Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: a systematic review

Níveis de cortisol basal e a relação com sintomas clínicos na esclerose múltipla: uma revisão sistemática

Gabriela Magalhães Pereira¹, Nayron Medeiros Soares², Andreo Rysdyk de Souza¹, Jefferson Becker³, Alessandro Finkelsztejn⁴, Rosa Maria Martins de Almeida⁵

ABSTRACT

Multiple sclerosis (MS) is a demyelinating, progressive and neurodegenerative disease. A disturbance on the hypothalamic-pituitaryadrenal axis can be observed in patients with MS, showing altered cortisol levels. We aimed to identify basal cortisol levels and verify the relationship with clinical symptoms in patients with MS. A systematic search was conducted in the databases: Pubmed, Web of Science and SCOPUS. Both higher and lower cortisol levels were associated with MS. Higher cortisol levels were associated with depression and anxiety, while lower levels were associated with depression, fatigue and urinary dysfunction. Higher cortisol levels may be associated with the progression and severity of MS.

Keywords: Multiple sclerosis; hydrocortisone; pituitary-adrenal system; neurologic manifestations; general symptoms.

RESUMO

A esclerose múltipla (EM) é uma doença desmielinizante, progressiva e neurodegenerativa. Um distúrbio no eixo hipotálamo-hipófiseadrenal pode ser observado em pacientes com EM, mostrando níveis alterados de cortisol. Nosso objetivo foi identificar os níveis basais de cortisol e verificar a relação com os sintomas clínicos em pacientes com EM. Uma busca sistemática foi realizada nas bases de dados: Pubmed, Web of Science e SCOPUS. Ambos os níveis de cortisol elevado e baixo foram associados com a EM. Níveis mais elevados de cortisol foram associados à depressão e ansiedade, enquanto níveis mais baixos foram associados à depressão, fadiga e disfunção urinária. Níveis altos de cortisol podem estar associados à progressão e gravidade da EM.

Palavras-chave: Esclerose múltipla; hidrocortisona; sistema hipófise-suprarrenal; manifestações neurológicas; sintomas gerais.

Multiple sclerosis (MS) is a progressive and inflammatory neurodegenerative disease, characterized by demyelinating lesions and atrophy, in the central nervous system (CNS)^{1,2,3}. It affects 1/1,000 people in the western world and leads to chronic disability in young adults ranging between 20 and 40 years old⁴. Multiple sclerosis presents an unpredictable and often progressive course, with many neurological symptoms⁵, which include sensory disorders⁶, visual problems⁷, fatigue⁸, alterations in balance⁹, dysfunction of the lower urinary tract¹⁰, limitations in walking¹¹ and cognitive dysfunction¹². The etiology of MS is considered multifactorial and involves genetic and environmental mechanisms, which affect the immunological response¹³. Although the origin is still unknown, autoimmune mechanisms are considered central triggers of MS¹⁴. A widely-accepted model considers MS to be an autoimmune chronic inflammation, mediated by T-cells and macrophages infiltrating the CNS through the peripheral immunological system, which is involved in myelin sheath destruction along with microglia^{10,15}. Nowadays B-cells are getting a great deal of attention as well.

⁴Hospital de Clínicas de Porto Alegre, Ambulatório de Esclerose Múltipla, Porto Alegre RS, Brasil;

Received 15 April 2018; Received in final form 31 May 2018; Accepted 6 June 2018.

¹Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Laboratório de Psicologia Experimental, Neurociências e Comportamento, Porto Alegre RS, Brasil;

²Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Laboratório de Psicologia Experimental, Neurociências e Comportamento, Porto Alegre RS, Brasil;

³Pontifícia Universidade Católica do Rio Grande do Sul, Hospital São Lucas, Serviço de Neurologia, Porto Alegre RS, Brasil;

⁵Universidade Federal do Rio Grande do Sul, Instituto de Psicologia, Laboratório de Psicologia Experimental, Neurociências e Comportamento, Porto Alegre RS, Brasil. **Correspondence:** Rosa Maria Martins de Almeida; Instituto de Ciências Básicas da Saúde da UFRGS; Rua Sarmento Leite, 500; 90050-170 Porto Alegre RS, Brasil; E-mail: rosa.almeida@ufrgs.br

Conflict of interest: There is no conflict of interest to declare.

It has been demonstrated that alterations in the neuroendocrine system may also be involved in immune suppression or activation, increasing the vulnerability and severity of autoimmune diseases such as MS^{4,16,17}. In this context, several studies have indicated that there is a role of the hypothalamic-pituitary-adrenal (HPA) axis in the control of MS progression¹⁸. In physiological conditions, the HPA axis releases glucocorticoids able to mediate the expression of inflammatory genes of cytokines, action of monocytes and macrophages, and adhesion and migration molecules, which have immunomodulatory effects^{19,20}. In patients with MS, activation of the HPA axis appears to be dysregulated, and chronic hyperactivity occurs in about 50% of the patients^{14,18,21,22}. The reactivity of the HPA axis has been correlated with MS progression and global increase in the activation of the neurodegenerative process^{21,23,24}.

Cortisol is an end-product glucocorticoid of the HPA axis in humans, considered to be the stress hormone and a powerful natural immunosuppressant, involved in regulatory functions such as in glucose metabolism, insulin release, arterial pressure, immune and inflammatory responses^{4,25}. In MS, as a consequence of the disrupted HPA axis, cortisol levels become altered. In patients with MS, the cortisol response after intravenous administration of corticotrophin-releasing hormone is higher, when compared with healthy adult subjects^{26,27,28}. This increase of the cortisol response was associated both positively²⁹, and negatively³⁰, with the number of acute lesions due to central neuroinflammation in MS.

In several studies, higher levels of basal cortisol were observed in the cerebrospinal fluid (CSF) and blood, as well as an increase in the cortisol awakening response measured in saliva^{5,25,30,31,32,33}. As well, evidence in postmortem humans showed that higher levels of cortisol in the CSF are neuroprotective while lower levels are related to a higher number of lesions³⁰.

Physiologically, cortisol release levels and the activated cerebral regions depend on the type of stress factor, where motor stress has been associated with brainstem activation while psychological stress has been associated with limbic regions³⁴. In MS, some studies have investigated the relationship between cortisol levels and symptoms that arise during the course of the disease; however, there is still no consensus about the role of cortisol as a cause or consequence of the symptoms. Current evidence is directed, mainly, to the relationship of cortisol with fatigue and depression, which are the most common symptoms in MS^{35,36}.

In affective symptoms, such as anxiety and depression, significant correlations are found with higher levels of cortisol, especially in patients suffering from relapsing-remitting multiple sclerosis (RRMS)^{5:29,37}. Furthermore, studies have shown that cortisol is correlated with fatigue and might have an important role in RRMS^{25,38}. Nevertheless, contradictory

results have also been observed, where MS patients with depression and chronic fatigue showed cortisol levels with no increase or significant correlations^{39,40,41}.

Even though several investigations have considered the role of the HPA axis in MS, there is still little consensus about the cortisol levels and their role in MS pathophysiology. In this study, we aimed to investigate basal cortisol levels in MS and the methods of cortisol evaluation, though a systematic review. Moreover, we intended to verify whether cortisol levels were related to clinical symptoms observed in multiple sclerosis.

METHODS

The systematic review was performed on the results of the database searches from January to March in 2018, which were conducted according to PRISMA guidelines⁴². The articles were selected from three databases: PubMed, Web of Science and SCOPUS. To find representative articles, the following keywords were input: [*multiple sclerosis AND cortisol*]; [*multiple sclerosis AND cortisol AND progression*]; [*multiple sclerosis AND stress AND cortisol*]; [*multiple sclerosis AND cortisol AND progression AND stress*].

The selected articles in this review were assessed independently by two evaluators and met the following criteria: 1) the sample comprised only humans (from 18 years of age); 2) the articles were published between 2006 and 2017; 3) patients had been affected only by MS, with no neurological diseases from other etiologies; 4) cortisol had been assessed from urine, blood, CSF, saliva or hair; 5) there was an assessment of any physical, behavioral and/or cognitive symptom; 6) the full text of the article was available in the database; 7) the full article was in English. Articles were excluded from the sample if: 1) they were review articles, book chapters and abstracts published in journals; 2) they used pharmacological, physical or psychological stimulation as a stressing agent to observe the HPA axis function. Only articles that fulfilled all the requirements were included in this review.

In the initial assessment, only the abstracts of the articles were read. If the data were not enough, the evaluators assessed the methods and results of the articles. Accepted articles that met all the inclusion criteria were read and analyzed comprehensively.

Analysis of the articles was made qualitatively, according to the method of assessment of cortisol and the division of study groups. After analyzing the articles, results were placed in a table with the following information: authors and year of publication, study goals, sample number and groupings, mean age, main results (Table 1). Bias risk was assessed in every article according to the following criteria: sample randomization; cortisol storage duration, temperature, method; assessment kit (Table 2).

								r0).	
Authors, year	Objective	Subjects (n)	Groups (n)	EDSS	Age (years)	Assessment	Sample type	Basal cortisol	Main results
Akcali et al., 2017 ⁵⁰	To compare Fatigue Severity Scale and Neurological Fatigue Index-MS and assess the relation between fatigue and serum biomarkers in patients with MS	80 F= 42 M = 38	MS Fatigued = 26 MS Non- fatigued = 28 Control = 26	1.34 ± 1.09 0.98 ± 1.15	34.6±8.5 33.9±7.4 32.4±4.0	Fatigue Severity Scale, Neurological Fatigue Index-MS, serum IL-1β, TNF-α, IL-35, IL-2, IL-10, ACTH, cortisol, α-MSH, β-MSH, γ-MSH and CLIP	Serum	22.26 ± 8.43 μg/dl 20.90 ± 6.68 μg/dl 15.38 ± 9.57 μg/dl	Cortisol levels were elevated in fatigued and non-fatigued patients in comparison to control group. Cortisol was similar in fatigued and non- fatigued patient groups.
Villoslada et al., 2017 ⁴⁹	To identify biomarkers to severity of MS.	312 F = 196 M = 116	MS = 238 Control = 74	1.5 (05.) 2.0 (0-7.5)	33.6 ± 8.7 33.2 ± 4.2	Retrospective cohort study. Cortisol assessment in the first meeting and 2 years later.	Serum	ı	Cortisollevels showed just a trend of association with disability and severity measured two years later.
Najafi; Moghadasi, 2017 ⁴³	To assess training effect of yoga on cortisol and ACTH levels in MS females.	24 F = 24	MS yoga = 14 MS control = 10	1 to 5.5	29 to 50	90 minutes of yoga, 3 times a week, for 8 weeks. Assessment done 48h before first training and 48h after last training.	Plasma	3.56 ± 1.22 μg/dL 11.69 ± 1.25 μg/dL	Post-training cortisol levels decreased in comparison to pre-training, also when compared with control group.
Melief et al., 2016 ²⁴	To explore prognostic relevance of assessment of GR haplotype and cortisol levels and sCD163 in CSF of patients with MS.	137* M = 46 F = 91	SPMS = 77 PPMS = 34 RRMS = 26	<u>6.0</u>	55 to 78	Postmortem assessment, CSF from lateral ventricles centrifuged.	CSF	,	Cortisol was correlated with sCD163, especially in GS-L group. There was no correlation of cortisol with time of progress and duration of MS according to EDSS 6,0.
Arata; Sternber, 2016 ⁵¹	To examine effects from TVAM of the HPA axis in patients with MS and to determine any relationship between the autonomic nervous system function and the HPA axis.	72 M = 26 F = 44	RRMS = 61 PPMS = 6 SPMS = 5	,	49.6 ± 11	Measurement of cortisol, ACTH, systolic and diastolic pressures, cardiac frequency variability, 24h before and after TVAM.	Serum	10.7 ± 0.6 pg/ml	Decrease of cortisol and ACTH before TVAM in 18% and 25% of the patients. There was a significant reduction in cortisol levels and ACTH after TVAM. Cortisol was correlated with systolic pressure.
Koutsis et al., 2016 ⁵²	To investigate neuroendocrine correlations with bladder dysfunction at the beginning of MS.	101 M = 37 F = 64	Overactive bladder-yes = 15 Overactive bladder-no = 86	1.93 ± 0.9 1.37 ± 1.07	33.9 ± 11.4 35.3 ± 8.5	Cortisol sample collected within 12 first months since the first demyelination episode.	Serum	139 ± 68 ng/ml 92 ± 42 ng/ml	Cortisol levels significantly lower in overactive bladder -Yes group. No correlation between cortisol levels and MS duration.
Baranowska- Bik et al., 2015 ³¹	To evaluate cortisol plasma levels and copeptin in recently-diagnosed patients.	82 M = 17 F = 65	MS = 40 Control = 42	1.56 ± 0.89	1.56 ± 0.89 34.43 ± 8.5 - 32.28 ± 8.1	Blood samples were collected 8h after overnight fasting. BMI was measured to subdivide groups into lean and overweight/obese individuals.	Plasma 3	348.58 ± 158 nmol/l Plasma 337.04 ± 265.3 nmol/l	Cortisol levels were significantly higher in the MS overweight/ obese group in comparison with the overweight/obese controls and MS lean group. There was positive correlation between cortisol and corective protein.

Continue

Table 1. Characteristics of the studies that assessed basal cortisol levels and their relationship to symptoms of multiple sclerosis (n = 20).

CAR was higher in RRMS than in the control group. Accumulated fatigue in RRMS was associated with lower cortisol levels at awakening and higher CAR. The CAR was not associated with fatigue on the same day.		Significant reduction in cortisol concentrations after training in RRMS compared with control group.	Higher cortisol levels are associated with delay in MS progression, above all in women	with SPMS. Lower cortisol was related to higher number of active lesions and smaller remyelinated plates, and related to quick progression	of MS. No differences in lower and higher cortisol levels with humor disorders.	Circadian release of cortisol in RRMS was different in the control group. There	was no difference in CAR in treated and never treated patients. Follow-up groups with progression of EDSS showed a significant increase	the control Stress and depression did not correlate with CAR in RRMS.	Continue
13.57 ± 3.77 nmol/L/min 11.78 ± 2.95	12 32 + 41 ns/ml	9.51 ± 3.4 ng/ml		236 nmol/l			ı		
Saliva		Serum		CSF			Saliva		
Ecological momentary assessment performed 4 consecutive days in two projects: one based in events (CAR) - collection performed at awakening; 30 and 45 minutes later; based in time (DCS) — 6 quasi-random samples distributed in 1000h and 2000h.	Resistance training and	for 8 weekly sessions for 8 weekly sessions intervention, between the 8 th and 10 th day of the follicular phase of the menstrual cycle.	Postmortem study. Normal-annearing white	matter and hypothamus were dissected and stored for 30 days. CSF collected to analyze cortisol. Corticotropin-	releasing hormone expressing neurons counted.	EDSS, CES-D and TICS.	Cortisol collected 6 times over 24h (on awakening, 20, 45, 60 minutes later, 3 pm and 10pm, on 2 separate days within 2 weeks.		
4.35±1.4041.89±7.53 - 40.34±8.16	2 87 + 0 82 35 08 + 6 89	2.79 ± 0.65 33.75 ± 5.32		3 to 9 32 a 83		2.71 36.56	4.86 45.91 r	35.56	
RRMS = 38 ² Control = 38	SRMS C = 2			ı		RRMS = 55	SPMS = 22	Control = 34	
76 M = 14 F = 62	24	F = 24	67	M = 13	F = 36	111	M = 46	F = 65	
To explore the relationship between cortisol and fatigue in RRMS.	To define the second	to determine it a resistance training program and whole body vibration has any effect on hormone changes in female MS patients.	To investigate how activity of	the HPA axis in MS is related to severity, neurodegeneration, depression, lesions and genic expression in normal-appearing white	matter.		To measure cortisol daily release, including CAR under basal conditions.		
Powell et al., 2015 ²⁵		Eftekhari et al., 2014 ⁴⁴		Melief et al., 2013 ³⁰			Kern et al., 2013 ⁴⁵		

Table 1. Characteristics of the studies that assessed basal cortisol levels and their relationship to symptoms of multiple sclerosis (n = 20). Continuation

	No significant differences in cortisol levels during the day. There was a decrease in .30 pm cortisol between 7:30am and 9:30pm in both MS groups. Cortisol was higher in PAD if compared to PNAD.		0.92± 10/1	RRMS showed higher CAR levels than the control group. 36.40 ± Only RRMS patients with nol/l moderately higher BDI had different levels compared to controls.		Patients with MDD showed HPA axis hyperactivity, with elevated cortisol levels at night. No differences observed in CAP between groups	Decrease in cortisol levels was not associated with CAR but was a significant predictor of severity in depression.	No alteration in cortisol levels -366) in comparison to standard	l laboratory levels and no correlation with the FSFI.
22.00 lg/dl - 7.30am	3.60 lg/dl - 9.30 pm		Low BDI 1299.92 ± 394.33 nmol/l	High BDI 1486.40 ± 435.29 nmol/l		,		232.14 (180–366)	nmol/l
	Serum			Saliva		a Salis V			5
	Blood collection at 7am, 11am, 2:30pm, 6pm and 9:30pm. Cortisol.			CAR assessed on two different days in a week. Sample collected on awakening, 30, 45, 60 minutes later, at 3pm and 10pm. EDSS and BDI.		Circadian profile collected on 2 consecutive days at awakening, 11am, 3pm, 8pm and 10pm. EDSS and Hospital.	Anxiety and Depression Scale.	Hormone assessment, including cortisol on the third	day of menstrual cycle. FSFI, EDSS.
36.7 ± 7.6		36.8 ± 7.2	30.53	30.37		35.8 ± 0.7	37.2 ± 2.2	34.7 (26- 44)	r.
1.75 (0.0-5.0)		I	T	I		2.2 ± 0.2	3.3 ± 0.3	2.9 (1.5-6)	I
RRMS = 34 (12 PAD; 22 PNAD)	Control = 34		RRMS = 32	Control = 16		RRMS = 34	RRMS-MDD = 10	MS-SD = 31	EM = 24
68	M = 16	F = 52	48	M = 1	F = 37	77	F = 44	22	F = 55
To investigate a potential circadian periodicity of expression levels of several cytokines relevant to MS, adhesion molecules and cytokine receptors.			To examine circadian function of the HPA axis and CAR in patients with RRMS, with maximal duration of 36 months.		To examine the role of the HPA axis activity in	from patients with RRMS and MDD.	To investigate the correlation between blood hormones and	SD in women of reproductive age with MS.	
	Wipfler et al., 2013 ⁴⁶			Kern et al., 2011 ⁵		Gold et al.,	2011 ³⁷	Lombardi et	al., 2011 ⁵³

Table 1. Characteristics of the studies that assessed basal cortisol levels and their relationship to symptoms of multiple sclerosis (n = 20). Continuation

Gold et al., 2010 ⁴⁷	for a contraction of the second secon					dentate gyrus, subiculum			depressive symptoms showed
	sub-regional volumes of hippocampus can be linked to alterations in daytime cortisol secretion.	M = 6 F = 43	Control = 20	I.	35.1 ± 1.9	and entorhinal cortex. Diurnal cortisol was collected at awakening, 4pm and 9pm on	Saliva	I.	higher cortisol levels and a smaller CA23DG. The volume of CA23DG was correlated
						two consecutive days.			COLLISOI LEVELS.
		78	MS = 34	I	41 (16-65)				Serum cortisol in MS was just as observed in NIND. CSF
Heidbrink et al., 2010⁴8	To determine DHEA and cortisol levels in CSF and blood of patients with MS,	M = 33	OIND = 16	I	42 (20-86)	Blood and CSF collected consecutively between 1pm and 30m.	CSF and Serum	ı	significantly lower. There was positive correlation between MS and OIND in paired CSF and
	UIND and NIND.	F = 45	NIND = 28	I	49 (22-81)				blood analysis. Cortisol levels were lower in CSF and normal in blood during an acute relapse.
	To comnara tha affacts	50	Group 1 = 25	ı.	48.1 ± 11.06			7.88 ± 5.35	Diminishad cortisol lavals after
Mackereth et al., 2009 ⁵⁴ r	of muscle relaxing and reflexology training in people	M = 12	Group 2 = 25	I	52.5 ± 11.6	θ	Saliva	8.49 ± 5.11	one and six weeks. Reduction of anxiety symptoms and
	with MS.	F = 38				renexology sessions. Sr-30, QHG 28, SAI, cortisol, systolic and diastolic pressure.			systolic pressure.
		233	PPMS = 40	4.3 ± 1.6	49.5±12.7		Plasma	hg/dL*	
		M = 79	SPMS = 41	5.6±1.4	51.2 ± 10.1			23.0 ± 7	
		F = 154	RRMS = 58	1.3 ± 1.1	36.8 ± 10			18.4 ± 4.1	
			RRMS relapse = 34	; 2±1.4	37.5±8.4			18.4±5.1	Statistically higher cortisol levels in all groups with MS
Ysrraelit et 7	To investigate HPA activity in		Control = 60	ı	49.0±5.0	EDSS, BDI, HDS, MFIS. Cortisol,		24.6±5.5	patients. RRMS relapse group
	MS subgroups.					ACTH, DHEAS.	Urine	µg/24h	snowed nigner nyperactivity. There was no correlation
								348.3 ± 115.6	between fatigue and depression with cortisol levels
								271.8 ± 65.7	
								294.1 ± 7	
								441.5 ± 67.9	
	To toot if footige of Mo	38	MS with fatigue = 29	6.0 (6.5-4.0)) 50.1 ± 8.1				
Téllez et al., 2006⁴0	associated to endocrine biomarkers.	F = 25	MS without fatigue = 9	6.0 (6.0-3.5)) 45.0±7.7	FSS, cortisol, DHEAS and basal DHEA.	Serum		No differences in cortisol levels between groups.
		M = 13							
104 for cortisol ar	nalysis (17 excluded); ACTH: adreno iological Studies Depression scale	corticotropic CLIP: cortic	hormone; AUC: area otropin-like interme	a under curve; ediate lobe pe	BAI: Beck's Any eptide; CSF: cer	*104 for cortisol analysis (17 excluded); ACTH: adrenocorticotropic hormone; AUC: area under curve; BAI: Beck's Anxiety Inventory; BDI: Beck's Depression Inventory; BMI: body mass indexCAR: cortisol awakening response; CES-D: Center for Epidemiological Studies Depression scale; CLIP: corticotropin-like intermediate lobe peptide; CSF: cerebrospinal fluid; DCS: diurnal cortisol slope; DHEA: dehydroepiandrosterone; DHEAS: dehydroepiandrosterone; DHEA: dehydroepiandrosterone; DHEAS: dehydroepian	Inventory; BN 31 slope; DHE/	11: body mass indexCA A: dehydroepiandroste	R: cortisol awakening response; CES- rone; DHEAS: dehydroepiandrosteror

Table 2. Analysis of methodological quality of bias risk in the selected articles (n = 20).

Study, Year	Sample randomization	Pharmacologic Therapy	Cortisol storage time	Cortisol storage temperature	Assessment kit
Akcali et al., 2017 ⁵⁰	No	Without DMT or corticosteroids – 3 months	_	-80 °C	Electrochemiluminescence Cobas® 8000 modular system
Villoslada et al. 2017 ⁴⁹	Yes	DMT	-	-80 °C	Ultra-high pressure liquid chromatography-MS
Najafi; Moghadasi, 2017 ⁴³	Yes	Without corticosteroids – 3 months	-	-	Radioimmunoassay
Melief et al., 2016 ²⁴	No	-	-	-80 °C	Radioimmunoassay
Koutsis et al., 2016 ⁵²	No	Drug-free	3 months	-30 °C	Radioimmunoassay
Baranowska- Bik et al., 2015 ³¹	No	Naive	-	-70 °C	Radioimmunoassay
Powell et al., 2015 ²⁵	No	Without corticosteroids – 3 months	-	-20 °C	Immunoassay with fluorescent detection
Arata; Sternberg, 2016⁵¹	No	-	-	-	Electrochemiluminescence assa
Melief et al., 2013 ³⁰	No	Without corticosteroids – 8 weeks	-	-70 °C	Radioimmunoassay
Kern et al., 2013 ⁴⁵	No	Naive and DMT	-	-20 °C	Immunoluminescence assay
Wipfler et al., 2013 ⁴⁶	No	Without immunomodulatory/ immunosuppressive therapy (3/6 months)	-	-	ELISA enzymatic immunoassay
Kern et al., 2011⁵	No	Within DMT/without glucocorticoids – 4 weeks	-	-20 °C	Immunoluminescence assay
Gold et al., 2011 ³⁷	No	Without steroid/ immunosuppressive treatment - 4 weeks	-	-	Radioimmunoassay
Lombardi et al., 2011 ⁵³	No	Without corticosteroids – 2 months	-	-	Enzymatic immunoassay
Gold et al., 2010 ⁴⁷	No	Without steroids – 3 months	-	-20 °C	Competitive bonding assay
Heidbrink et al., 2010 ⁴⁸	No	Without corticosteroids, immunosuppressants or immunomodulators (3 months)	-	-80 °C	Immunoluminescent assay
Mackereth et al., 2009 ⁵⁴	Yes	-	-	-	-
Ysrraelit et al., 2008 ³²	No	No steroids, immunosuppressants or immunomodulators (> 6 months)	-	-	-
Eftekhari et al., 2014 ⁴⁴	Yes	Without corticosteroids (6 months)	_	-	-
Téllez et al., 2006 ⁴⁰	Yes	No steroids (6 months) 6-methylprednisolone (only 2 patients)	-	-80 °C	Immunoassay with chemiluminescence

C: Celsius; DMT: disease modifying treatment.

RESULTS

In the initial screening, using the above-mentioned keywords, 87 articles were found in PubMed, 149 in Web of Science and 103 in SCOPUS, 339 articles in total. Out of these, 208 articles were excluded as they were in more than one database and 97 articles did not meet the criteria, leaving 34 articles eligible for assessment. The final process of selection resulted in 20 articles being included. All the articles assessed basal cortisol levels in patients with MS, but only 13 studied the relationship of cortisol with any symptom present in the course of MS. The selection process is shown in Figure 1.

Assessment of basal cortisol levels in MS

A total of 20 articles investigated cortisol levels in basal conditions in MS (Table 1). The sample size in MS groups ranged from 24^{43,44} to 173³² individuals, and some studies included control groups without MS^{5,25,31,32,45,46,47,48,49}. According to Kurtzke's Expanded Disability Status Scale (EDSS), the

severity of disease, when assessed, ranged from 1-6.5 points, in individuals from 29–65 years old. In most of the studies (14/20), the patients had not used glucocorticoids, immunomodulators or immunosuppressors for at least one month and, in only three articles, the patients either had never been subjected to pharmacological treatment or used to receive the conventional treatment.

Generally, the studies had three types of general objectives: to verify the effect of treatment, pretreatment or posttreatment on cortisol levels, excluding articles about pharmacological/psychological induction (n = 4); to describe the relationship between cortisol and MS symptoms (n = 13) or another condition (n = 1); and to observe the HPA axis profile in patients with MS (n = 13).

The results of cortisol levels were divergent, many articles (9/20) found higher cortisol levels in MS groups^{5,25,30,31,32,37,45,47,50}, while others (4/20) showed lower levels^{30,48,51,52} or did not differentiate (3/20) from the control group or laboratory thresholds^{24,46,53}. Some articles did not classify higher or

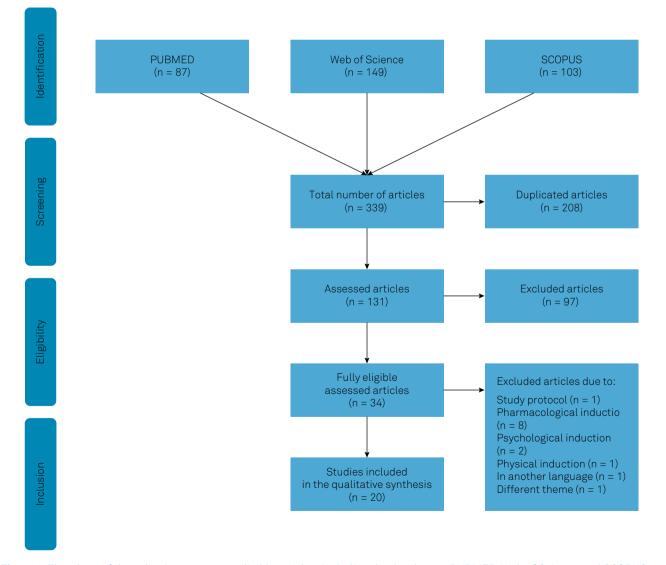
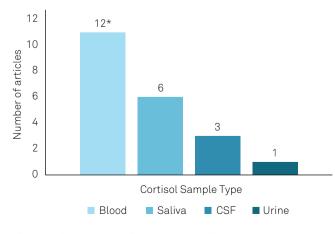


Figure 1. Flowchart of the selection process to eligible articles, including the databases: PUBMED, Web of Science and SCOPUS.

lower cortisol levels (4/20), presenting only the treatment effect^{43,44,49,54}, where there was a reduction in levels after interventions or just the relationship with the symptom $(1/20)^{40}$.

Five studies did not show a significant correlation between cortisol levels with the duration, progression or severity of MS^{5,24,32,47,52}. One study showed that the cortisol awakening response was associated with the progression of RRMS⁴⁵. There was also a study in which cortisol levels showed a trend to correlation with severity progress in their results⁴⁹. In another study, low cortisol was associated with fast progression and severity of MS³⁰.


Types of cortisol samples

Cortisol levels in the articles were assessed from blood, saliva, CSF and urine (Figure 2), while most of the studies used serum samples or blood plasma (60%; n = 12). Two articles performed double sampling of cortisol through plasma/urine³² and serum/CSF⁴⁸, the latter showing a significant difference between the sampling types (CSF: p = 0.0256; serum: p = 0.2886) in different stages of the disease. All the studies that collected saliva investigated the circadian and daytime response of cortisol. No study assessed cortisol from hair samples.

Two postmortem studies included in this review assessed cortisol from CSF and just one *in vivo* study performed this type of sampling. Storing temperature, if mentioned, ranged between -30° C and -80° C (Table 2). The most-used method of analysis was radioimmunoassay (31.6%; n = 6) and the least-used methods were the competitive binding assay (5.3%; n = 1), and the ultra-high pressure liquid chromatography with mass spectrometry (5.3%, n = 1).

Relationship between cortisol and MS symptoms

A total of 13 articles verified the relationship of cortisol levels with symptoms or comorbidities present in patients with MS^{5,25,30,31,32,37,40,45,47,50,52,53,54}. The severity of the disease ranged from 1.3–9 points on the EDSS and the age varied from

Figure 2. Distribution of articles according to cortisol sample (n = 20). *Includes articles with double sampling^{32,48}.

32–82 years old. The investigated symptoms were depression 530,32,37,45,47 , fatigue 25,32,40,50 , urinary dysfunction 52 , female sexual dysfunction 31 , anxiety 54 and obesity 31 .

The most-assessed symptom was depression and three articles found hyperactivity of the HPA axis, correlating high cortisol levels with depression^{5,37,47}. In contrast, other studies (4/20) did not find a correlation between lower³⁰ or higher^{30,32,45} cortisol levels. Next, fatigue was assessed by four articles, which verified a relationship in patients with a low cortisol awakening response²⁵, high levels of cortisol in patients with fatigue compared to controls⁵⁰ or did not observe any relationship between fatigue and cortisol^{32,40}.

One study found that there may be a reduction of anxiety symptoms associated with lower cortisol levels⁵⁴. Another study did not find a correlation between cortisol and female sexual dysfunction⁵³, however, lower cortisol levels were related to urinary symptoms in both genders⁵². Finally, overweight patients with MS showed a higher release of cortisol when compared with lean patients³².

DISCUSSION

This review included 20 articles, which assessed basal cortisol levels and verified their relationship with any type of symptoms and comorbidities (n = 13) in patients with MS. Those studies assessed cortisol through *in vivo* (18/20 studies) and postmortem (2/20 studies) samples. The most-common sample type for assessing cortisol was blood (12/20 studies). Hyperactivity of the HPA axis was observed in most studies (9/20). The most-investigated symptom was depression (6/13 studies). Among the assessed articles, only three found any correlation between cortisol and the duration and progression of MS.

The results found in the various studies in this review support the HPA axis profile in MS, through measuring released cortisol levels. Generally, in most studies, patients with MS showed higher cortisol levels, indicating hyperactivity of the HPA axis, similar to previously-found results^{26,27}. Although this impairment can be observed in many cases, its causeand-effect relationship remains unknown. However, some hypotheses point out its role in affective disorders, such as depression⁵⁵, which arises during the course of MS. Thus, depressed patients had higher levels of serum cortisol and this hyperactivity may be related to a decreased response of negative feedback mediated by endogenous glucocorticoids⁵⁶.

Alternatively, this hyperactivity of the HPA axis may be linked to the inflammatory activity that happens in active MS. During the inflammatory process, release of cytokines, such as IL-1, IL-6 and TNF α , can perform a modulatory role of the HPA axis, increasing the cortisol release⁴. Alternatively, the HPA axis hypoactivity found in some studies in this review, and decrease in cortisol levels, may be related to the suppression of corticotrophin-releasing hormone neurons that occurs in active lesion in MS¹⁸. Furthermore, applying the experimental model of autoimmune encephalomyelitis to animal models of MS has demonstrated that the severity and progression of MS is linked to HPA hyporesponsiveness^{57,58}.

Additionally, a postmortem study has shown that lower cortisol levels were associated with larger active lesions and fewer remyelinated plates in humans, while higher cortisol levels were associated with a lower number of active lesions and an increase in plate remyelination³⁰. From this perspective, hyperresponsive patients showed fewer lesions highlighted by gadolinium, suggesting a neuroprotection of acute lesions⁵⁹.

Controversially, the HPA axis hyperresponsiveness in MS may be associated with atrophy in the *cornu ammonis* and dentate gyrus in the hippocampus⁴⁷, and its relationship with symptoms found in MS^{5,31,37,47}. Besides this, patients with exacerbations of RRMS have been shown to have higher cortisol levels compared with healthy subjects⁴⁵. As well, lower cortisol levels were found during the acute relapse than in the stable stage of MS⁴⁸.

In this systematic review, many of the studies did not find any relationship between cortisol and MS duration, progression or severity; however, a remarkable number of previous studies have found a relationship between HPA dysfunction and MS progression^{18,21,29,59}. The lower cortisol levels found in this review were correlated with the progression of MS, contradicting the fact that lower levels were correlated with more brain lesions³⁰.

Although these studies preferentially collected blood serum or plasma, this type of sampling only accounts for acute levels of cortisol release, relative to urine, saliva and CSF samples. Moreover, blood and saliva samples provide a momentary profile, while urine samples refer to cortisol levels over a 24-hour period⁶⁰. However, higher cortisol levels found in studies with CSF samples might have been influenced either by the stress generated in response to lumbar puncture or, in postmortem studies, by the response of the HPA axis to the death process^{33,48}.

Cortisol responses found in these articles refer to acute measurements of the hormone. An alternative to minimizing the interference of stress responses generated by some factors in an ambulatory assessment might be a noninvasive gathering of hair samples. This type of sampling has been considered a reliable method of measuring levels months after exposure to cortisol and it is not influenced by acute stress. Also hair samples can be stored at room temperature⁶⁰.

The difference found between the blood serum sample and the CSF in the results can be explained either by the lower activation of cortisone through 11 β -hydroxysteroid dehydrogenase type 1 or by inactivation via 11 β -hydroxysteroid dehydrogenase type 2⁴⁸, or can be regulated by the efflux of cortisol from the brain, which provides a balance to cortisol levels in blood and CSF⁶¹. In contrast, the similarity in levels found between plasma and urine³² might occur as both sample types provide cortisol levels in the peripherals. Articles that described assessment characteristics and sample storage did this according to instructions provided by manufacturers of the respective commercial kits. Nevertheless, many studies did not clarify the duration of storage and did not use sample randomization, which made comparison of results among the studies and validity of processing more difficult and increased the bias risk. Similarly, the choice of an accurate and systematic recruitment in case control studies needed to be obtained in the light of data of healthy individuals and patients without MS, who presented for an investigated condition, such as depression. Furthermore, results in some articles were just described as higher or lower, without ever showing mean values found in each group.

Different symptoms are found in MS and they generally tend to worsen as the disease advances. Fatigue is the most common and debilitating symptom, present in more than 80% of the patients with MS⁶². Although it is regarded as a residual symptom of depression⁶³, the involvement of cortisol levels remains unclear²⁵. The main results encountered in this review on MS did not find any relationship between cortisol and fatigue, corroborating previous evidence that did not observe an influence of cortisol on the fatigue experienced by the patients³⁹.

Excessive cortisol in the blood has been related to mood disorders⁶⁴, such as anxiety and depression. Cortisol performs a central role at the onset and during the course of major depression disorder, where higher basal cortisol levels may be found⁶⁵. Patients with MS who had HPA axis hyperactivity may be susceptible to developing depression⁶⁶. In fact, it has been observed that symptoms of depression may precede the onset of specific neurological symptoms during the initial process of MS; however, in spite of the involvement of several epigenetic factors, the etiology of the depression is multifactorial and varies among patients⁶⁷. In this context, higher cortisol levels found in those studies in patients with MS who had anxiety and depression symptoms may have been related to a hyperresponsiveness of the HPA axis found in mood disorders. The lack of correlation with cortisol levels in some studies may have been due to the methodological design and the materials of investigation employed to classify and assess the depressive disorder.

The lower cortisol levels found in urinary dysfunction may indicate a relationship between the hormones of the HPA axis and the deficit of bladder activity inhibition⁵². Results on the relationship between higher cortisol levels and obesity are controversial, and may be justified by several confounding factors that influence cortisol concentration, such as the increase of ACTH release due to copeptin production or the metabolic activity due to the increase of adipose tissue³¹.

One of the limitations of this review is the heterogeneity of the included articles. In fact, there was wide methodological variability, including controlled and uncontrolled studies, as well as randomized and non-randomized essays. Furthermore, the low number of selected articles and the variability of the sample types may have distorted the interpretation and involvement of cortisol with symptoms in MS. Finally, this review did not include a cohort study that evaluated long-term cortisol in patients with MS, for further understanding of its involvement in the progression of the disease.

In conclusion, this systematic review included an overview of studies that investigated basal cortisol levels and symptoms in MS. The results found pointed to a cortisol level dysfunction and some involvement with symptoms, mainly depression, present in MS. Although there was a satisfactory number of studies and promising investigations on the subject, the results still did not present a consensus on the activity of the HPA axis and cortisol release in patients with MS. However, the majority of studies indicated higher cortisol levels associated with the progression and severity of MS. Differences related to the type of sample were found among both peripheral and central samples, though the number of studies was not enough to clarify the validity and differences among the sample types. The divergences found were limited to lack of methodological consistency, sample size and standardization, such as, for example, the duration of the disease and type of MS, as well as the evaluation types used in some studies. Because of this, further investigations are necessary to better understand the role of cortisol in MS, such as: (1) observation of the cortisol release in peripheral and central samples; (2) verification of the role of cortisol as a trigger for relapses and several motor, cognitive and behavioral symptoms that arise with the disease; and (3) elaboration on standardized methods that control the influence of the circadian cycle on this hormone.

References

- Altowaijri G, Fryman A, Yadav V. Dietary interventions and multiple sclerosis. Curr Neurol Neurosci Rep. 2017 Mar;17(3):28. https://doi.org/10.1007/s11910-017-0732-3
- Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012 Nov;8(11):647-56. https://doi.org/10.1038/nrneurol.2012.168
- Loma I, Heyman R. Multiple sclerosis: pathogenesis and treatment. Curr Neuropharmacol. 2011 Sep;9(3):409-16. https://doi.org/10.2174/157015911796557911
- Deckx N, Lee WP, Berneman ZN, Cools N. Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol. 2013;2013:705232. https://doi.org/10.1155/2013/705232
- Kern S, Schultheiss T, Schneider H, Schrempf W, Reichmann H, Ziemssen T. Circadian cortisol, depressive symptoms and neurological impairment in early multiple sclerosis. Psychoneuroendocrinology. 2011 Nov;36(10):1505-12. https://doi.org/10.1016/j.psyneuen.2011.04.004
- Ortiz P, Bareno J, Cabrera L, Rueda K, Rovira A. [Magnetic resonance imaging with gadolinium in the acute phase of relapses in multiple sclerosis]. Rev Neurol. 2017 Mar;64(6):241-6. Spanish.
- Sakai RE, Feller DJ, Galetta KM, Galetta SL, Balcer LJ. Vision in multiple sclerosis: the story, structure-function correlations, and models for neuroprotection. J Neuroophthalmol. 2011 Dec;31(4):362-73. https://doi.org/10.1097/WN0.0b013e318238937f
- Pilutti LA, Greenlee TA, Motl RW, Nickrent MS, Petruzzello SJ. Effects of exercise training on fatigue in multiple sclerosis: a meta-analysis. Psychosom Med. 2013 Jul-Aug;75(6):575-80. https://doi.org/10.1097/PSY.0b013e31829b4525
- Gunn H, Markevics S, Haas B, Marsden J, Freeman J. Systematic review: the effectiveness of interventions to reduce falls and improve balance in adults with multiple sclerosis. Arch Phys Med Rehabil. 2015 Oct;96(10):1898-912. https://doi.org/10.1016/j.apmr.2015.05.018
- Phé V, Chartier-Kastler E, Panicker JN. Management of neurogenic bladder in patients with multiple sclerosis. Nat Rev Urol. 2016 May;13(5):275-88. https://doi.org/10.1038/nrurol.2016.53
- Pearson M, Dieberg G, Smart N. Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: a meta-analysis. Arch Phys Med Rehabil. 2015 Jul;96(7):1339-1348.e7. https://doi.org/10.1016/j.apmr.2015.02.011
- Coric D, Balk LJ, Verrijp M, Eijlers A, Schoonheim MM, Killestein J, et al. Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Mult Scler. 2018 Feb;24(2):158-66. https://doi.org/10.1177/1352458517694090

- Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008 Mar;7(3):268-77. https://doi.org/10.1016/S1474-4422(08)70042-5
- Kümpfel T, Schwan M, Weber F, Holsboer F, Trenkwalder C, Then Bergh F. Hypothalamo-pituitary-adrenal axis activity evolves differentially in untreated versus treated multiple sclerosis. Psychoneuroendocrinology. 2014 Jul;45:87-95. https://doi.org/10.1016/j.psyneuen.2014.03.012
- Lassmann H, Brück W, Lucchinetti C. Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med. 2001 Mar;7(3):115-21. https://doi.org/10.1016/S1471-4914(00)01909-2
- Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol. 2008 Mar-Apr;252(1-2):1-6. https://doi.org/10.1016/j.cellimm.2008.05.006
- 17. Eskandari F, Webster JI, Sternberg EM. Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther. 2003;5(6):251-65. https://doi.org/10.1186/ar1002
- Huitinga I, Erkut ZA, Beurden D, Swaab DF. Impaired hypothalamuspituitary-adrenal axis activity and more severe multiple sclerosis with hypothalamic lesions. Ann Neurol. 2004 Jan;55(1):37-45. https://doi.org/10.1002/ana.10766
- Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998 Jun;94(6):557-72. https://doi.org/10.1042/cs0940557
- Bellavance MA, Rivest S. The HPA: immune Axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol. 2014 Mar;5:136. https://doi.org/10.3389/fimmu.2014.00136
- Gold SM, Raji A, Huitinga I, Wiedemann K, Schulz KH, Heesen C. Hypothalamo-pituitary-adrenal axis activity predicts disease progression in multiple sclerosis. J Neuroimmunol. 2005 Aug;165 (1-2): 186-91. https://doi.org/10.1016/j.jneuroim.2005.04.014
- Heesen C, Gold SM, Huitinga I, Reul JM. Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis - a review. Psychoneuroendocrinology. 2007 Jul;32(6):604-18. https://doi.org/10.1016/j.psyneuen.2007.05.002
- Gold SM, Heesen C. Stress and disease progression in multiple sclerosis and its animal models. Neuroimmunomodulation. 2006;13(5-6):318-26. https://doi.org/10.1159/000104860
- Melief J, Koper JW, Endert E, Møller HJ, Hamann J, Uitdehaag BM et al. Glucocorticoid receptor haplotypes conferring increased sensitivity (Bcll and N363S) are associated with faster progression of multiple sclerosis. J Neuroimmunol. 2016 Oct;299:84-9. https://doi.org/10.1016/j.jneuroim.2016.08.019

- Powell DJ, Moss-Morris R, Liossi C, Schlotz W. Circadian cortisol and fatigue severity in relapsing-remitting multiple sclerosis. Psychoneuroendocrinology. 2015 Jun;56:120-31. https://doi.org/10.1016/j.psyneuen.2015.03.010
- Grasser A, Möller A, Backmund H, Yassouridis A, Holsboer F. Heterogeneity of hypothalamic-pituitary-adrenal system response to a combined dexamethasone-CRH test in multiple sclerosis. Exp Clin Endocrinol Diabetes. 1996;104(1):31-7. https://doi.org/10.1055/s-0029-1211419
- Then Bergh F, Kümpfel T, Trenkwalder C, Rupprecht R, Holsboer F. Dysregulation of the hypothalamo-pituitary-adrenal axis is related to the clinical course of MS. Neurology. 1999 Sep;53(4):772-7. https://doi.org/10.1212/WNL.53.4.772
- Heesen C, Gold SM, Raji A, Wiedemann K, Schulz KH. Cognitive impairment correlates with hypothalamo-pituitary-adrenal axis dysregulation in multiple sclerosis. Psychoneuroendocrinology. 2002 May;27(4):505-17. https://doi.org/10.1016/S0306-4530(01)00071-3
- Fassbender K, Schmidt R, Mössner R, Kischka U, Kühnen J, Schwartz A et al. Mood disorders and dysfunction of the hypothalamicpituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol. 1998 Jan;55(1):66-72. https://doi.org/10.1001/archneur.55.1.66
- Melief J, Wit SJ, Eden CG, Teunissen C, Hamann J, Uitdehaag BM et al. HPA axis activity in multiple sclerosis correlates with disease severity, lesion type and gene expression in normalappearing white matter. Acta Neuropathol. 2013 Aug;126(2):237-49. https://doi.org/10.1007/s00401-013-1140-7
- Baranowska-Bik A, Kochanowski J, Uchman D, Litwiniuk A, Kalisz M, Martynska L et al. Association of copeptin and cortisol in newly diagnosed multiple sclerosis patients. J Neuroimmunol. 2015 May;282:21-4. https://doi.org/10.1016/j.jneuroim.2015.03.011
- Ysrraelit MC, Gaitán MI, Lopez AS, Correale J. Impaired hypothalamic-pituitary-adrenal axis activity in patients with multiple sclerosis. Neurology. 2008 Dec;71(24):1948-54. https://doi.org/10.1212/01.wnl.0000336918.32695.6b
- Erkut ZA, Endert E, Huitinga I, Swaab DF. Cortisol is increased in postmortem cerebrospinal fluid of multiple sclerosis patients: relationship with cytokines and sepsis. Mult Scler. 2002 May;8(3):229-36. https://doi.org/10.1191/1352458502ms797oa
- Thompson SB, Daly S, Le Blanche A, Abidi M, Belkhira C, Marco G. fMRI randomized study of mental and motor task performance and cortisol levels to potentiate cortisol as a new diagnostic biomarker. J Neurol Neurosci. 2016;7(2):92. https://doi.org/10.21767/2171-6625.100092
- 35. Schapiro R. The pathophysiology of MS-related fatigue: what is the role of wake promotion? Int J MS Care. 2002;(suppl):6-8.
- Chiaravalloti ND, DeLuca J. Cognitive impairment in multiple sclerosis. Lancet Neurol. 2008 Dec;7(12):1139-51. https://doi.org/10.1016/S1474-4422(08)70259-X
- Gold SM, Krüger S, Ziegler KJ, Krieger T, Schulz KH, Otte C et al. Endocrine and immune substrates of depressive symptoms and fatigue in multiple sclerosis patients with comorbid major depression. J Neurol Neurosurg Psychiatry. 2011 Jul;82(7):814-8. https://doi.org/10.1136/jnnp.2010.230029
- Heesen C, Nawrath L, Reich C, Bauer N, Schulz KH, Gold SM. Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry. 2006 Jan;77(1):34-9. https://doi.org/10.1136/jnnp.2005.065805
- Gottschalk M, Kümpfel T, Flachenecker P, Uhr M, Trenkwalder C, Holsboer F et al. Fatigue and regulation of the hypothalamopituitary-adrenal axis in multiple sclerosis. Arch Neurol. 2005 Feb;62(2):277-80. https://doi.org/10.1001/archneur.62.2.277
- Téllez N, Comabella M, Julià E, Río J, Tintoré M, Brieva L, et al. Fatigue in progressive multiple sclerosis is associated with low levels of dehydroepiandrosterone. Mult Scler. 2006;12(4):487-94. https://doi.org/10.1191/135248505ms1322oa

- Heesen C, Schulz KH, Fiehler J, Von der Mark U, Otte C, Jung R et al. Correlates of cognitive dysfunction in multiple sclerosis. Brain Behav Immun. 2010 Oct;24(7):1148-55. https://doi.org/10.1016/j.bbi.2010.05.006
- 42. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009 Aug;151(4):W65-94. https://doi.org/10.7326/0003-4819-151-4-200908180-00136
- Najafi P, Moghadasi M. The effect of yoga training on enhancement of Adrenocorticotropic hormone (ACTH) and cortisol levels in female patients with multiple sclerosis. Complement Ther Clin Pract. 2017 Feb;26:21-5. https://doi.org/10.1016/j.ctcp.2016.11.006
- Eftekhari E, Etemadifar M, Mostahfezian M, Zafari A. Effects of resistance training and vibration on hormonal changes in female patients with multiple sclerosis. Neurol Asia. 2014;19:63-7.
- Kern S, Krause I, Horntrich A, Thomas K, Aderhold J, Ziemssen T. Cortisol awakening response is linked to disease course and progression in multiple sclerosis. PLoS One. 2013 Apr;8(4):e60647. https://doi.org/10.1371/journal.pone.0060647
- 46. Wipfler P, Heikkinen A, Harrer A, Pilz G, Kunz A, Golaszewski SM et al. Circadian rhythmicity of inflammatory serum parameters: a neglected issue in the search of biomarkers in multiple sclerosis. J Neurol. 2013 Jan;260(1):221-7. https://doi.org/10.1007/s00415-012-6622-3
- Gold SM, Kern KC, O'Connor MF, Montag MJ, Kim A, Yoo YS et al. Smaller cornu ammonis 2-3/dentate gyrus volumes and elevated cortisol in multiple sclerosis patients with depressive symptoms. Biol Psychiatry. 2010 Sep;68(6):553-9. https://doi.org/10.1016/j.biopsych.2010.04.025
- Heidbrink C, Häusler SF, Buttmann M, Ossadnik M, Strik HM, Keller A et al. Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: implications for lesion pathogenesis. Brain Behav Immun. 2010 Aug;24(6):975-84. https://doi.org/10.1016/j.bbi.2010.04.003
- Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017 Jan;4(2):e321. https://doi.org/10.1212/NXI.00000000000321
- Akcali A, Zengin F, Aksoy SN, Zengin O. Fatigue in Multiple Sclerosis: is it related to cytokines and hypothalamic-pituitaryadrenal axis? Mult Scler Relat Disord. 2017 Jul;15:37-41. https://doi.org/10.1016/j.msard.2017.03.004
- Arata M, Sternberg Z. Neuroendocrine responses to transvascular autonomic modulation: a modified balloon angioplasty in multiple sclerosis patients. Horm Metab Res. 2016 Feb;48(2):123-9. https://doi.org/10.1055/s-0035-1547235
- Koutsis G, Evangelopoulos ME, Sfagos C, Markianos M. Neurochemical and neuroendocrine correlates of overactive bladder at first demyelinating episode. Neurourol Urodyn. 2016 Nov;35(8):955-8. https://doi.org/10.1002/nau.22834
- Lombardi G, Celso M, Bartelli M, Cilotti A, Del Popolo G. Female sexual dysfunction and hormonal status in multiple sclerosis patients. J Sex Med. 2011 Apr;8(4):1138-46. https://doi.org/10.1111/j.1743-6109.2010.02161.x
- Mackereth PA, Booth K, Hillier VF, Caress AL. Reflexology and progressive muscle relaxation training for people with multiple sclerosis: a crossover trial. Complement Ther Clin Pract. 2009 Feb;15(1):14-21. https://doi.org/10.1016/j.ctcp.2008.07.002
- 55. Lobentanz IS, Asenbaum S, Vass K, Sauter C, Klösch G, Kollegger H et al. Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol Scand. 2004 Jul;110(1):6-13. https://doi.org/10.1111/j.1600-0404.2004.00257.x
- Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008 Sep;31(9):464-8. https://doi.org/10.1016/j.tins.2008.06.006

- 57. Harbuz MS, Leonard JP, Lightman SL, Cuzner ML. Changes in hypothalamic corticotrophin-releasing factor and anterior pituitary pro-opiomelanocortin mRNA during the course of experimental allergic encephalomyelitis. J Neuroimmunol. 1993 Jun;45(1-2):127-32. https://doi.org/10.1016/0165-5728(93)90172-U
- Stefferl A, Storch MK, Linington C, Stadelmann C, Lassmann H, Pohl T et al. Disease progression in chronic relapsing experimental allergic encephalomyelitis is associated with reduced inflammationdriven production of corticosterone. Endocrinology. 2001 Aug;142(8):3616-24. https://doi.org/10.1210/endo.142.8.8292
- Schumann EM, Kümpfel T, Then Bergh F, Trenkwalder C, Holsboer F, Auer DP. Activity of the hypothalamic-pituitary-adrenal axis in multiple sclerosis: correlations with gadolinium-enhancing lesions and ventricular volume. Ann Neurol. 2002 Jun;51(6):763-7.
- Sauvé B, Koren G, Walsh G, Tokmakejian S, Van Uum SH. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30(5):E183-91. https://doi.org/10.25011/cim.v30i5.2894
- 61. Uhr M, Holsboer F, Müller MB. Penetration of endogenous steroid hormones corticosterone, cortisol, aldosterone and progesterone into the brain is enhanced in mice deficient for both mdr1a and mdr1b P-glycoproteins. J Neuroendocrinol. 2002 Sep;14(9):753-9. https://doi.org/10.1046/j.1365-2826.2002.00836.x

- Minden SL, Frankel D, Hadden L, Perloffp J, Srinath KP, Hoaglin DC. The Sonya Slifka longitudinal multiple sclerosis study: methods and sample characteristics. Mult Scler. 2006 Feb;12(1):24-38. https://doi.org/10.1191/135248506ms12620a
- 63. Targum SD, Fava M. Fatigue as a residual symptom of depression. Innov Clin Neurosci. 2011 Oct;8(10):40-3.
- Asnis GM, Sachar EJ, Halbreich U, Nathan RS, Ostrow L, Halpern FS. Cortisol secretion and dexamethasone response in depression. Am J Psychiatry. 1981 Sep;138(9):1218-21. https://doi.org/10.1176/ajp.138.9.1218
- 65. Herbert J. Cortisol and depression: three questions for psychiatry. Psychol Med. 2013 Mar;43(3):449-69. https://doi.org/10.1017/S0033291712000955
- 66. Pucak ML, Carroll KA, Kerr DA, Kaplin AI. Neuropsychiatric manifestations of depression in multiple sclerosis: neuroinflammatory, neuroendocrine, and neurotrophic mechanisms in the pathogenesis of immune-mediated depression. Dialogues Clin Neurosci. 2007;9(2):125-39.
- Vattakatuchery JJ, Rickards H, Cavanna AE. Pathogenic mechanisms of depression in multiple sclerosis. J Neuropsychiatry Clin Neurosci. 2011;23(3):261-76. https://doi.org/10.1176/jnp.23.3.jnp261