
Conver Chowdrophycus
42 Chandrophycus inidaecono (MI Wympo & DI Pollontino) Corbory & Hornor
42- Chonarophycus ir mestens (IVI.). Wynne & D.L. Danantine) Garbary & Harper
42 Dalicada porforata (Porr) V WNom
45- Pausada perjorada (Boly) K. W.Nalli
AA Lauroncia caraibica DC Silva
44- Laurencia chiusa (Hudson) IVI emour
45- Laurencia ootusa (Hudson) J.V.Lamour.
46- Laurencia sp.
Genus: Digenia
47- Digenea simplex (Wulfen) C.Agardh
Genus: Lophosiphonia
48- Lophosiphonia cristata Falkenberg
Genus: Herposiphonia
49- Herposiphonia bipinnata M.Howe
50- Herposiphonia secunda (C.Agardh) Ambronn
Genus: Neosiphonia
51- Neosiphonia sphaerocarpa (Børgesen) M.S.Kim & I.K.Lee
52- Neosiphonia howei (Hollenberg) Skelton & G.R. South
Genus: Polysiphonia
53- Polysiphonia atlantica Kapraun & J.N.Norris
54- Polysiphonia havanensis Montagne
55- Polysiphonia schneideri Stuercke & Freshwater
56- Polysiphonia scopulorum Harvey
57- Polysiphonia scopulorum var. villum (J.Agardh) Hollenberg
Order: Gelidiales
Family: Gelidiaceae
Genus: Gelidium
58- Gelidium americanum (W.R.Taylor) Santelices
59- Gelidium pusillum (Stackhouse) Le Jolis
Family: Gelidiellaceae
Genus: Gelidiella
60- <i>Gelidiella acerosa</i> (Forsskål) Feldmann & G.Hamel
Genus: Parviphycus
61- Parviphycus setaceus (Feldmann) Afonso-Carrillo, Sansón, Sangril & Díaz-Villa
62- Parviphycus trinitatensis (W.Rtaylor) M.J.Wynne
Order: Gigartinales
Family: Cystocloniaceae
Genus: <i>Hypnea</i>
63- Hypnea musciformis (Wulfen) LVL amour.
64- Hypnen spinella (C. Agardh) Kützing
65- Hypnea valentiae (Turner) Montagne
Order: Rhodymeniales
Family: Rhodymeniales
Genus: Rotryocladia
66- Ratruacladia pyrifarmis (Bargesen) Kylin
Family: Champiaceae
Genus, Champiactat
67 Champia paruula (C Agardh) Harrow
or- Grunipia parvaia (G.Agardii) narvey

8- Champia vieillardii Kützing Family: Lomentariaceae Genus: Ceratodictyon 69- Ceratodictyon intricatum (C.Agardh) R.E.Norris 70- Ceratodictyon scoparium (Montagne & Millardet) R.E.Norris 71- Ceratdictyon variable (Grefville ex J.Agardh) R.E.Norris Kingdom: Plantae Subkingdom: Viridaeplantae Division: Chlorophyta Class: Ulvophyceae Order: Ulvales Family: Ulvaceae Genus: Pringsheimiella 72- Pringsheimiella scutata (Reinke) Marchewianka Genus: Ulva 73- Ulva fasciata S.F.Gray 74- Ulva flexuosa Wulfen 75- Ulva flexuosa subsp. paradoxa (C.Agardh) M.J.Wynne 76- Ulva lactuca Linnaeus 77- Ulva rigida C.Agardh Order: Cladophorales Family: Anadyomenaceae Genus: Anadyomene 78- Anadyomene stellata (Wulfen) C.Agardh Family: Cladophoraceae Genus: Cladophora 79- Cladophora albida (Nees) Kutzing 80- Cladophora brasiliana G.Martens 81- Cladophora cf. liniformis Kützing 82- Cladophora prolifera (Roth) Kützing 83- Cladophora vagabunda (Linnaeus) C.Hoek 84- Cladophora sp. Genus: Chaetomorpha 85- Chaetomorpha aerea (Dillwyn) Kützing 86- Chaetomorpha antennina (Bory) Kützing 87- Chaetomorpha clavata Kützing 88- Chaetomorpha gracilis Kützing 89- Chaetomorpha vieillardii (Kützing) M.J.Wynne Genus: Bryobesia 90- Bryobesia johannae Weber-van Bosse Order: Siphonocladales Family: Boodleaceae Genus: Cladophoropsis 91- Cladophoropsis macromeres W.R.Taylor 92- Cladophoropsis membranacea (Bang ex C.Agardh) Børgesen Genus: Boodlea 93- Boodlea struveoides M.A. Howe Genus: Phyllodictyon 94- Phyllodictyon anastomosans (Harvey) Kraft & M.J.Wynne Family: Siphonocladaceae Genus: Dictyosphaeria 95- Dictyosphaeria ocellata (M.Howe) J.L.Olsen-Stojkovich Family: Valoniaceae Genus: Valoniopsis 96- Valoniopsis pachynema (G.Martens) Børgesen Genus: Valonia

97- Valonia ventricosa J.Agardh					
Class: Bryopsidophyceae					
Order: Bryopsidales					
Family: Bryopsidaceae					
Genus: Bryopsis					
98- Bryopsis plumosa (Hudson) C.Agardh					
Family: Udoeaceae					
Genus: Boodleopsis					
99- Boodleopsis pusilla (F.S.Collins) W.R.Taylor, A.B.Joly & Bernatowicz					
Family: Halimedaceae					
Genus: Halimeda					

100- Halimeda sp.

Class: Dasycladophyceae Order: Dasycladales Family: Polyphysaceae Genus: Acetabularia

101- Acetabularia crenulata J.V.Lamour.

Genus: Parvocaulis

102- Parvocaulis polyphysoides (P.Crouan & H.Crouan) S. Berger, U. Fettweiss, S. Gleissberg, L. B. Liddle, U. Richter, H. Sawitsky, H. & G. C. Zuccarello

Distribution of epiphytic macroalgae on the host thalli

The distribution of epiphytes on the host thalli varied considerably. In 31 host species, the number epiphyte species was higher on the surface of the thallus than at its base, whereas the inverse was observed in 25, and the number epiphyte species was comparable between the two zones in five host species. Epiphytes were located only on the surface of the thallus in nine host species and only at its base in three. The cumulative species richness (both zones) was 89 species. The greatest epiphyte species richness was recorded for macroalgae with thalli that were more complex, belonging to the corticated, leathery, leafy and globose morphofunctional groups (Tab. 1).

The total R value for the comparison between the two areas was -0.001 (p=0.398). The mean dissimilarity between the surface and the base of the host thallus, in terms of the species composition of epiphytic macroalgae, was 96.64%. The species *Hydrolithon farinosum* (J.V.Lamouroux) D.Penrose & Y.M.Chamberlain and *Polysiphonia atlantica* Kapraun & J.N.Norris accounted for 43.76% of the dissimilarity.

The species that accounted for the majority of the mean similarity among epiphytic macroalgae at the base of the host thallus (2.99%) was *Hydrolithon farinosum*, which accounted for 59.36%. In addition, *H. farinosum* accounted for 92.37% of the mean similarity among epiphytic macroalgae on the surface of the host thallus (4.51%).

Among the species occurring at the base of the thallus, the following were the most common: *Dictyosphaeria ocellata* (M.Howe) J.L.Olsen-Stojkovich (n = 11); *Cladophora albida* (Nees) Kutzing (n = 13); *Valoniopsis pachynema* (G.Martens) Børgesen (n = 19); *Hypnea spinella* (C.Agardh) Kützing (n = 19); *Palisada perforata* (Bory) K.W.Nam (n = 10); *Centroceras clavulatum* (C.Agardh) Montagne (n = 11); *Amphiroa rigida* J.V.Lamouroux (n = 18); *Amphiroa fragilissima* (Linnaeus) J.V.Lamouroux (n = 12); *Jania adhaerens* J.V.Lamouroux (n = 21); *Hydrolithon farinosum* (n = 39); and *Dictyota menstrualis* (Hoyt) Schnetter, Hörning & Weber-Peukert (n = 10). There were 20 host species that showed no epiphytes at the base of the thallus.

The following were the most common species occurring on the surface of the thallus: *Padina sanctae-crucis* Børgesen (n = 12); *Hydrolithon farinosum* (n = 40); *Centroceras clavulatum* (n = 15); *Ceramium brasiliense* A.B.Joly (n = 11); *Neosiphonia sphaerocarpa* (Børgesen) M.S.Kim & I.K.Lee (n = 10); *Polysiphonia atlantica* (n = 18); and *Cladophora albida* (n = 10). There were only three host species that showed no epiphytes on the surface of the thallus (Tab. 1): *Gelidium americanum* (W.R.Taylor) Santelices; *Ulva flexuosa* Wulfen; and *Bryopsis plumosa* (Hudson) C.Agardh.

Discussion

Epiphytic macroalgae and their hosts: typical flora

The 102 taxa of epiphytic macroalgae observed here correspond to 21% of those identified for the waters of Cuba, whereas the host species correspond to 12.5% (Suárez 2005). The level of species richness observed here was high in comparison with those previously reported for Cuban waters. That might be due, in part, to the community approach taken in our study of the hosts, given that the majority of investigations of the hosts of epiphytic macroalgae have been conducted at the population level.

In an estuarine ecosystem, Cabrera et al. (2005) identified only 25 epiphytes on *Palisada perforata*. In contrast,

Hosts			
Division	MG	Thallus zone	Epiphyte species*
Species			
HETEROKONTOPHYTA			
		В	19, 20, 59, 63, 64, 65, 70, 76, 86, 96, 98
Dictyopteris delicatula	LG	S	20
Distusta hantamosiana	IC	В	20
Diciyota bartayrestana	LG	S	20, 28, 34, 57
Dictvota cervicornis	IG	В	20, 21, 26, 37, 63, 64
Dictyota cervicornis	EG	S	20
Dictvota ciliolata	IG	В	12, 20
Diciyota entonata	EG	S	20, 53
Dictuota quinaansis	IG	В	20, 53
Diciyota gamensis	EG	S	20
Dictuota menstrualis	IG	В	12, 20, 21, 22, 31, 32, 33, 43, 45, 51, 64, 96, 80
Diciyota mensiruans	LO	S	20
Distuata mantanaii	IC	В	6, 11, 20, 21, 26, 43, 50, 52, 78, 79, 84
Diciyota mertensii	LG	S	20, 53
	I.C.	В	20
Дістубій риїснена	LG	S	20, 53
Lobophora variegata	Lthy	S	69
	T (1	В	21, 27, 37, 64, 73, 74, 76, 80, 91, 97
Paaina gymnospora	Ltny	S	74
Padina sanctae-crucis	Lthy	В	5, 6, 7, 8, 20, 21, 22, 26, 27, 28, 30, 31, 32, 34, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 50, 51, 53, 55, 56, 63, 64, 78, 79, 81, 82, 84, 87, 89, 91, 92, 93, 95, 96, 97, 100
	,	S	20, 28, 36, 37, 38, 39, 40, 41, 49, 50, 51, 55, 56, 57, 64, 67, 79, 88
		В	20, 96
Chnoospora minima	Cort	S	20
Sarøassum huxifolium I thv	Lthy	В	2, 5, 6, 7, 9, 11, 12, 18, 20, 21, 23, 25, 26, 27, 32, 42, 43, 44, 45, 51, 52, 53, 63, 67, 68, 69, 71, 78, 80, 84, 88, 95, 96
6	,	S	7, 20, 51, 53, 89, 91
		В	20, 25, 27, 50, 60, 64, 95
Sargassum fluitans	Lthy	S	20, 95
		В	2, 11, 12, 17, 25, 27, 28, 29, 30, 37, 43, 44, 45, 51, 60, 63, 64, 70, 76, 79, 88, 95, 96
Sargassum polyceratium	Lthy	S	1, 7, 17, 19, 20, 35, 36, 45, 52, 51, 53, 98
Turbinaria tricostata	Lthy	В	2, 6, 7, 11, 12, 20, 21, 23, 25, 26, 27, 37, 29, 31, 35, 38, 39, 40, 43, 44, 45, 53, 63, 64, 66, 69, 71, 78, 79, 84, 95, 96
	,	S	20, 27, 41, 49, 50, 52, 54, 96
	Lthy	В	2, 6, 20, 27, 45, 53, 64, 79, 90, 96
Turbinaria turbinata		S	20
RHODOPHYTA			
Jania cubensis	AC	S	32
Amphiroa rigida	AC	S	78
Tricleocarpa cilindrica	AC	S	32, 53, 68, 90
Centroceras sp.	Fila	В	20
		S	20, 50
	Cort	В	21, 27, 64, 96
Acanthophora muscoides		S	98
	Cort	В	20, 95
Cnonaropnycus triaiscens		S	6, 7, 20, 21, 53, 64, 93
Vuzurua poitoaui	Cort	В	20, 51, 79
тигитии ропения		S	20, 32, 53

Table 1. Characteristics of the macroalgae hosting epiphytic macroalgae, including morphofunctional group, thallus zone in which the epiphytes were found, and epiphyte species composition, in a rocky intertidal zone in the Baconao Biosphere Reserve, in Cuba.

Continues

Table 1. Continuation.

Hosts			
Division	MG	Thallus zone	Epiphyte species*
Species			
Palisada perforata	Cort	В	2, 6, 7, 11, 12, 19, 20, 21, 25, 26, 27, 28, 31, 32, 38, 41, 44, 45, 46, 49, 51, 60, 61, 62, 63, 67, 78, 84, 89, 95,96, 97, 101
		S	2, 3, 6, 8, 12, 15, 17, 20, 23, 25, 26, 27, 28, 30, 31, 34, 35, 37, 44, 49, 50, 51, 52, 53, 54, 60, 63, 64, 69, 70, 78, 79, 91, 92, 95, 96, 99, 101
	Cort	В	20, 21, 25, 26, 43, 44, 64, 79, 95, 99
Digenea simplex		S	6, 7, 10, 12, 14, 16, 19, 20, 22, 28, 37, 43, 45, 46, 48, 49, 51, 53, 54, 56, 47, 62, 79, 82, 83, 85, 88, 91, 93, 96
Herposiphonia bipinnata	Fila	S	11
Laurancia caraihica	Cort	В	6, 20, 51, 79
		S	6, 20, 21, 29, 50, 53, 70
Laurencia obtusa	Cort	В	2, 6, 12, 20, 27, 53, 55, 57, 69, 70, 91
		S	4, 11, 20, 28, 32, 37, 50, 51, 53, 81
Laurencia sp	Cort	В	12, 20, 21, 96
		S	8, 12, 15, 20, 23, 53, 79, 80, 91
Neosiphonia sphaerocarpa	Fila	В	6, 20, 33, 79
		S	12, 20, 79
Polysiphonia scopolorum	Fila	В	20
		S	20, 37, 79, 84
Gelidium americanum	Fila	В	21
Gelidium pusillum	Fila	В	21, 27, 58, 64, 86, 91, 95, 96, 98
Geiminn pusitium		S	19, 28
Calidialla acaroca	Cort	В	20, 25
Genuleuu ucerosu		S	20, 37, 92
Hubuga mussiformis	Cort	В	20, 21, 26, 27, 53, 96
Ttypneu muscijormis		S	1, 20, 28, 37, 51, 54, 56, 57, 74, 75, 76, 83, 96, 98
TT 11	Cort	В	2, 12, 20, 21, 26, 30, 37, 43, 79, 86, 95, 96
Hypnea spinella		S	1, 6, 11, 12, 13, 20, 37, 43, 45, 51, 56, 59, 74, 76, 77, 82, 83, 88, 89, 91, 98
	Cort	В	21, 74, 96
Hypnea valentiae		S	1, 37, 76, 98
Ochtodes secundiramea	Fila	S	98
	Fila	В	20
Champia parvula		S	20
		В	20
Ceratodyction intricatum	Cort	S	12, 20
	C (В	1, 21, 27, 37, 63, 64, 74, 76, 77, 79, 86, 91, 98
Ceratodyction scoparia	Cort	S	1
CHLOROPHYTA			
Ulva flexuosa	LG	В	37
Ulva lactuca		В	1, 13, 19, 21, 22, 26, 27, 37, 59, 65, 74, 80, 86, 89, 91, 94, 96, 98
	LG	S	20
Anadyomene stellata		В	11, 20, 27, 43, 44, 45, 56
	LG	S	11, 20, 53
		В	20, 24, 25, 26, 27, 32, 43, 44, 46, 53, 56, 62, 64, 78, 83, 95
Valoniopsis pachynema	Fila	S	2, 5, 6, 8, 9, 11, 12, 14, 20, 26, 27, 35, 43, 45, 47, 53, 55, 57, 58, 63, 64, 73, 73, 75, 76, 77, 77, 78, 79, 80, 88, 89, 91, 95, 98
Chaetomorpha antennina	T21.	В	21, 32, 37, 51, 59, 76, 78, 80
	Fila	S	37, 64, 74, 76
Chaetomorpha vieillardii	Fila	В	2, 59, 64, 73, 76
	1	S	98

Continues

Yander Luis Diez García, Abdiel Jover Capote, Ana María Suárez Alfonso, Liliana María Gómez Luna and Mutue Toyota Fujii

Table	1.	Continuation.
-------	----	---------------

Hosts			
Division	MG	Thallus zone	Epiphyte species*
Species			
Cladathara albida	Fila	В	20
Cuuophora alonaa		S	20, 21, 29, 31, 51, 53, 56
Cladophora liniforme	Fila	S	12, 27
Cladathana pualifana	Fila	В	20
Ciudopnora proitjera		S	20
Phyllodictyon anastomosans	LG	S	20, 79, 83
	Fila	В	11, 21, 27, 53, 64
Clauophoropsis macrometes		S	12, 26, 68, 30, 32, 37, 51, 56, 57, 59, 64, 67, 60, 74, 76, 79, 81, 96
	Fila	В	20
Ciaaopnoropsis membranacea		S	20
	LG	В	20
Dictyosphaeria cavernosa		S	20, 25, 96
		В	20, 22, 25, 26, 47, 69, 96
Dictyosphaeria ocellata	LG	S	2, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 17, 19, 20, 21, 26, 27, 28, 31, 32, 37, 38, 42, 43, 44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57, 60, 63, 64, 67, 69, 70, 72, 79, 81, 84, 91, 96, 99, 102
	LG	В	20, 21, 96
Valonia ventricosa		S	20, 21, 28, 91
Bryopsis plumosa	Fila	В	1, 20, 37, 59, 64, 73, 76
Halimeda sp.	AC	S	12, 53
Boodleopsis pusilla	Fila	S	12, 21, 37, 43, 91
	AC	В	20
Parvocaulis polyphysoides		S	20, 53

MG – morphofunctional group; LG – leafy, globose; Lthy – leathery; Cort – corticate; AC – articulated calcareous; Fila –filamentous.

*For the names of the species corresponding to the numbers shown, see the taxonomic list in the Results section.

Suárez *et al.* (1989) identified 98 species of epiphytic macroalgae on *Stypopodium zonale* (Lamouroux) Papenfuss in a rocky subtidal ecosystem. That discrepancy can be explained by the differences between the two host species, in terms of the complexity of the thallus (greater in *S. zonale*) and in terms of habitat (species richness is typically greater in rocky subtidal ecosystems than in estuarine ecosystems).

Zayas *et al.* (2006) found only 13 species of epiphytic macroalgae within the community of macroalgae in the reef lagoon at Guardalavaca Beach. That low level of species richness could be attributed to the fact that epiphytic macroalgae more adhere to Thalassia testudinum Banks & Sol. ex K.D.Koenig, in algal beds, or to angiosperms (Borowitzka *et al.* 2006).

The greater epiphyte richness observed among hosts belonging to the morphofunctional groups with higher thallus complexity is due to the fact that those groups present morphological differences among their component species, which makes them responsible for increasing the spatial heterogeneity of the community. In addition, species with differentiated blades and thalli have greater morphological complexity, are more resistant to adverse conditions and confer greater stability upon the community (Littler & Littler 1980; 1984).

Distribution of epiphytic macroalgae on the host thallus

Greater epiphyte species richness on the surface of the thallus might be determined by the protection that provides against the extreme conditions in the intertidal zone, such as desiccation and wave exposure, as well as avoiding the competition for light that could lead to the overlapping of host thalli. In turn, macroalgae hosts with more epiphytes at the thallus base could better withstand those adversities and tolerate competition for light. The various structures that give rise to the thalli differ in terms of desiccation and solar irradiation. Longtin *et al.* (2009) found that these two factors were more intense in the distal segments of the thallus than at its base.

The variation in the accumulated epiphyte species richness in the rocky intertidal zone at the Aguadores-Baconao site is related to the complexity, rather than the zonation, of the host thalli. Montañés *et al.* (2003) argued that not only the habits but also the organizational type of epiphytes directly conditions their adhesion sites and preference for different parts of the host. The morphology of the host thallus is also crucial, it is expected that structurally complex thalli favor colonization by a greater number of epiphytes, because they create a greater number of niches and shelters (Ayala & Martín 2003). Apparently morphologically complex thalli, such as those of leathery corticate algae, create protected microhabitats (Kendrick & Burt 1997; Lavery & Vanderklift 2002). In addition, the texture and structure of the thalli are frequently used by epiphytes, increasing the complexity of the habitat (Hacker & Steneck 1990).

The fact that the similarity in overall shape was near zero indicates no difference in the distribution of epiphytic macroalgae, which might be attributable to the similarity between the base of the thallus and its surface, in terms of epiphyte species richness. However, the dissimilarity values are very high, given the existence of quite significant differences in epiphyte species composition and in the proportional contributions of individual species.

Species such as *Hydrolithon farinosum*, *Centroceras clavulatum* and *Cladophora albida* showed no preference for any specific area of the host thallus, presenting high values of frequency of appearance at its base and on its surface. This behavior could be determined by the low complexity of the host thalli, given the possibility that the developmental requirements of those species might not be as specific as are those of other epiphytes.

The hosts that did not have epiphytes adhering to the thallus base were typically the simpler forms, with few occurrences during the sampling periods. Macroalgae that host a great number of epiphytes in general or at the thallus base might have greater viability in the ecosystem, as has been suggested by various authors (Davis *et al.* 1989; Wahl 1989). The significantly low number of species hosting epiphytes of the thallus surface might be attributable to the epiphytes having a preference for zones that provide more light and more nutrients (Pedersen & Borum 1996; Lobban & Harrison 1997; Kraberg & Norton 2007). *Ulva flexuosa* and *Bryopsis plumosa* both present thalli that are structurally simple, with very smooth blade surfaces.

We conclude that the development of epiphytes can be influenced not only by the extreme physical conditions in the rocky intertidal zone but also by the structural characteristics of the host thalli and of the epiphytes, their ability to adhere to other macroalgae thalli or allow their own thalli to be adhered to by others.

Acknowledgments

The authors would like to thank Michael Wynne, for the corrections to the taxonomic nomenclature, and Humberto Morris, for the translation of the abstract to Portuguese and for the unconditional assistance. The authors are also grateful to Gary Kendrick and Lizette Quan for their help in constructing the bibliography, as well as to the peer reviewers, whose comments and suggestions resulted in substantial improvement of the manuscript.

References

- Aguilar, M.; Aguilar-Rosa L. & Aguilar-Rosas R. 1998. Algas marinas de la región central del Estado de Quintana Roo, México. Polibotánica 7: 15-32.
- Aguilar-Rosas, R. & Galindo A. 1990. Ecological aspects of Sargassum muticum (Fucales, Phaeophyta) in Baja California: reproductive phenology and epiphytes. Hydrobiologia 204/205: 185-190.
- Ang, P. & DeWreede R. 1992. Density-dependence in a population of *Fucus distichus*. Marine Ecology Progress Series 90: 169-181.
- Ayala, Y. & A. Martin. 2003. Relaciones entre la comunidad de anfípodos y las macroalgas a las que están asociados, en una plataforma rocosa del litoral central de Venezuela. Boletino Del Instituto Espanol De Oceanografia 19: 171.184.
- Børgesen, F. 1915-20. II. Rhodophyceæ, with addenda to the Chlorophyceæ, Phæophyceæ and Rhodophyceæ. Dansk Botanisk Arkiv 3: 1-504.
- Borowitzka, M.A.; Lavery, P.S. & van Keulen, M. (2006) Epiphytes of seagrasses, Pp. 441-461. In: Larkum, A.W.D.; Orth, P.J. & Duarte, C.M. (Eds.). Seagrasses: Biology, Ecology and Conservation. Berlín, Springer.
- Brawley, S. & Johnson L. 1992. Gametogenesis, gametes and zygotes: an ecological perspective on sexual reproduction in the algae. British Phycological Journal 27: 233-252.
- Bruno, J.; Stachowicz J. & Bertness M. 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18(3): 119-125.
- Cabrera, R.; Moreira, Á.; Primelles, J. & Suárez, A. 2005. Variación de la Biomasa de *Chondrophycus papillosus* (C. Agardh) Garvary et Harper (Ceramiales: Rhodophyta) y su epifitismo en la Bahía de Nuevitas, Cuba. **Revista de Investigaciones Marinas 26**(1): 15-20.
- Castro, J. de; Barros-Barreto, M. & Pita, S. 2008. A família Ceramiaceae (Ceramiales, Rhodophyta) no estado da Bahia, Brasil. Pp. 75-159. En: A. Santíes y K. Dreckmann (Eds.). **Monografías Ficológicas 3**. Universidad Autónoma de México.
- Clarke, K. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117-143.
- Clarke, K. & Gorley, R. 2006. **PRIMER v 6: User manual/tutorial**, **PRIMER-E**. United Kingdom, Plymouth.
- Clarke, K. & Warwick, R. 2001. Change in marine communities: an approach to statistical analysis and interpretation. PRIMER-E. United Kingdom, Plymouth.
- Davis, A.; Targett, N.; McConnell, O. & Young, C. 1989. Epibiosis of marine algae and benthic invertebrates: natural product chemistry and other mechanisms inhibiting settlement and overgrowth. Pp. 85-114. In: Scheuer, P. (Ed.). Bioorganic Marine Chemistry. V. 3. Berlin, Springer-Verlag.
- Dawes, C. & Mathieson, A. 2008. The Saeweeds of Florida. Florida, University of Florida Press.
- Foster, M. 1990. Organization of macroalgal assemblages in the Northeast Pacific: the assumption of homogeneity and the illusion of generality. **Hydrobiologia 192:** 21-34.
- Foster, M. 1991. Rammed by the Exxon Valdez: a reply to Paine. Oikos 62: 93-96.
- Guiry, M. & Guiry, G. 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. (Consultado: 16 mayo 2011).
- Hacker, S. & Steneck R. 1990. Habitat architecture and body- size-dependent habitat selection of a phytal amphipod. Ecology 71: 2269-2285.
- Jover, A.; Reyes, L.; Gómez, L. & Suárez, A. 2012. Variación espacial y temporal de las macroalgas del mesolitoral rocoso en Aguadores-Baconao, Cuba I: Composición. Revista de Investigaciones Marinas 32: 38-49.
- Kraberg, A. & Norton, T. 2007. Effect of epiphytism on reproductive and vegetative lateral formation in the brown, intertidal seaweed Ascophyllum nodosum (Phaeophyceae). Phycological Research 55: 17-24.
- Kendrick G. & Burt, J. 1997. Seasonal changes in epiphytic macro-algae assemblages between offshore exposed and inshore protected *Posidonia sinuosa* Cambridge et Kuo seagrass meadows, Western Australia. Botanica Marina 40: 77-85
- Lavery P. & Vanderklift, M. 2002. A comparison of spatial and temporal patterns in epiphytic algae assemblages of the seagrasses *Amphibolis* griffithii and *Posidonia coriacea*. Marine Ecology Progress Series 236: 99-112

- Lebreton, B.; Richard P.; Radenac G.; Bordes M.; Bréret M.; Arnaud C.; Mornet F. & Blanchard G. 2009. Are epiphytes a significant component of intertidal *Zostera noltii* beds? **Aquatic Botany 91**: 82-90.
- Lecha, L. & Chugaev, A. 1989. La bioclimatología y algunas de sus aplicaciones en condiciones de clima tropical húmedo. La Habana, Editorial Academia, Cuba.
- Little, C. & Kitching J. 1996. The biology of rocky shores. Oxford, Oxford University Press.
- Littler, M.M. & D.S. Littler. 1980. The evolutions of thallus form and survival strategies in benthic marine macroalgae: field and laboratory test of and functional: forms model. American Naturalist 116(1): 25-44.
- Littler, D.S. & M.S. Littler. 1984. Relationships between macoalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. Journal of Experimental Marine Biology and Ecology 74: 13-34.
- Littler, D. & Littler, M. 1997. An illustrated marine flora of the Pelican Cays, Belize. **Boletim de Botânica 9**: 1-149.
- Littler, D. & Littler, M. 2000. Caribbean Reef Plants. An identification to tha reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Florida, Offshore Graphics, Inc.
- Littler, D.; Littler, M. & Dennis, M. 2008. Submersed Plants of the Indian River Logoon. Florida, Offshore Graphics, Inc.
- Littler, D.; Littler, M.; Rucher, K. & Noris, J. 1989. Marine Plants of the Caribbean. A fiel guide from Florida to Brazil. New York, Smithosonian Institution Press.
- Lobban, C. & Harrison P. 1997. Seaweed ecology and physiology. Cambridge, Cambridge University Press.
- Longtin, C. & Scrosati, R. 2009. Role of surface wounds and brown algal epiphytes in the colonization of *Ascophyllum nodosum* (Phaeophyceae) fronds by *Vertebrata lanosa* (Rhodophyta). Journal of Phycolgy 45: 535-539.
- Longtin, C.; Scrosati, R.; Whalen, G. & Garbary, D. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies and host fronds. Journal of Phycolgy 45: 820-827.
- Ludwig, J. & Reynolds, J. 1988. **Statistical Ecology**. Nueva York, John Wiley and Sons.
- Martin-Smith, K. 1993. Abundante of mobile epifauna: the role of habitat complexity and predation by fishes. Journal of Experimental Marine Biology and Ecology 174: 243-260.
- Montañes, M.; Reyes, J. & Senzón, M. 2003. La comunidad de epífitos de *Zonaria tournefortiien* el norte de Tenerife (islas Canarias): análisis florístico y comentarios sobre su epifauna. **Vieraea 31**: 121-132.
- Paine, R. 1991. Between Scylla and Charybdis: do some kinds of criticism merit a response? **Oikos 62**: 90-92.
- Paula, E. & Oliveira-Filho E. 1980. Phenology of two populations of Sargassum cymosum (Phaeophyta- Fucales) of São Paulo State coast, Brazil. Boletim de Botânica 8: 21-39.

- Pedersen, M. & Borum, J. 1996. Nutrient control of algal growth in estuarinen waters. Nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Marine Ecology Progress Series 142: 261-272.
- Reed, D. 1990a. The effects of variable settlement and early competition on patterns of kelp recruitment. **Ecology 71**(2): 776-787.
- Reed, D. 1990b. An experimental evaluation of density dependence in a subtidal algal population. Ecology 71: 2286-2296.
- Saad-Navarro, G. & Riosmena-Rodrígez R. 2005. Variación espacial y temporal de la riqueza florística de macroalgas en la zona rocosa de Bahía de Muertos, B.C.S. México. Ciencia y Mar IX (26): 19-32.
- Steneck, R.S. & M.N. Dethier. 1994. A functional group approach to the structure of algal dominated communities. Oikos 69: 476-498.
- Suárez, A. 2005. Lista de las macroalgas marinas cubanas. Revista de Investigaciones Mararinas 26(2): 93-148.
- Suárez, A.; Gil, L. & Poseck R. 1989. Variación del epifitismo en Stypopodium zonale (Lamouroux) Papenfuss a lo largo de un año. Revista de Investigaciones Mararinas 10(1): 3-20.
- Széchy, M.; Galliez M. & Marconi M. 2006. Quantitative variables applied to phenological studies on *Sargassum vulgare* C. Agardh (Phaeophyceae, Fucales) from Ilha Grande Bay, state of Rio de Janeiro. **Revista Brasileira de Botânica 29**: 27-37.
- Taylor, W. 1960. Marine algae of the Eastern Tropical and Subtropical coast of the Americans. Michigan, The University of Michigan Press.
- Underwood, A. 2000. Experimental ecology of rocky intertidal habitats: what are we learning? **Journal of Experimental Marine Biology and Ecology 250**: 51-76.
- Underwood, A; Chapman M. & Connell S. 2000. Observations in ecology: You can't make progress on processes without understanding the patterns. Journal of Experimental Marine Biology and Ecology 250: 97-115.
- Vreeland, V. & Epstein L. 1996. Analysis of plant-substratum adhesives. Pp. 95-116. In: Linskens & Jackson, J. (Eds.). Modern Methods of Plant Analysis. Plant Cell Wall Analysis. v. 17. Berlin, Springer-Verlag.
- Wahl, M. 1989. Marine epibiosis: I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series 58: 175-189.
- Wernberg, T. & Connell S. 2008. Physical disturbance and subtidal habitat structure on open coasts: effects of wave exposure, extent and intensity. Journal of Sea Research 59: 237-248.
- Wynne, M. 2011. A checklist of benthic marine algae of the tropical and subtropical western Atlantic: third revision. Beiheft Nova Hedwigia. 140: 1-166.
- Zayas, C.; Ocaña, F.; Suárez, A. & La O, J. 2006. Variación estacional del epifitismo del fitobentos marino de Playa Guardalavaca, Cuba. Revista de Investigaciones Marinas 27: 95-101.

Online version: www.scielo.br/abb and http://www.botanica.org.br/acta/ojs