Provável posição do Gen Y7 no cromossomo 7 do milho

E. A. GRANER

Escola Superior de Agricultura "Luiz de Queiroz" Universidade de S. Paulo — Piracicaba

INDICE

1.	Introdução	 	 	 • • • •	 82
	Material e Méto				
	Resultados				
4.	Conclusões	 	 	 	 8
5.	Abstract	 	 	 	 8
6.	Bibliografia	 	 	 	 8

INTRODUÇÃO

A coloração amarela do endosperma da semente do milho depende da interação de três fatores genéticos: Y1, Y3 e Y7. As tonalidades de amarelo, desde o amarelo-pálido até o amarelo-laranja, dependem de outros gens, (8, 10) e um outro fator genético, designado Y5, na ausência de Y3 ou Y7, pode também, de sua interação com o gen Y1, condicionar pigmentos amarelos no endosperma (5,10). As relações entre os gens Y1, Y3 e Y7 e os plastídeos foram já analisadas em outra publicação (9).

O gen Y7 foi por nós considerado como provàvelmente localizado no cromossomo 7 (4) em vista de, em cruzamentos realizados, não apresentarem as plantinhas albinas, condicionadas pelo alelo recessivo y7, segregação independente para com a coloração amarelo-limão da aleurona, devida ao dominante Bn (14) e localizado nesse cromossomo.

O índice sete, por nós dado a Y1, não foi devido ao fato dele se mostrar ligado ao grupo 7 do milho mas sim por ter sido êle considerado numa série de seis outros gens Y descritos, dos quais pudemos depois provar serem os designados Y2 e Y4 sinónimos de Y1 (10).

No presente trabalho estudamos as interações do recessivo y7 para com dois outros recessivos do cromossomo 7: gl1 e ij. Poucos são os gens bem localizados nesse cromossomo e deles, apenas dois, Bn e gl1, se prestam para a análise de Y7, visto o recessivo y7 condicionar plantinhas albinas, letais, impedindo assim a constatação de caracteres que se manifestam nas plantas desenvolvidas ou em desenvolvimento. Os resultados obtidos, quanto às interações entre y7, gl1 e ij são apresentados nesta publicação.

2. MATERIAL E MÉTODOS

A linhagem contendo o recessivo y7, utilizada no presente ensaio para os cruzamentos, era proveniente do material que nos foi gentilmente enviado pelo Dr. A. M. Brunson, da Purdue University Agricultural Experiment Station, Lafayette, Indiana, Estados Unidos da América do Norte. O teste para o cromossomo 7, puro para gl1 (glossy seedlings) e ij (iojap plants) era seleção obtida de linhagens testes norte-americanas para êsses gens, cruzadas com linhagens sul-americanas (6).

Vários cruzamentos foram feitos, recorrendo-se, uma vez que o recessivo y7 é letal (plantinhas albinas), a plantas Y7--: dêsses cruzamentos foram depois escolhidas as plantas que segregaram para Y7 (Y7 y7) e as quais, de acôrdo com a constituição genética do teste utilizado, apresentaram a seguinte constituição:

$$\frac{y7}{+} \frac{+}{gl1} \frac{+}{ij}$$

Não havendo testes apropriados para a retrocruza, as análises foram conduzidas nas segregações apresentadas pela geração F2. Oito espigas segregando para êsses fatores genáticos foram autofecundadas e as suas respectivas progênies est dedas. Um total de 1820 indivíduos (sementes e correspondentes plantinhas e plantas desenvolvidas) foram analisados. No caso da segregação para ij, êsses números foram reduzidos para 5 espigas e 422 indivíduos, por terem sido escolhidas as espigas onde não houve nenhuma dificuldade para classificação das plantas listadas, controladas por êsse recessivo.

Foram feitas, pelo teste \varkappa^2 , as respectivas comparações entre as razões observadas e as esperadas e os valores de ligação foram calculados tanto pela fórmula de soma como pela fórmula de produto.

3. RESULTADOS

A segregação para os três gens, na base de independência entre êles, deveria ser 27+++:9 gl1:9 ij:3 gl1ij:12y7:4y7gl1, uma vez que o caráter planta listada, devido ao recessivo ij, visível sòmente nas plantas desenvolvidas, não pode ser controlado nas plantinhas de constituição y7 (albinas). Os dados para as cinco espigas onde o recessivo ij pôde ser controlado com segurança estão reunidos no quadro n. 1. Constata-se, pelos valores elevados de \varkappa^2 encontrados nêsse quadro, não ter havido segregação independente, confirmando assim a hipótese prévia de ligação fatorial.

As segregações monofatoriais para y7 e para gl1 foram tôdas normais, de acôrdo com os dados que se acham incluídos nos quadros ns. 2 e 3. As segregações monofatoriais para ij não puderam ser controladas diretamente, porquanto parte das plantas ij ficou incluída na classe y7.

Admitindo-se ainda independência entre os três gens e desprezando-se, nessa base, a classe y7 (plantas albinas), icveriamos encontrar, no restante, também independência e segregações monofatoriais 3: 1 para cada um dos outros dois recessivos (g11 e ij). Os dados referentes a uma tal análise estão reunidos no quadro n. 4. Constata-se nele, para g11, não haver segregações monofatoriais 3: 1 concordantes, devido aos valeres de \varkappa^2 encontrados, principalmente na análise dos totais, confirmando assim não haver independência entre êste reces sivo e o recessivo y7. Para o caso do recessivo ij, os valores de \varkappa^2 , todos insignificantes no limite de 1% de probabilidade, permitem supor haver independência entre êle e y7, pois que as segregações monofatoriais estão concordando com a razão 3:1.

Havendo, portanto, ligação entre gl1 e y7 e, sabendo-se de antemão, que ij está ligado a gl1, é possível que ij e y7, embora localizados no mesmo cromossomo, estejam bastante afas dos um do outro.

Com base na indicação dessa segregação independente entre y7 e ij, é possível se admitir também segregações monofatoriais 3:1 para ij, na classe y7. Fazendo-se a distribuição das plantinhas albinas y7, de acôrdo com essa suposição, nas duas classes respectivas, de acôrdo com a razão 3:1 e, incluindo-se êsses valores às classes correspondentes da segregação para ij, obtida realmente nas plantas não y7, obteremos, em cinco espigas onde ij pôde ser bem classificado, uma segregação monofatorial 3:1 concordante também para ij, com valores de x^2 todos insignificantes no limite de 1% de probabilidade, conforme os dados que se acham reunidos no quadro n. 5. Nesse quadro encontram-se, em grifo, os números indicando as plantas y7, distribuidas por tentativa nas duas classes respectivas, dacôrdo com a proporção 3:1 para ij e, em grifo, também os totais obtidos para cada classe.

$3.1 \quad gl1 - ij$

Os recessivos gl1 (glossy, plantinhas com fôlhas lustrosas e de côr verde mais escuro que as normais e retendo água em forma de gotículas na superfície das fôlhas) e ij (iojap, plantas apresentando as fôlhas com listas longitudinais variáveis, visíveis principalmente nas plantas a partir de sua meia idade)

estão localizados no cromossomo sete, sendo de 16 unidades o valor de ligação entre êles, encontrado por outros autores (2, i). Uma verificação direta dêsse valor, no material presente, não foi possível ser feita uma vez que gl1 se mostrou ligado a y7 e que o caráter plantas listadas, determinado pelo recessivo ij, não pôde ser controlado nas plantas de constituição y7 (albinas).

Entretanto, baseando-se na mesma suposição anterior de que teria havido uma segregação independente entre ij e y7 poderiamos admitir uma distribuição das plantas y7 (excluidas agora aquelas $y^{7}gl1$, em número de 3, sendo 1 na espiga n. 14-203 e 2 na espiga n. 17-203, num total de 3 para o conjunto das três espigas da família 203 e de 3 para o total das cinco espigas analisadas (famílias 203 e 204), que ficam na classe gl1ij. por terem gl1 e ij entrados na análise na fase associação (coupling)) nas duas classes correspondentes para a segregação do recessivo ij, não gl1, uma vez que as plantas não são gl1 e que foi onde se constatou deficiência, fazendo com que ficasse alterada a segregação monofatorial 3:1 para gl1 quando desprezadas as plantas de constituição y7.

Os dados, de acôrdo com essa suposição, estão reunidos no quadro n. 6. Em grifo, estão representados os números correspondentes às plantas albinas y7, distribuidas por tentativa nas classes correspondentes à segregação de ij, porém não gl1. Em grifo estão também os totais obtidos para as duas classes citadas.

Ficam assim satisfeitas também as segregações monofatorias 3:1 para ij, sem independência entre gl1 e ij quando considerados simultâneamente. Calculando-se agora o valor de c% para os totais de 3 espigas da família 203, de 2 espigas da fumília 204 e de 5 espigas das famílias 203 e 204, vamos encontrar valores que variam de 16 a 20% e que não diferem daquele já determinado para os dois gens em questão. Os dados estão contidos no quadro n. 7, não havendo diferença significativa entre os valores determinados no presente material e aquele ja connhecido e tomado como valor ideal (16%).

Calculando-se os valores esperados para cada uma das quatro classes, de acôrdo com o valor 16% para ligação entre êsses dois gens e, fazendo-se o teste \varkappa^2 , verificamos serem todos os valores de \varkappa^2 insignificantes na probabilidade de 1% (Quadro 6). Fica assim confirmada a segregação não independente entre gl1 e ij, não diferindo também, no presente ensaio, após os ajustamentos feitos em relação à segregação de ij nas

plantas y7, o valor de ligação encontrado daquele determinado por outros autores.

$$3.2 \ gl1 - y7$$

Os recessivos gl1 e y7, êste último determinando ausência de pigmentos amarelos no endosperma e plantinhas albinas, ambos apresentando uma segregação monofatorial 3:1 concordantes, não se mostraram porém independentes, de acôrdo comos dados observados e contidos no quadro n. 8. A análise, feita num total de 8 espigas de duas famílias (203 e 204), num total de 1820 indivíduos, indica uma ligação mais ou menos estreita entre êsses dois gens.

Os valores de c% foram calculados pelas fórmulas de soma e de produto e estão incluidos, com os seus respectivos erros, no quadro n. 9. Houve muita variação entre os valores determinados mas um não difere estatisticamente do outro quando considerados na sua determinação pela mesma fórmula (soma ou produto).

Tomando-se o valor de 10%, obtido no total e pela fórmula do produto, como o valor melhor determinado para ligação entre êsses dois gens, calculamos, nessa base, os valores esperados para as quatro classes que não apresentam segregação independente. Feita em seguida a análise pelo teste \varkappa^2 , verifica-se serem todos os valores de \varkappa^2 , com exceção de um dêles, insignificantes na probabilidade de 1% (Quadro n. 8). O único valor significante de \varkappa^2 obtido foi o da espiga n. 17-203 que, como se pode ver, tinha um número muito reduzido de sementes, apenas 69. E' de se crer portanto que a significância encontrada para essa espiga seja devida ao pequeno número de indivíduos classificados. A significância apresentada pelo valor de \varkappa^2 dessa espiga desapareceu, entretanto, no grande total, mostrando assim que se justifica a inclusão dos dados por ela fornecidos na presente análise.

$$3.3 \ y7 - ij$$

O caráter iojap, listas longitudinais nas fôlhas, controlado pelo recessivo ij, visível nas plantas em desenvolvimento, principalmente do meio para o fim do ciclo da planta, não pode ser constatado nas plantas y7 (albinas), dificultando assim qualquer análise de ligação entre êsses dois gens.

QUADRO N. 1

Referência	-4							-	-	1	ij					у	7			\varkappa^2
(Espigas Autofecundadas)	ota		+			gl1			+			gl1			+			gl1		· Total
Autorecundadas	H	Obs.	Esp.	% 2	Obs.	Esp.	x ²	Obs.	Esp.	\varkappa^2	Obs.	Esp.	χ ²	Obs.	Esp.	\varkappa^2	Obs.	Esp.	2 2	
9 — 203 14 — 203 17 — 203 Total de 3 espigas (203) 5 — 204 16 — 204 Total de 2 espigas (204)	66 262 69 397 160 381 541	134 37 196 82 189	27,0 110,7 29,7 167,4 67,5 159,3 226,8	0,15 4,90 1,79 4,89 3,11 5,53 8,60	5 18 5 28 17 20 37	9,0 36,9 9,9 55,8 22,5 53,1 75,6	1,77 9,69 2,42 13,85 1,35 19,79 19,70	4 10 2 16 6 10 16	9,0 36,9 9,9 55,8 22,5 53,1 75,6	2,27 19,69 6,30 28,39 12,09 34,02 46,90	9 49 10 68 24 74 98	3,0 12,0 3,3 18,6 7,5 17,7 25,2	12,00 114,10 13,60 131,20 36,30 179,08 210,31	50 13 86 31	12,0 48,0 13,2 74,4 30,0 70,8 100,8	10,00 0,08 0,003 1,80 0,03 4,18 3,28	0 1 2 3 0 0	4,0 16,0 4,4 24,8 10,0 23,6 33,6	4,00 14,10 1,31 19,16 10,00 23,60 33,60	30,69 162,56 25,42 199,29 62,88 266,20 322,39
Total de 5 espigas (203 + 204)	938	467	394,2-	13,48	65	131,4	33,55	32	131,4	75.19	166	43,8	338.65	205	175,2	5,07	3	58,4	52.55	518,49

· ·		QUADRO N. 2				QUADRO N. 3	
,	T						
leferência		ļ'	_	. 2	Referência		

Referencia (Espigas Autofecun-	otal		+			y7		κ² Tota!	(Espigas Autofecun-	Tota!		+			gl1		κ² Total
dadas)	H	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2		dadas)		Obs.	Esp.	\varkappa^2	Obs.	Esp.	2 2	
9 — 203	66		49,5	0,85	23	16,5	2,56	3,41	9 — 203	,	52	49,5	0,13	14 68	16,5	0,38	0,51
$ \begin{array}{r} 14 - 203 \\ 17 - 203 \end{array} $	262	1 .	$195,7 \\ 51,7$	1,35 0,10	51 15	$\begin{array}{c} 65,2\\17,2\end{array}$	4,08 3,0?	5,43 3,17	14 — 203 17 — 203	262 69	52	196,7 51,7	0,04 0,01	17	65,5 17,2	$\begin{array}{c} 0,11 \\ 0,002 \end{array}$	0,15 0,01
Total de 3 espigas (203) 3 — 204	397 375	308	299,1 281,1	0,40 0,04	89 91	99,7 93,7	1,22 0,08	1,62 0,12	Total de 3 espigas (203) 3 — 204	397 375	1	299,1 281,1	0,005 0,29	99	99,7 93,7	0,01 0,88	0,01 1,17
4 — 204	196	159	147,0	0,97	37	49,0	2,94	3,91	4 — 204 5 — 204		144	147,0 120,0	0,06 0,01	52 41	49,0 40,0	$\begin{array}{c c} 0,19 \\ 0,02 \end{array}$	1,17 0,25 0,03
5 — 204 11 — 204	160 311	252	120,0 233,1	0,67 1,55	31 59	40,0 77,7	2,02 4,64	2,69 6,19	11 — 204	311	232	233,1	0,005	79	77,7	0,01	0,01
16 — 204 Total de 5 espigas (204)	381 1423	293 1117	$285,7 \\ 1067,1$	1,86 2,42	88 306	95,2 355,7	0,56 6,94	2,42 9,36	16 — 204 Total de 5 espigas (204)	381 1423	287 1054	285,6 1067,1	0,01 0,16	94 369	95,2 355,7	0,02 0,49	0,03 0,65
Total de 8 espigas		1425	1365.0	2,63	395	455.0	7.91	10.54	Total de 8 espigas $(203 + 204)$	 1320	1352	 1365.0	0.12	468	455.0	0.38	0,50

QUADRO N. 4

Referência (Espigas	Total		+			ij		$oldsymbol{arkappa}^2$		+			gl1		\varkappa^2
Autofecundadas)	T ₀	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2	Total	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2	Total
9 — 203 14 — 203 17 — 203 Total de 3 espigas (203) 5 — 204 16 — 204 Total de 2 espigas (204)	43 211 54 308 129 293 422	152 42 224 99 209	32,1 158,1 40,5 231,0 96,6 219,6 316,5	0.14 0,23 0,05 0,21 0.06 0,55 0,23	59 12 84 30 84	10,7 52,7 13,5 77,0 32,2 73,2 105,5	0,50 0,75 0,17 0,64 0,18 1,66 0,69	0,64 0,98 0,22 0,85 0,24 2,21 0,92	29 144 39 212 88 199 287	32,1 158,1 40,5 231,0 96,6 219,6 316,5	0,30 1,26 0,05 1,56 0,76 2,00 2,85	67 15 96 41 94	10,7 - 52,7 13,5 77,0 32,2 73,2 105,5	1,01 3,77 0,20 4,70 2,29 6,04 8,60	1,31 5,03 0,25 6,26 3,05 8,04 11,45
Total de 5 espigas $(203 + 204)$	730	532	547,5	0,75	198	182,5	1,32	2,07	499	547,5	4,40	231	182,5	13,18	17,58

QUADRO N. 5

		<u> </u>	J 1 1 2 1 0					
Referência (Espigas	al	+			ij			\varkappa^2
Autofecun dadas)	Total	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2	Total
9 — 203 14 — 203 17 — 203 Total de 3 espigas (203) 5 — 204 16 — 204 Total de 2 espigas (204)	1 1	53 (42 + 11) $291 (224 + 67)$	49,5 195,7 51,7 299,1 120,0 285,7 405,6	0,12 0,16 0,03 0,22 0,03 0,42 0,19	19 (13 + 6) 72 (59 + 13) 16 (12 + 4) 106 (84 + 22) 38 (30 + 8) 106 (84 + 22) 144 (114 + 30)	16,5 65,2 17,2 99,7 40,0 95,2 135,2	0,38 0,49 0,09 0,65 0,10 1,28 0,60	0,50 0,65 0,12 0,87 0,13 1,70 0,79
Total de 5 espigas $(203 + 204)$	938	688 $(532 + 156)$	703,5	3,16	250 (198 + 52)	234,5	0,96	4,12

QUADRO N. 6

Referência				-	F						gl	1			2
(Espigas	otal	+				ij				+			ij		κ^2 Total
Autofecun dadas)	To	Obs.	Esp.	\varkappa^2		Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\varkappa^2	Total
9 — 203 14 — 203 17 — 203 Total de 3 espigas (203) 5 — 204 16 — 204	69 397 160 381	262 (196 + 66) 105 (82 + 23) 255 (189 + 66)	178,2 46,9 270,0 108,8 259,1	0,19 0,22 2,58 0,24 0,01 0,06		$ \begin{array}{ccc} (4 + & 6) \\ (10 + & 12) \\ (2 + & 2) \\ (16 + & 20) \\ (6 + & 8) \\ (10 + & 22) \\ \end{array} $	4,6 18,3 4,8 27,8 11,2 26,7	6,34 0,74 0,13 2,42 0,70 1,05	5 18 5 28 17 20	4,6 18,3 4,8 27,8 11,2 26,7	0,04 0,01 0,01 0,002 3,00 1,69 0,02	9 50 12 71 24 74 98	11,9 47,2 12,4 71,5 28,8 68,6 97,4	0,75 0,17 0,01 0,003 0,80 0,42 0,04	7,32 1,13 2,73 2,66 4,51 3,22 2,03
Total de 2 espigas (204) Total de 5 espigas (203 + 204)		360 (271 + 89) $623 (467 + 156)$	367,9 637,8	0,18	46 81	(16 + 30) $(32 + 49)$	37,9 65,7	1,79 3,56	65	37,9 65,7	0,02	169	168,8	0,04	7,09

QUADRO N 7

	Q CIIDIO	<u> </u>		
	gl1 -	-ij		
Referência (Espigas	Sor	na	Proc	luto
Autofecun dadas)	с%	sc%	c%	sc%
Total de 3 espigas (203)	20	5,5	18	4,8
Total de 2 espigas (204)	17	5,2	16	4.1
Total de 5 espigas (2037 + 204)	18	3,8	17	3,1

QUADRO N. 8

Referência		-			+					7	<i>j</i> 7			\varkappa^2
(Espigas	Total	 	+			gl1			+			gl1		Total
Autofecun dadas)	Ĥ	Obs.	Esp.	$oldsymbol{arkappa}^2$	Obs.	Esp.	\varkappa^2	Obs.	Esp.	\mathcal{H}^2	Obs.	Esp.	\varkappa^2	Total
	00	00	00.0	0.50		100	0.00	99	100	0.55		0.10	0.15	0.55
9 - 203	66	29	33,2	0,53	14	16,3	0,32	23	16,3	2,75	0	0,16	0.15	3,75
14 - 203	262		131,7	1,14	67	64,8	0,07	50	64,8	3,38	1	0,65	0,19	4,78
17 - 203	69	39	34,7	0,53	15	17,1	0,25	13	17,1	.0,98	2	0,17	19,69	21 4 5
Total de 3 espigas (203)	397	212	199,5	0,78	96	98,0	0,04	86	98,0	1 47	3	1,00	4,00	6,29
3 — 204	375	1 - 1	188,4	0,22	102	92,6	0,95	90	92,6	0,07	1 1	0,90	0,01	1,25
4 — 204	196	107	98,4	0,25	52	48,4	0,28	37	48,4	2,69	0	0,50	0,50	4,22
5 — 204	160	88	80,3	0,72	41	39,5	0,07	31	39,5	1,83	0	0,40	0,40	3,02
11 - 204	311	173	156,1	1,82	79	76,8	0,07	59	76,8	4,12	0 1	0,80	0,80	6,81
16 — 204	381	199	191,3	0,30	94	94,1	0,00	88 -	94,1	0.39	0	0,90	0,90	1,59
Total de 5 espigas (204)	1423	749	714,3	1,68	368	351,5	0,79	305	351,5	6,15	1	3,55	1.83	10,45
Total de 8 espigas	İ	İ	,							,		•		•
$(203 + 204)^{-1}$	1820	961	913,6	2,41	464	449,5	0,47	391	449,5	7,61	4	4,50	0,06	10,55

									25	- د -	Total	3,98	5,82	0,62	2,53	2,92	2,84	3,57	6,05
c											×2	2,65	3,54	0,28	1,18	2,05	0,54	1,94	3,11
			2				·		716	-	Esp.	16,4	65,2	17.2	8,86	40,0	95,2	135,2	234.0
		Produto	sc%	4,8	2,6	2,3					Obs.	23	21	15	83	31	88	119	208
		Pro	c%	19	9	10					8,	0,04	2,09	0.06	1,32	0	2,23	1,56	2,58
			0		-		٥			ij	Esp.	12,3	48,9	12,9	74,1	30,0	71,4	101,4	175,5
0. N 0	- gl1	Soma	sc%	4,4	2,7	2,3	<u> </u>	N. T			Obs.	13	29	12	84	30	84	114	198
QUADRO N.	-2h	\mathbf{S}_{0}	c%	28	. 23	24	4	QUADRO N. 10	+		2,2	1,29	0,19	0,28	0,01	06,0	0,08	0,07	90,0
				as	S	SI		g		+	Esp.	36,9	146.7	38,7	222,3	90,0	213,2	303,2	526,5
		cia	Autofecun dadas)	Potal de 3 espigas (203)	5 espigas	Total de 8 espigas $(203 + 204)$					Obs.	30	152	42	224	66	209	308	532
		Referência	ofecun d	otal de ((203)	Total de 5 (204)	tal de 8 es $(203 + 204)$			1	B tc	T	99	262	69	397	160	ည်	541	938
		&	Aut	Tots (2	Tota (2	Tota (2			Dofowânoio	neterencia (Espigas	Autofecun dadas)	9 — 203	$\frac{14}{1} - \frac{203}{203}$	$\frac{17}{17} - \frac{203}{203}$	م	204 204	16 - 204	de	Total de 5 espigas (203 $+$ 204)

Incluindo-se as plantas y7 observadas numa única classe e, calculando-se agora a segregação obtida entre êsses dois gens, na base de independência (9 + + : 3 ij : 4 y7), constatamos uma segregação livre entre êles. Os dados desta análise estão incluidos no quadro n. 10, sendo todos os valores de \varkappa^2 obtidos insignificantes na probabilidade de 1%. Essa mesma independência já havia sido também indicada na análise monofatorial 3:1 para ij, quando feita desprezando-se as plantas y7 (Quadro n. 4).

Essa independência não se traduz, porém, pela não permanência de y7 no cromossomo 7, mas sim por um provável afastamento grande existente entre y7 e ij e o que permite se concluir pela sequência relativa dos três gens no mesmo cromossomo. Aceitando-se y7 como bastante afastado de ij, êle não poderá estar localizado entre gl1-ij, que estão afastados um do outro de apenas 16 unidades, mas sim a esquerda de gl1. Também, admitindo-se que a melhor determinação até agora obtida entre y7-gl1, seja a de 10 unidades, a distância entre y7-ij poderá ser calculada provisòriamente, até que outros dados venham apresentar uma melhor posição, em 26 unidades (10+16).

O afastamento de 26 unidades entre y7 e ij pode ser suficiente para não permitir uma constatação de ligação nos dados analisados na fase repulsão (repulsion) como a presente :

E' que o número de indivíduos examinados (938 total)

pode ser considerado como pequeno para uma tal verificação. Considerando-se y7 e ij, como bastante afastados (com um valor mínimo de 26 unidades), temos para as quatro classes da segregação entre êsses dois gens, nessa base e na fase repulsão, valores esperados que diferem pouco dos valores esperados para a segregação independente. Há então necessidade de uma soma muito maior de indivíduos para que se possa constatar estatisticamente a diferença entre uma segregação com ligação e uma segregação independente.

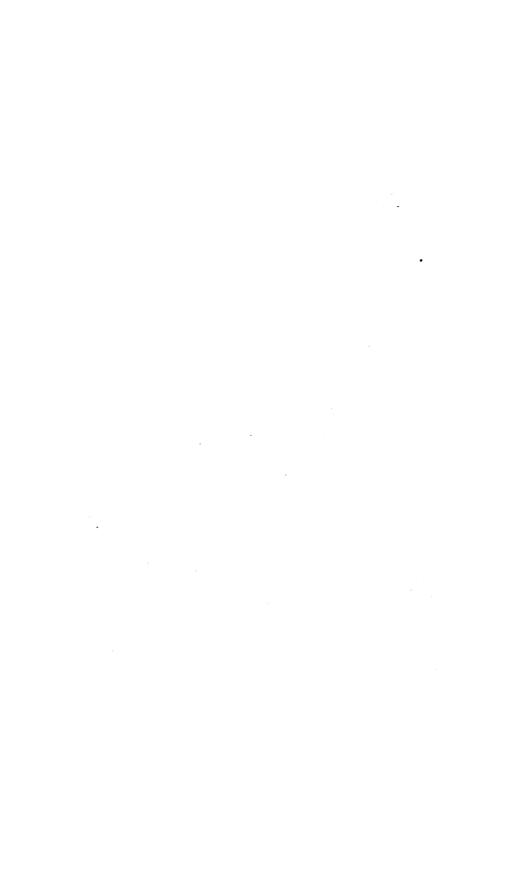
4. CONCLUSÕES

Poucos são os gens já bem localizados no cromossomo 7 e dêles, apenas os recessivos gl1 e v5 se prestam para a constatação de seus respectivos caracteres nas plantas obtidas logo após a germinação (seedlings).

O recessivo yl, condicionando ausência de pigmentos amarelos no endosperma e plantinhas albinas, letais, cuja localização no cromossomo 7 se pretende fazer com os dados obtidos no presente ensaio, não encontra, portanto, além de gl1, outros fatores genéticos favoráveis para constatação, nas plantinhas, da respectiva segregação. O dominante Bn, que condiciona a presença de pigmentos amarelos na aleurona e pode, portanto, ser constatado nas sementes, não oferece, muitas vêzes, segurança na classificação, em vista das sementes simplex (bnbnBn), muitas vêzes serem dificilmente separáveis das nupliplex (bnbnbn).

Em cruzamentos realizados, envolvendo os recessivos y7, gl1 e ij, com constituição $\dfrac{+\ gl1\ ij}{y7\ +\ +}$ obteve-se, em F2, segregação livre para y7-ij e os seguintes valores para ligação : 16 unidades entre gl1-ij e 10 unidades entre y7-gl1.

Infere-se, então, estarem y7 e ij bastante afastados um do outro e uma sequência provável no cromossomo 7, para êsses três gens, na seguinte ordem : y7 10 gl1 16 ij.


5. ABSTRACT

This paper deals with the genetic relations among y7, gl1 and ij, in chromosome 7. The data obtaneid suggest the relative order in that chromosome as follows: y7 10 gl1 16 ij.

6. BIBLIOGRAFIA

- 1 EMERSON, R. A. (1921) The Genetic Relations of Plant Colors in Maize. Cornell University Agricultural Experiment Station Memoir 39: 1-156.
- 2 EMERSON, R. A., G. W. BEADLE and A. C. FRASER (1935) — A Summary of Linkage Studies in Maize. Cornell University Agricultural Experiment Station Memoir. 180: 1-83.
 - 3—IMMER, F. R. (1930) Formulae and Tables for Calculating Linkage Intensities. Genetics 15: 81-98.

- 4 GRANER, E. A. (1943) Genética da Côr Amarelo-Laranja, nas Sementes do Milho. Revista de Agricultura 18: 443-445.
- 5 GRANER, E. A. (1945) The Yellow-Orange Endosperm of Maize. The American Naturalist 79: 187-192.
- 6 GRANER, E. A. (1946) Testes para a Localização de Fatôres Genéticos no Milho. Revista de Agricultura 21: 8-20.
- 7 GRANER, E. A. (1947) Maize Genetics Cooperation News Letter 21: 47.
- 8 GRANER, E. A. (1947) Gen Y7, Complementar de Y1 e Y3 para a Coloração Amarelo-Laranja da Semente de Milho. Revista de Agricultura 22: 42-54.
- 9 GRANER, E. A. e W. R. ACCORSI (1949) Os Gens y3 al (plantas albescentes) e yl (plantas albinas) do Milho e sua Relações com os Plastideos. Scientia Genetica 3: 160-171.
- 10 GRANER, E. A. (1951) Genética da Coloração Amarelo-Laranja da Semente do Milho. Tese. Escola "Luiz de Queiroz".
- 11 GRANER, E. A. (1952) Como Aprender Estatística. Comp. Melhoramentos de São Paulo.
- 12 GRANER, E. A. (1953) Elementos de Genética. Comp. Melhoramentos de São Paulo, 2a. edição.
- 13 GRANER, E. A. (1953) A Posição do Gen Y3 no Cromossomo 2 do Milho. Anais da Escola "Luiz de Queiroz" 10: 133-140.
- 14 KVAKAN, P. (1924) The Inheritance of Brown Aleurone in Maize. Cornell University Agricultural Experiment Station Memoir 83: 1-22.
- 15—PERRY, H. S. and G. F. SPRAGUE (1936) A Second Chromosome Gene Y3 Producing Yellow Endosperm Color in Maize. Journal of America Society of Agronomy 28: 990-995.

