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ABSTRACT 
Background: The cuneiform nucleus is located in the center of the circuit that mediates autonomic responses to stress. 
Hemorrhagic  hypotension leads to chemoreceptor anoxia, which consequently results in the reduction of baroreceptor discharge 
and stimulation of the chemoreceptor. Objective: Using the single-unit recording technique, the neuronal activities of the cuneiform 
nucleus were investigated in hypotensive states induced by hemorrhage and administration of an anti-hypertensive drug (hydralazine). 
Methods:  Thirty male rats were divided into the control, hemorrhage, and hydralazine groups. The femoral artery was cannulated for 
the recording of cardiovascular responses, including systolic blood pressure, mean arterial pressure, and heart rate. Hydralazine was 
administered via tail vein. The single-unit recording was performed from the cuneiform nucleus. Results: The maximal systolic blood 
pressure and the mean arterial pressure significantly decreased and heart rate significantly increased after the application of hydralazine 
as well as the following hemorrhage compared to the control group. Hypotension significantly increased the firing rate of the cuneiform 
nucleus in both the hemorrhage and hydralazine groups compared to the control group. Conclusions: The present data indicate that the 
cuneiform nucleus activities following hypotension may play a crucial role in blood vessels and vasomotor tone.  
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RESUMO 
Antecedentes: O núcleo cuneiforme está localizado no centro do circuito que media as respostas autonômicas ao estresse. A hipotensão 
hemorrágica leva à anóxia dos quimiorreceptores, que, consequentemente, resulta na redução da descarga dos barorreceptores e estimulação 
do quimiorreceptor. Objetivo: Utilizando a técnica de registro em unidade única, as atividades neuronais do núcleo cuneiforme foram 
investigadas em estados de hipotensão induzida por hemorragia e administração de um anti-hipertensivo (hidralazina). Métodos: Trinta 
ratos machos foram divididos nos grupos controle, hemorragia e hidralazina. A artéria femoral foi canulada, para o registro de respostas 
cardiovasculares, incluindo pressão arterial sistólica, pressão arterial média e frequência cardíaca. A hidralazina foi administrada na 
veia da cauda. O registro de unidade única foi realizado a partir do núcleo cuneiforme. Resultados: A pressão arterial sistólica máxima 
e a pressão arterial média diminuíram significativamente, e a frequência cardíaca aumentou significativamente após a aplicação de 
hidralazina, bem como a hemorragia seguinte, em comparação com o grupo controle. A hipotensão aumentou significativamente a taxa de 
disparo da população do núcleo cuneiforme em ambos os grupos de hemorragia e hidralazina, em comparação com o grupo de controle. 
Conclusões: Os presentes dados indicam que as atividades do núcleo cuneiforme após hipotensão podem desempenhar um papel crucial 
nos vasos sanguíneos e no tônus ​​vasomotor.

Palavras-chave: Hemorragia; Pressão Sanguínea; Sistema Cardiovascular; Hidralazina; Eletrofisiologia.
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INTRODUCTION

The central nervous system plays a central role in regu-
lating hypotension during hypovolemia and non-hypovo-
lemic hypotension. Baroreceptors and chemoreceptors are 
activated by low blood pressure1. This afferent information is 
transmitted by carotid receptors (chemo- and baroreceptors) 
to the nucleus of the solitary tract (NTS)2. Thereafter,  sig-
nals from the nucleus tractus solitarius (NTS) project to 
several brain areas that are involved in cardiovascular reg-
ulation, such as the caudal ventrolateral medulla (CVLM),  
paraventricular nucleus (PVN), and the rostral ventrolateral 
medulla (RVLM)2, to restore blood pressure to normal range. 
Despite intensive investigations, the exact modulatory mech-
anism of different brain regions during hypotension needs to 
be elucidated. 

The cuneiform nucleus (CnF), a reticular nucleus of 
the midbrain, is a mesencephalic area implicated in sev-
eral functions, including regulation of the cardiovascular 
system, pain modulation, sleep, and movement3. The CnF 
is reciprocally connected to different brain areas involved 
in the regulation of the cardiovascular system, such as the 
Kolliker-Fuse nucleus (KF), the periaqueductal gray mat-
ter (PAG), the NTS, the locus coeruleus, the raphe nucleus, 
the lateral hypothalamus, PVN, and the RVLM4. The CnF 
is located in the center of a circuit that mediates auto-
nomic responses related to stress. This circuit has two 
parts: a sympathetic part that increases the blood pres-
sure and a parasympathetic part that decreases the heart 
rate5. However, it is reported that the most effective area 
of the CnF is the sympathoexcitatory area, through which 
electrical or chemical stimulation increases the arterial 
blood pressure6. 

Hypotension disrupts blood supply to the tissues, which 
may lead to tissue hypoxia7. Hypovolemic (hemorrhage) and 
non-hypovolemic (heart failure, sepsis, and drug-induced 
vasodilation) factors are common causes of severe hypoten-
sion8. Several brain areas such as the preoptic area, PVN, and 
RVLM are involved in the regulation of the cardiovascular 
system during hypotension. In addition, the CnF might also 
be involved in this process. It has been reported that hemor-
rhage increases expression of C-fos in the CnF, as well as the 
functional interconnection between the CnF and PVN and 
NTS areas that are involved in hypotension9. Furthermore, 
the glutamatergic, cholinergic, serotonergic, and opioider-
gic pathways that are involved in hypotension are found 
in the CnF4,10,11,12,13,14. However,  the exact mechanism of the 
CnF action during hypotension and whether this nucleus is 
involved in hypovolemic (induced by hemorrhage) or non-
hypovolemic (induced by hydralazine, a vasodilator drug) 
hypotension is still not elucidated. Therefore, the present 
study aimed to investigate blood pressure response and neu-
ronal activities of the CnF following hypovolemic and non-
hypovolemic hypotension in rats.

METHODS

Animals and surgery
Thirty Wistar rats (220–250  g) were provided from 

the animal house of the Faculty of Medicine of Mashhad. 
Animals were kept in a 12-h light-dark cycle, constant tem-
perature (22±2°C), and were allowed free access to stan-
dard laboratory diet and water. Experiments were approved 
by the Ethics Committee of Mashhad University of Medical 
Sciences. Animals were anesthetized with urethane (1.5 g/kg, 
i.p.; Sigma, USA) and supplementary doses (0.7  g/kg) were 
given if necessary15. The body temperature of the animal was 
maintained at 37°C with a thermostatically controlled heat-
ing lamp. A polyethylene catheter (PE-50) was inserted into 
the femoral artery for blood pressure recording by the Power 
Lab instrument15. Animals were secured on stereotaxic appa-
ratus and a hole was drilled above the CnF region according 
to the coordinates of  the Paxinos atlas  (Anterior-posterior; 
-7.6 to -8.5, Lateral; 1.7 to 2.2 and Height; -5.5 to -6.216. 

Recordings of cardiovascular and neuronal activities
Blood pressure (BP) and heart rate (HR) were continuously 

recorded by an MLT844 pressure transducer coupled to a pre-
amplifier (FE221 Bridge amplifier, AD instruments, AU) con-
nected to a Power Lab 4/35 data acquisition system (model 
PL3504 AD instruments, AU). The animals were mounted on 
the stereotaxic apparatus and a microdrive was used for posi-
tioning and lowering the electrode into the CnF. The electrode 
slowly lowered (2 μm/sec) under continuous recording of neu-
ronal signals until an active neuron was isolated. Administration 
of hydralazine or the induction of hemorrhage was done for a 
15-min session and the spike firing rate was recorded for a subse-
quent period of 30 min. The recordings were filtered between 300 
and 3k Hz with a resolution of 24 bits/SPS and analyzed in offline 
mode. Spike sorting and clustering was performed using the e-lab 
software. Spike sorting and peri-stimulus time histograms (the 
number of spikes per discrete time; PSTH) were built using com-
patible E sorter software. After determining the appropriate gain 
in raw data in the offline sorter, the number of clusters between 4 
to 8 in the whole session (1800 seconds) was measured.

Experimental design
The male Wistar rats (n=30) were randomly divided into three 

groups; (i) control group that received saline (i.v); (ii) hydralazine 
group that received hydralazine (200 μg/kg, i.v; Sobhan Daru, 
Iran), and (iii) hemorrhage group, which bleeding was performed 
from the tail vein. The application of saline or hydralazine, as well 
as the bleeding from the tail vein, was performed after stable 
recordings of both blood pressure and spike activity of the CnF. 
Hydralazine  and saline were injected into the systemic blood 
flow via tail vein. Hypotension was induced by bleeding from the 
tail vein to reach a 40-50 mmHg decrease in mean arterial pres-
sure (MAP). Evaluation of cardiovascular parameters and single 
unite recordings were performed for 1,800 seconds (Figure 1). 
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At the end of each experiment, the animal was sacrificed by a 
high dose of urethane. The brain was then removed and stored 
in 10% formalin for 24 h. The electrode sites were determined 
according to a rat brain atlas under a light microscope16.

Data analysis
MAP and HR values were expressed as mean ±SEM. The 

cardiovascular response and the neuronal firing patterns for 
each injection were aligned and compared with the control. 
The maximum changes of systolic blood pressure (SBP), MAP, 
and HR and firing rate of neurons were compared with those 
of the pre-injection and the control values by one way ANOVA 
followed by Tukey post-hoc test. P<0.05 was used to indicate 
statistical significance. Correlation between variables in each 
group was assessed by the Pearson test in Statistical Package 
for the Social Sciences (SPSS) v11.5.

RESULTS

Cardiovascular parameters
A significant difference was observed in HR (p<0.001), 

SBP (p<0.001), and MAP (p<0.001) between the control, 
hydralazine, and hemorrhage groups. The results showed 
that in the hydralazine group, the maximal changes of 
SBP (-35.5±1.8 vs -1.5±2.2; p<0.001) and MAP (-28.2±1.7 vs 
-1.1±1.9; p<0.001) were significantly lower and the alteration 
of HR (58.3±10.5 vs 3.2±5.6; p<0.01) was significantly higher 
compared with the control group. Furthermore, the changes 
of SBP (-40.6±3.7 vs -1.5±2.2 in the control group; p<0.001) 
and MAP (-30.5±3.3 vs -1.1± 1.9; p<0.001) in the hemorrhage 
group were significantly lower, and the alterations of HR were 
significantly higher (65.4± 17.4 vs 3.2± 5.6; p<0.01) compared 
with the control group (Figures 2 and 3).

Figure 1. Diagram of the experimental design.

Figure 2. Representative recording of cardiovascular parameters (1, 2, 3) and neural discharge (4, 5) after injection of saline (A), 
injection of hydralazine (B), and hemorrhage (C).
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Figure 3. The spike rate and cardiovascular parameters analysis was performed from the Cuneiform nucleus in different 
experimental groups. Data represent BIN size spike rate (count/time) in the control, hemorrhage, and hydralazine groups (A, B, 
C). A paired t-test was used for statistical analysis. ***p<0.01 indicates differences between before (A) and after (B) induction in 
each group. A comparison of the mean spike rate per BIN between different groups was measured before and after hypotension 
induction (C) (n=5/each group). The data is expressed as mean±SEM. One-way ANOVA was used for statistical analysis. 
***p<0.001 indicates significant differences with the control group. Effects of hydralazine and hemorrhage on maximal change (Δ) 
of SBP (D), MAP (E), and HR (F) in anesthetized rats (n=5/each group) are shown. The data were compared with the control group 
and presented as mean±SEM. One-way ANOVA was used for statistical analysis. ***p<0.001 indicates significant differences with 
the control group.  
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Single unit recording
No significant differences in the CnF firing rate were 

observed between different groups before the induction of hypo-
tension. After the induction of hypotension by hemorrhage or 
hydralazine, a significant increase in the firing rate was observed 
(p<0.001). Furthermore, a significant enhancement of PSTH was 
recorded after the induction of hypotension (p<0.01). The analy-
sis of the amplitude changes and the repetition rate of the pop-
ulation firing showed a significant enhancement of more than 
20% in the hemorrhage and hydralazine groups after the induc-
tion of hypotension (Figures 2, 3, and 4). However, there was no 
significant correlation between the changes in the cardiovascu-
lar parameters and neural firing pattern.

The linear regression analysis showed that the firing rate 
was significantly correlated with increased time in the hem-
orrhagic and hydralazine groups but was stable in the con-
trol. ((Control: Slope=0.1130, F: 1.273, p=0.2612 deviation 
from zero); (Hemorrhage: Slope=4.429, F: 258.9, p<0.0001); 
(Hydralazine: Slope=4.171, F: 292.1, p<0.0001)) (Figure 5).

Correlation
The Pearson test showed a non-significant correlation 

between cardiovascular parameters and neural frequency 
(Table 1).

Figure 6 shows the electrode sites determined according 
to a rat brain atlas.

Figure 4. Pre-stimulus time histogram (BIN size=90 seconds 
recorded by “eLAB C apparatus Science Beam. Co.”) in 
the control, hemorrhage, and hydralazine groups showed 
a significant increase in firing rates after induction of 
hemorrhage or injection of hydralazine.

Figure 5. The linear regression of control vs hemorrhagic and 
hydralazine groups (Control vs hemorrhage 0.1130/4.429 (A) 
and control vs hydralazine 0.1130/4.171) (B).  

Table 1. Correlation between cardiovascular parameters and 
neural frequency. 

HR SBP MAP Frequency

HR

Pearson 
correlation

1 -0.970 -0.978 0.763

p-value 0.156 0.134 0.448

SBP

Pearson 
correlation

-0.970 1 0.999 -0.897

p-value 0.156 0.022* 0.291

MAP

Pearson 
correlation

-0.978 0.999* 1 -0.881

p-value 0.134 0.022 0.314

Frequency

Pearson 
correlation

0.763 -0.897 -0.881 1

p-value 0.448 0.291 0.314

*Correlation is significant at the 0.05 level (2-tailed p value). HR: heart rate, 
SBP: systolic blood pressure, MAP: mean arterial pressure.
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Figure 6. Schematic section of the rat brain adapted from Paxinos and Watson atlas. The electrode sites in the CnF are shown: 
green points are adequate and red points are out of range.

DISCUSSION

In this study, we used the single-unit electrophysiological 
recording to evaluate responses of the CnF neurons in hypo-
tension induced by hypovolemic hemorrhage and non-hypo-
volemic (hydralazine) conditions. Our results showed that 
the firing rate of the CnF neurons increased in both condi-
tions, which confirms the role of this nucleus in cardiovas-
cular regulation. In previous studies, the modulatory effect 
of the CnF on the cardiovascular system in normotensive 
rats has evaluated13,14. Shafei et  al. have shown that micro-
injection of glutamate into the CnF increased BP and that 

the cholinergic system has an inhibitory effect on the cardio-
vascular system11. In addition, it has been reported that CnF 
do not project directly to the spinal cord or areas involved 
in cardiovascular regulation specially RVLM and that these 
projections are mediated via areas such as KF and dlPAG. In 
line with these results, Nasimi et.al in an electrophysiological 
study in normotensive rats indicated that chemical stimula-
tion of the CnF produces several patterns of neural activity 
and these responses correlate with various blood pressure 
responses4. Activation of the CnF neurons during hypoten-
sion in this study correlated with neural activity and blood 
pressure but not significantly. The reasons for this are not 
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