Acessibilidade / Reportar erro

Maternal obesity and ovarian failure: is leptin the culprit?

Abstract

At the time of its discovery and characterization in 1994, leptin was mostly considered a metabolic hormone able to regulate body weight and energy homeostasis. However, in recent years, a great deal of literature has revealed leptin’s pleiotropic nature, through its involvement in numerous physiological contexts including the regulation of the female reproductive tract and ovarian function. Obesity has been largely associated with infertility, and leptin signalling is known to be dysregulated in the ovaries of obese females. Hence, the disruption of ovarian leptin signalling was shown to contribute to the pathophysiology of ovarian failure in obese females, affecting transcriptional programmes in the gamete and somatic cells. This review attempts to uncover the underlying mechanisms contributing to female infertility associated with obesity, as well as to shed light on the role of leptin in the metabolic dysregulation within the follicle, the effects on the oocyte epigenome, and the potential long-term consequence to embryo programming.

Keywords:
maternal obesity; leptin; oocyte quality; epigenetics; ovarian leptin resistance

Introduction

Obesity is a complex and progressive disease, well known for its ability to result in a wide spectrum of debilitating co-morbidities, including metabolic disease, type 2 diabetes, cardiovascular disease (Hruby and Hu, 2015Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics. 2015;33(7):673-89. http://dx.doi.org/10.1007/s40273-014-0243-x. PMid:25471927.
http://dx.doi.org/10.1007/s40273-014-024...
), various types of endometrial, breast, or colon cancer (Dağ and Dilbaz, 2015Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16(2):111-7. http://dx.doi.org/10.5152/jtgga.2015.15232. PMid:26097395.
http://dx.doi.org/10.5152/jtgga.2015.152...
), and reproductive disorders (Kyrou et al., 2018Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. Clinical problems caused by obesity. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, Herder WW, Dhatariya K, Hofland J, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth: MDText.com; 2018 [cited 2023 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278973/
https://www.ncbi.nlm.nih.gov/books/NBK27...
). Infertility is recurrently observed in obese women of reproductive age, who usually present menstrual disorders and anovulatory cycles, lower implantation and pregnancy rates, as well as failed assisted reproductive interventions (Dağ and Dilbaz, 2015Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16(2):111-7. http://dx.doi.org/10.5152/jtgga.2015.15232. PMid:26097395.
http://dx.doi.org/10.5152/jtgga.2015.152...
). Infertility is, therefore, a prominent co-morbidity of obesity, the aetiology of which remains largely understudied. The impairment of reproductive function in obese females occurs at both central and peripheric levels and can affect either the ovaries or the endometrium (Bellver et al., 2007Bellver J, Melo MAB, Bosch E, Serra V, Remohí J, Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril. 2007;88(2):446-51. http://dx.doi.org/10.1016/j.fertnstert.2006.11.162. PMid:17418840.
http://dx.doi.org/10.1016/j.fertnstert.2...
). Literature comprehensively characterises the major readouts associated with ovarian pathology and failure in obese women, which comprise an excessive accumulation of lipids or lipotoxicity in various ovarian components (Wu et al., 2010Wu LLY, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438-45. http://dx.doi.org/10.1210/en.2010-0551. PMid:20861227.
http://dx.doi.org/10.1210/en.2010-0551...
), increased endoplasmic reticulum stress and apoptosis (Yang et al., 2012Yang X, Wu LL, Chura LR, Liang X, Lane M, Norman RJ, Robker RL. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril. 2012;97(6):1438-43. http://dx.doi.org/10.1016/j.fertnstert.2012.02.034. PMid:22440252.
http://dx.doi.org/10.1016/j.fertnstert.2...
), increased inflammation (Robker et al., 2011Robker RL, Wu LLY, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88(2):142-8. http://dx.doi.org/10.1016/j.jri.2011.01.008. PMid:21333359.
http://dx.doi.org/10.1016/j.jri.2011.01....
), altered mitochondrial function and oxidative stress (Igosheva et al., 2010Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074. http://dx.doi.org/10.1371/journal.pone.0010074. PMid:20404917.
http://dx.doi.org/10.1371/journal.pone.0...
). Thus, the aforementioned features invariably lead to impaired ovulation and reduced oocyte developmental competence (Robker et al., 2009Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94(5):1533-40. http://dx.doi.org/10.1210/jc.2008-2648.
http://dx.doi.org/10.1210/jc.2008-2648...
). Overall, obesity poses a clear threat to ovarian function and the quality of the growing gamete; nonetheless, we lack mechanistic insights and understanding of the molecular mechanisms underpinning such detrimental effects at various cellular levels.

The deleterious effects of obesity result from a major endocrine imbalance that follows the expansion of fat stores. Amongst several hormones being dysregulated in the course of obesity, leptin, a key bioactive peptide largely secreted from the white adipose tissue (adipokine) (Friedman and Halaas, 1998Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763-70. http://dx.doi.org/10.1038/27376. PMid:9796811.
http://dx.doi.org/10.1038/27376...
), has a strong association with both obesity and reproduction (Tong and Xu, 2012Tong Q, Xu Y. Central Leptin Regulation of Obesity and Fertility. Curr Obes Rep. 2012;1(4):236-44. http://dx.doi.org/10.1007/s13679-012-0025-8. PMid:23243628.
http://dx.doi.org/10.1007/s13679-012-002...
). In fact, mice with a homozygous mutation for the leptin-producing gene ob (obese gene), were shown to develop both obesity and infertility (Zhang et al., 1994Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-32. http://dx.doi.org/10.1038/372425a0. PMid:7984236.
http://dx.doi.org/10.1038/372425a0...
). Leptin concentrations rise rapidly in circulation in obese specimens, since leptin circulating levels are positively correlated with body fat mass (Considine et al., 1996Considine R, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292-5. http://dx.doi.org/10.1056/NEJM199602013340503. PMid:8532024.
http://dx.doi.org/10.1056/NEJM1996020133...
; Maffei et al., 1995Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155-61. http://dx.doi.org/10.1038/nm1195-1155. PMid:7584987.
http://dx.doi.org/10.1038/nm1195-1155...
). Initially, leptin was shown to act as an important neuroendocrine regulator of food intake and energy homeostasis (Farooqi and O'Rahilly, 2009Farooqi IS, O’Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr. 2009;89(3):980S-4S. http://dx.doi.org/10.3945/ajcn.2008.26788C. PMid:19211814.
http://dx.doi.org/10.3945/ajcn.2008.2678...
; Zhang et al., 2005Zhang F, Chen Y, Heiman M, DiMarchi R. Leptin: structure, function and biology. Vitam Horm. 2005;71:345-72. http://dx.doi.org/10.1016/S0083-6729(05)71012-8. PMid:16112274.
http://dx.doi.org/10.1016/S0083-6729(05)...
). Nonetheless, like other adipokines, its pleiotropic actions were soon reflected at various levels, such as the regulation of the immune system, haematopoiesis, angiogenesis (Matarese et al., 2006Matarese G, Procaccini C, De Rosa V. Leptin and immune function, inflammation and angiognenesis. In: Castracane VD, Henson MC, editors. Leptin. Boston: Springer; 2006. (Endocrine Updates; no. 25). http://dx.doi.org/10.1007/978-0-387-31416-7_7.
http://dx.doi.org/10.1007/978-0-387-3141...
), cognition and bone metabolism (Dalamaga et al., 2013Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18(1):29-42. http://dx.doi.org/10.1016/j.cmet.2013.05.010. PMid:23770129.
http://dx.doi.org/10.1016/j.cmet.2013.05...
) and reproduction (Childs et al., 2021Childs G, Odle AK, MacNicol MC, MacNicol AM. The importance of leptin to reproduction. Endocrinology. 2021;162(2):1-18. http://dx.doi.org/10.1210/endocr/bqaa204. PMid:33165520.
http://dx.doi.org/10.1210/endocr/bqaa204...
). In recent years, leptin has engendered a great deal of interest in its regulatory role in reproductive tract and fertility (Castracane and Henson, 2003Castracane V, Henson MC. (2003). Leptin and reproduction. New York: Springer. http://dx.doi.org/10.1007/978-1-4615-0157-2.
http://dx.doi.org/10.1007/978-1-4615-015...
). In women, leptin is known to be associated with all stages of reproductive age - puberty, menstrual cycle, pregnancy, as well as menopause. A number of informative and well-conceived reviews have elaborated on the particular roles of leptin at each one of the above-mentioned stages (Brannian and Hansen, 2002Brannian JD, Hansen KA. Leptin and ovarian folliculogenesis: implications for ovulation induction and ART outcomes. Semin Reprod Med. 2002;20(2):103-12. http://dx.doi.org/10.1055/s-2002-32501. PMid:12087495.
http://dx.doi.org/10.1055/s-2002-32501...
; Pérez-Pérez et al., 2015Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V. Role of leptin in female reproduction. Clin Chem Lab Med. 2015;53(1):15-28. http://dx.doi.org/10.1515/cclm-2014-0387. PMid:25014521.
http://dx.doi.org/10.1515/cclm-2014-0387...
; Wołodko et al., 2021Wołodko K, Castillo‐fernandez J, Kelsey G, Galvão A. Revisiting the impact of local leptin signaling in folliculogenesis and oocyte maturation in obese mothers. Int J Mol Sci. 2021;22(8):4270. http://dx.doi.org/10.3390/ijms22084270. PMid:33924072.
http://dx.doi.org/10.3390/ijms22084270...
), reiterating the importance of leptin physiological actions in the control of female fertility. Importantly, under physiological conditions, leptin signals within a narrow concentration range, and excessive or insufficient levels of leptin may compromise fertility and ovarian function (Childs et al., 2021Childs G, Odle AK, MacNicol MC, MacNicol AM. The importance of leptin to reproduction. Endocrinology. 2021;162(2):1-18. http://dx.doi.org/10.1210/endocr/bqaa204. PMid:33165520.
http://dx.doi.org/10.1210/endocr/bqaa204...
). For instance, conditions of hypoleptinemia, such as in hypothalamic amenorrhoea (Miller et al., 1998Miller KK, Parulekar MS, Schoenfeld E, Anderson E, Hubbard J, Klibanski A, Grinspoon SK. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab. 1998;83(7):2309-12. http://dx.doi.org/10.1210/jc.83.7.2309. PMid:9661600.
http://dx.doi.org/10.1210/jc.83.7.2309...
), have been characterised by anovulation and dysregulation of the oestrous cycle (Chou and Mantzoros, 2014Chou SH, Mantzoros C. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223(1):T49-62. http://dx.doi.org/10.1530/JOE-14-0245. PMid:25056118.
http://dx.doi.org/10.1530/JOE-14-0245...
). Interestingly, fertility was shown to be restored in such patients after leptin treatment(Welt et al., 2004Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987-97. http://dx.doi.org/10.1056/NEJMoa040388. PMid:15342807.
http://dx.doi.org/10.1056/NEJMoa040388...
). Conversely, hyperleptinemia observed during obesity was also associated with polycystic ovarian syndrome, hypogonadism associated with type 2 diabetes and infertility, (Chou and Mantzoros, 2014Chou SH, Mantzoros C. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223(1):T49-62. http://dx.doi.org/10.1530/JOE-14-0245. PMid:25056118.
http://dx.doi.org/10.1530/JOE-14-0245...
) by mechanisms yet to be fully understood. Of particular importance, obese women are known to present high levels of circulating leptin, the state of hyperleptinemia, and often developing insensitivity to exogenous administration of leptin, a state known as leptin resistance. Therefore, hyperleptinemia and leptin resistance are two major features of obesity likely to drive the detrimental effects of energy surplus on ovarian function. This dichotomy in leptin signalling throughout obesity dramatically affects ovarian function. In early obesity, the establishment of a rapid hyperleptinemia and increased leptin signalling may affect ovarian function particularly through the negative impact on folliculogenesis, altered steroid synthesis and secretion in the growing follicle, and oocyte maturation (Brannian and Hansen, 2002Brannian JD, Hansen KA. Leptin and ovarian folliculogenesis: implications for ovulation induction and ART outcomes. Semin Reprod Med. 2002;20(2):103-12. http://dx.doi.org/10.1055/s-2002-32501. PMid:12087495.
http://dx.doi.org/10.1055/s-2002-32501...
). Conversely, the establishment of ovarian leptin resistance observed in late obesity, may result in perturbations in ovulation (Pérez-Pérez et al., 2015Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V. Role of leptin in female reproduction. Clin Chem Lab Med. 2015;53(1):15-28. http://dx.doi.org/10.1515/cclm-2014-0387. PMid:25014521.
http://dx.doi.org/10.1515/cclm-2014-0387...
) or increased primordial follicle recruitment, leading to reduced reproductive performance and premature ovarian failure (Moslehi et al., 2018Moslehi N, Shab-Bidar S, Tehrani FR, Mirmiran P, Azizi F. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause. 2018;25(9):1046-55. http://dx.doi.org/10.1097/GME.0000000000001116. PMid:29738413.
http://dx.doi.org/10.1097/GME.0000000000...
). Such a complex set of actions, alongside the inherent intricacies of ovarian function regulation, portrays leptin as a key but challenging signalling system to study during obesity. Consequently, little is known about the impact of altered levels of leptin signalling in the ovary and the gamete. In particular, it is still unclear whether local changes in leptin signalling can directly impact the oocyte epigenome, posing therefore the risk of transmission of such epimutations to the embryo, and potentially jeopardising early embryo development and reprogramming events.

Collectively, growth and maturation of the female gamete are highly demanding processes, requiring an optimal interplay between maternal nutritional state and other environmental factors, which will invariable control nuclear, cytoplasmic and epigenetic maturation (He et al., 2021He M, Zhang T, Yang Y, Wang C. Mechanisms of oocyte maturation and related epigenetic regulation. Front Cell Dev Biol. 2021;9:654028. http://dx.doi.org/10.3389/fcell.2021.654028. PMid:33842483.
http://dx.doi.org/10.3389/fcell.2021.654...
), ultimately ensuring the adequate transfer of genetic and epigenetic information required for embryonic development. Since, the environment in which the oocyte grows and develops critically determines its quality, it is extremely relevant to understand how maternal metabolic performance may affect such environment, both under physiological and pathological conditions. One such promising factors controlling metabolite availability and energetic performance is leptin. The present review, revisits the metabolic roles of leptin in various cellular contexts, which may pose deleterious consequences to oocyte and early embryo development in the context of maternal obesity (Figure 1). It sheds light upon the missing links in literature to better understand the crosstalk between obesity, altered ovarian leptin signalling, and putative consequences for oocyte development, particularly instigating the effects on oocyte metabolome and epigenome and further outcomes for early embryo development.

Figure 1
Maternal obesity and the putative impact of altered ovarian leptin signalling on oocyte growth and long-term effects for embryo development and offspring health. With the increase in fat stores in the body, leptin is produced in large amounts leading to hyperleptinemia and subsequent leptin resistance in the ovary. Local perturbations in leptin signalling may lead to changes in oocyte metabolic profile and mitochondrial function, which may critically affect oocyte quality (Ge et al., 2012Ge H, Tollner TL, Hu Z, Dai M, Li X, Guan H, Shan D, Zhang X, Lv J, Huang C, Dong Q. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev. 2012;79(6):392-401. http://dx.doi.org/10.1002/mrd.22042. PMid:22467220.
http://dx.doi.org/10.1002/mrd.22042...
), affecting the oocyte metabolic and epigenetic legacy which, in turn, may affect early reprogramming events in the embryo and offspring susceptibility to disease in adulthood. Created with BioRender.com.

Obesity, leptin signaling, and the establishment of leptin resistance in the ovaries

Leptin modulates female reproductive tract through endocrine and neuroendocrine mechanisms, but may also locally regulate ovarian activity, particularly controlling steroidogenesis (Hausman et al., 2012Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075-81. http://dx.doi.org/10.1016/j.biochi.2012.02.022. PMid:22980196.
http://dx.doi.org/10.1016/j.biochi.2012....
), folliculogenesis (Brannian and Hansen, 2002Brannian JD, Hansen KA. Leptin and ovarian folliculogenesis: implications for ovulation induction and ART outcomes. Semin Reprod Med. 2002;20(2):103-12. http://dx.doi.org/10.1055/s-2002-32501. PMid:12087495.
http://dx.doi.org/10.1055/s-2002-32501...
), and luteal function (Galvão et al., 2012Galvão A, Henriques S, Pestka D, Lukasik K, Skarzynski D, Mateus LM, Ferreira-Dias GML. Equine luteal function regulation may depend on the interaction between cytokines and vascular endothelial growth factor: an in vitro study. Biol Reprod. 2012;86(6):187. http://dx.doi.org/10.1095/biolreprod.111.097147. PMid:22492973.
http://dx.doi.org/10.1095/biolreprod.111...
). Under physiological conditions, leptin signals through a single-spanning transmembrane protein receptor belonging to the class I cytokine receptor superfamily (Tartaglia et al., 1995Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263-71. http://dx.doi.org/10.1016/0092-8674(95)90151-5. PMid:8548812.
http://dx.doi.org/10.1016/0092-8674(95)9...
). Although at least five isoforms of the receptor have been identified, the canonical pathway involves the activation of Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signalling through the long isoform of the receptor, called leptin receptor b (ObRb) (Banks et al., 2000Banks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275(19):14563-72. http://dx.doi.org/10.1074/jbc.275.19.14563. PMid:10799542.
http://dx.doi.org/10.1074/jbc.275.19.145...
). The non-canonical signalling pathway includes the activation of insulin receptor substrate (IRS)/phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signalling pathways (Bjørbæk et al., 1997Bjørbæk C, Uotani S, Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997;272(51):32686-95. http://dx.doi.org/10.1074/jbc.272.51.32686. PMid:9405487.
http://dx.doi.org/10.1074/jbc.272.51.326...
, 2001Bjørbæk C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS. Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem. 2001;276(7):4747-55. http://dx.doi.org/10.1074/jbc.M007439200. PMid:11085989.
http://dx.doi.org/10.1074/jbc.M007439200...
; Hegyi et al., 2004Hegyi K, Fülöp K, Kovács K, Tóth S, Falus A. Leptin-induced signal transduction pathways. Cell Biol Int. 2004;28(3):159-69. http://dx.doi.org/10.1016/j.cellbi.2003.12.003. PMid:14984741.
http://dx.doi.org/10.1016/j.cellbi.2003....
). With the expansion of fat stores in the course of obesity, the levels of leptin in circulaiton dramatically rise and result in the dysregulation of the aforementioned signalling pathways (Myers et al., 2010Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. trends endocrinol metab. 2010;21(11):643-51. http://dx.doi.org/10.1016/j.tem.2010.08.002. PMid:20846876.
http://dx.doi.org/10.1016/j.tem.2010.08....
). Although ideally it might be expected that leptin acts as a true ‘anti-obesity’ hormone promoting satiety, reducing food intake and increasing energy expenditure (Myers et al., 2010Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. trends endocrinol metab. 2010;21(11):643-51. http://dx.doi.org/10.1016/j.tem.2010.08.002. PMid:20846876.
http://dx.doi.org/10.1016/j.tem.2010.08....
), its ability to modulate adiposity can be forestalled by perturbations in the activation of the signalling pathway, often characterised by hyperleptinemia. The condition termed ‘leptin resistance’ may be mediated by: i) the down-regulation of leptin receptors, ii) the presence of receptor defects, iii) deficiencies in the secretion or circulation of the protein that compromises its bioavailability, or iv) its inability to reach the target tissue, for instance, crossing the blood-brain barrier (Castracane and Henson, 2003Castracane V, Henson MC. (2003). Leptin and reproduction. New York: Springer. http://dx.doi.org/10.1007/978-1-4615-0157-2.
http://dx.doi.org/10.1007/978-1-4615-015...
). The most common reason for leptin resistance, however, is the failure of the intracellular signalling cascade of the ObRb receptor (Enriori et al., 2007Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007;5(3):181-94. http://dx.doi.org/10.1016/j.cmet.2007.02.004. PMid:17339026.
http://dx.doi.org/10.1016/j.cmet.2007.02...
), widely mediated by molecules such as the suppressor-of-cytokine-signaling-3 (SOCS-3) protein (Bjørbaek and Kahn, 2004Bjørbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59(1):305-31. http://dx.doi.org/10.1210/rp.59.1.305. PMid:14749508.
http://dx.doi.org/10.1210/rp.59.1.305...
; Myers, 2004Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59(1):287-304. http://dx.doi.org/10.1210/rp.59.1.287. PMid:14749507.
http://dx.doi.org/10.1210/rp.59.1.287...
; Rabe et al., 2008Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11-12):741-51. http://dx.doi.org/10.2119/2008-00058.Rabe. PMid:19009016.
http://dx.doi.org/10.2119/2008-00058.Rab...
) and the phosphotyrosine phosphatase-1B (PTP1B) (Bence et al., 2006Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917-24. http://dx.doi.org/10.1038/nm1435. PMid:16845389.
http://dx.doi.org/10.1038/nm1435...
; M. G. Myers et al., 2010Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. trends endocrinol metab. 2010;21(11):643-51. http://dx.doi.org/10.1016/j.tem.2010.08.002. PMid:20846876.
http://dx.doi.org/10.1016/j.tem.2010.08....
). The ensuing resistance is specifically termed ‘cellular leptin resistance’. With the hyperactivation of the leptin signalling and the resulting increase in phospho-signal transducer and activator of transcription 3 (pSTAT3), the gene expression of SOCS-3 is upregulated, which in turn blocks tyrosine and Janus kinase-2 (JAK2) phosphorylation in a classic feedback inhibition pathway (Bjørbæk et al., 2000Bjørbæk C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000;275(51):40649-57. http://dx.doi.org/10.1074/jbc.M007577200. PMid:11018044.
http://dx.doi.org/10.1074/jbc.M007577200...
). Similarly, the upregulated expression of PTP1B due to STAT3 signalling, dephosphorylates JAK2 to block leptin signalling (Cheng et al., 2002Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002;2(4):497-503. http://dx.doi.org/10.1016/S1534-5807(02)00149-1. PMid:11970899.
http://dx.doi.org/10.1016/S1534-5807(02)...
; M. P. Myers et al., 2001Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276(51):47771-4. http://dx.doi.org/10.1074/jbc.C100583200. PMid:11694501.
http://dx.doi.org/10.1074/jbc.C100583200...
). More recently a number of novel molecules have been described to mediate leptin resistance centrally, such as protein tyrosine phosphatases (PTPs), brain-derived neurotrophic factor (BDNF), myeloid differentiation factor 88 (MyD88), methyl-CpG-binding protein 2 (MeCP2), I-kappa-B kinase epsilon (IKKε), extracellular signal-regulated kinases (ERKs), mitofusin 2 (MFN2), histone deacetylase 5 (HDAC5), withaferin A, c-Jun N-terminal kinases (JNKs), activating transcription factor 4 (ATF4) (J. Liu et al., 2018Liu J, Yang X, Yu S, Zheng R. The leptin resistance. Adv Exp Med Biol. 2018;1090:145-63. http://dx.doi.org/10.1007/978-981-13-1286-1_8. PMid:30390289.
http://dx.doi.org/10.1007/978-981-13-128...
), each with its own proposed mechanism of action. Ultimately, increased circulating levels of leptin during obesity will culminate with the dysruption of the signalling pathway in an organ specific manner.

The state of leptin resistance has unique features, with regard to ovarian function. As shown by studies in mice treated with high fat diet (HFD), leptin resistance sets in phases, in which initially the sensitivity to peripheral leptin injection is maintained, followed by peripheral insensitivity but adequate response to central leptin injections and finally a late stage in which the mice develop central leptin resistance (Enriori et al., 2006Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity. 2006;14(Suppl 5):254S-8S. http://dx.doi.org/10.1038/oby.2006.319. PMid:17021377.
http://dx.doi.org/10.1038/oby.2006.319...
). Recently it was also shown that leptin resistance may be organ specific. For instance, we have shown that the establishment of ovarian leptin resistance in mice after 16 weeks of diet induced obesity (DIO), followed an increase in leptin signalling in the ovaries of mice under DIO for 4 weeks (Wołodko et al., 2020Wołodko K, Walewska E, Adamowski M, Castillo-Fernandez J, Kelsey G, Galvão A. Leptin resistance in the ovary of obese mice is associated with profound changes in the transcriptome of cumulus cells. Cell Physiol Biochem. 2020;54(3):417-37. http://dx.doi.org/10.33594/000000228. PMid:32348667.
http://dx.doi.org/10.33594/000000228...
). Such organ specific response has also been shown in the hypothalamus (Münzberg et al., 2004Münzberg H, Flier JS, Bjørbæk C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145(11):4880-9. http://dx.doi.org/10.1210/en.2004-0726. PMid:15271881.
http://dx.doi.org/10.1210/en.2004-0726...
; Ozcan et al., 2009Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35-51. http://dx.doi.org/10.1016/j.cmet.2008.12.004. PMid:19117545.
http://dx.doi.org/10.1016/j.cmet.2008.12...
) and the liver of both mice and humans (Brabant et al., 2005Brabant G, Müller G, Horn R, Anderwald C, Roden M, Nave H. Hepatic leptin signaling in obesity. FASEB J. 2005;19(8):1048-50. http://dx.doi.org/10.1096/fj.04-2846fje. PMid:15788447.
http://dx.doi.org/10.1096/fj.04-2846fje...
). Nonetheless, other organs like the heart and kidney are known to maintain its responsiveness to leptin throughout obesity (Mark et al., 2002Mark AL, Correia MLG, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens. 2002;20(7):1245-50. http://dx.doi.org/10.1097/00004872-200207000-00001. PMid:12131511.
http://dx.doi.org/10.1097/00004872-20020...
; Morgan et al., 2008Morgan DA, Thedens DR, Weiss R, Rahmouni K. Mechanisms mediating renal sympathetic activation to leptin in obesity. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1730-6. http://dx.doi.org/10.1152/ajpregu.90324.2008. PMid:18815209.
http://dx.doi.org/10.1152/ajpregu.90324....
). Thus, the regulation of leptin signalling in the course of obesity seems to be organ dependent, and particularly for the ovaries associated with the levels of obesity and pregression of the disease. Overall, leptin resistance is either an adaptive response or a pathological state (Tups, 2009Tups A. Physiological Models of Leptin Resistance. J Neuroendocrinol. 2009;21(11):961-71. http://dx.doi.org/10.1111/j.1365-2826.2009.01916.x. PMid:19732287.
http://dx.doi.org/10.1111/j.1365-2826.20...
), which marks the onset of impaired leptin signalling under conditions of leptin excess, such as during obesity.

Balanced leptin signalling: a pre-requisite for oocyte metabolic homeostasis

Oocyte maturation

The successful fertilisation of the female gamete and further embryo development requires the accomplishment of major steps during oogenesis, the nuclear, cytoplasmic, and epigenetic maturation. (Eppig et al., 2004Eppig JJ, Marin-Bivens C, Viveiros MM, de la Fuente R. Regulation of mammalian oocyte maturation. In: Leung PCK, Adashi EY, editors. The ovary. 2nd ed. London: Academic Press; 2004. p. 113-29. http://dx.doi.org/10.1016/B978-012444562-8/50008-2.
http://dx.doi.org/10.1016/B978-012444562...
). The process involves events like meiotic resumption and metaphase II arrest, accumulation of mRNA, proteins, and nutrients which will enable the genomic modifications ensuring correct gene expression programs during embryo development (Eppig et al., 2004Eppig JJ, Marin-Bivens C, Viveiros MM, de la Fuente R. Regulation of mammalian oocyte maturation. In: Leung PCK, Adashi EY, editors. The ovary. 2nd ed. London: Academic Press; 2004. p. 113-29. http://dx.doi.org/10.1016/B978-012444562-8/50008-2.
http://dx.doi.org/10.1016/B978-012444562...
; Watson, 2007Watson AJ. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2007;85(13, Suppl):E1-3. http://dx.doi.org/10.2527/jas.2006-432. PMid:17322120.
http://dx.doi.org/10.2527/jas.2006-432...
). Oocyte growth and maturation are, therefore, highly orchestrated events that require an optimal interplay between intrinsic signals and nutritional and environmental factors (Hunt and Hassold, 2008Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet. 2008;24(2):86-93. http://dx.doi.org/10.1016/j.tig.2007.11.010. PMid:18192063.
http://dx.doi.org/10.1016/j.tig.2007.11....
). Among the various factors controlling the development, competence and quality of the female gamete, oocyte metabolism is widely known to play key roles (Sirard, 2011Sirard MA. Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet. 2011;28(6):483-8. http://dx.doi.org/10.1007/s10815-011-9554-4. PMid:21394521.
http://dx.doi.org/10.1007/s10815-011-955...
), providing the energy required for meiotic progression, buffering between intracellular redox and osmotic potential and, most importantly, providing the building blocks for growth (Watson, 2007Watson AJ. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2007;85(13, Suppl):E1-3. http://dx.doi.org/10.2527/jas.2006-432. PMid:17322120.
http://dx.doi.org/10.2527/jas.2006-432...
). Thus, oocyte growth requires an active synthesis of metabolites and metabolic enzymes for the regulation of multiple cellular events. The demand for such metabolites and energy substrates is cratered by both the oocyte machinery and the surrounding cumulus cells (CCs) through specialized membrane connections called gap junctions (Russell et al., 2016Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86(1):62-8. http://dx.doi.org/10.1016/j.theriogenology.2016.04.019. PMid:27160446.
http://dx.doi.org/10.1016/j.theriogenolo...
; Sugiura and Eppig, 2005Sugiura K, Eppig JJ. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev. 2005;17(7):667-74. http://dx.doi.org/10.1071/RD05071. PMid:16364219.
http://dx.doi.org/10.1071/RD05071...
). Specific processes in the oocyte require a characteristic metabolic milieu for a successful developmental progression. For instance, the maturation of the oocyte was associated with a state of diminished bile acid biosynthesis, decreased levels of polyunsaturated fatty acids (PUFA), but increased availability of nucleotides and one-carbon metabolism (Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
). Such metabolic control is mostly dependent upon the activity of intracellular substrates and enzymes present in the oocytes, other intracellular mediators, the transport across the plasma membrane, and nutrient availability from the follicular environment (Kurus et al., 2013Kurus M, Karakaya C, Karalok MH, To G, Johnson J. The control of oocyte survival by intrinsic and extrinsic factors. Adv Exp Med Biol. 2013;761:7-18. http://dx.doi.org/10.1007/978-1-4614-8214-7_2. PMid:24097378.
http://dx.doi.org/10.1007/978-1-4614-821...
). Overall, metabolite availability dictates how efficiently events like oocyte growth, meiosis, or epigenetic programming are coordinated in a developmentally competent oocyte.

Leptin metabolic roles

Leptin has always been closely related to metabolism, with several lines of evidence indicating its regulatory role over carbohydrates, lipids, and protein metabolism (Pereira et al., 2021Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr Rev. 2021;42(1):1-28. http://dx.doi.org/10.1210/endrev/bnaa027. PMid:33150398.
http://dx.doi.org/10.1210/endrev/bnaa027...
). Literature has shown that leptin controls glucose homeostasis at different levels, stimulating glucose uptake in the skeletal muscle, heart, and brown adipose tissue (Minokoshi et al., 2012Minokoshi Y, Toda C, Okamoto S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J Endocrinol Metab. 2012;16(9, Suppl 3):S562. http://dx.doi.org/10.4103/2230-8210.105573. PMid:23565491.
http://dx.doi.org/10.4103/2230-8210.1055...
), potently suppressing circulating insulin levels, while increasing gluconeogenesis, decreasing glucagon and attenuating glycogen synthesis (D’souza et al., 2017D’souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052-65. http://dx.doi.org/10.1016/j.molmet.2017.04.011. PMid:28951828.
http://dx.doi.org/10.1016/j.molmet.2017....
). Furthermore, leptin has also been shown to regulate lipids and protein metabolism. A recent study on patients with congenital deficiency of leptin showed that treatment with leptin promoted major metabolic changes, such as lipid catabolism involving fatty acid oxidation and cholesterol breakdown (Lawler et al., 2020Lawler K, Huang-Doran I, Sonoyama T, Collet TH, Keogh JM, Henning E, O’Rahilly S, Bottolo L, Farooqi IS. Leptin-mediated changes in the human metabolome. J Clin Endocrinol Metab. 2020;105(8):2541-52. http://dx.doi.org/10.1210/clinem/dgaa251. PMid:32392278.
http://dx.doi.org/10.1210/clinem/dgaa251...
). The regulatory role of leptin in fatty acid oxidation was also supported by the findings of Kircherlber and colleagues, who reported a negative association between acylcarnitines and acetylcarnitine levels with plasma leptin concentrations (Kirchberg et al., 2017Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One. 2017;12(8):e0183185. http://dx.doi.org/10.1371/journal.pone.0183185. PMid:28817652.
http://dx.doi.org/10.1371/journal.pone.0...
). Another study in the skeletal muscle by Minokoshi and colleagues supported leptin’s direct influence on fatty acid oxidation by reversal of the inhibitory action of carnitine palmitoyltransferase I (CPT-1) (Minokoshi et al., 2012Minokoshi Y, Toda C, Okamoto S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J Endocrinol Metab. 2012;16(9, Suppl 3):S562. http://dx.doi.org/10.4103/2230-8210.105573. PMid:23565491.
http://dx.doi.org/10.4103/2230-8210.1055...
). Similarly, leptin concentrations in the plasma were positively associated with the presence of a number of amino acids, like alanine and asparagine (Kirchberg et al., 2017Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One. 2017;12(8):e0183185. http://dx.doi.org/10.1371/journal.pone.0183185. PMid:28817652.
http://dx.doi.org/10.1371/journal.pone.0...
). Hence, leptin seems control the metabolism of macronutrients. It is, therefore, highly plausible that changes in circulating levels of leptin may promote important changes in the availability of metabolites, their precursors and catabolic products.

Leptin metabolic roles and the ooocyte

The ovaries and the oocyte are no exception with regard to leptin regulatory actions on energy homeostasis. Both the ovarian cells (Lin et al., 2000Lin J, Barb CR, Matteri RL, Kraeling RR, Chen X, Meinersmann RJ, Rampacek GB. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig. Domest Anim Endocrinol. 2000;19(1):53-61. http://dx.doi.org/10.1016/S0739-7240(00)00064-3. PMid:10962198.
http://dx.doi.org/10.1016/S0739-7240(00)...
; Ruiz-Cortes et al., 2000Ruiz-Cortés ZT, Men T, Palin MF, Downey BR, Lacroix DA, Murphy BD. Porcine leptin receptor: molecular structure and expression in the ovary. Mol Reprod Dev. 2000;56(4):465-74. http://dx.doi.org/10.1002/1098-2795(200008)56:4<465::AID-MRD4>3.0.CO;2-Q. PMid:10911396.
http://dx.doi.org/10.1002/1098-2795(2000...
) and the oocytes (Ryan et al., 2002Ryan NK, Woodhouse CM, van der Hoek KH, Gilchrist RB, Armstrong DT, Norman RJ. Expression of leptin and its receptor in the murine ovary: possible role in the regulation of oocyte maturation. Biol Reprod. 2002;66(5):1548-54. http://dx.doi.org/10.1095/biolreprod66.5.1548. PMid:11967222.
http://dx.doi.org/10.1095/biolreprod66.5...
; Cervero et al., 2004Cervero A, Horcajadas JA, Martín J, Pellicer A, Simón C. The leptin system during human endometrial receptivity and preimplantation development. J Clin Endocrinol Metab. 2004;89(5):2442-51. http://dx.doi.org/10.1210/jc.2003-032127. PMid:15126576.
http://dx.doi.org/10.1210/jc.2003-032127...
) of several animal species and humans are known to express the different forms of leptin receptors including the ObRb mRNA and protein. This suggests the ability of ovarian cells to respond directly to fluctuations in circulating levels of leptin. Therefore, under conditions of altered leptin signalling such as in obesity, the metabolism in ovarian somatic cells, as well as the gamete, are susceptible to dysregulation.

Glucose metabolism

Glucose is essential for oocyte development, and is metabolised in a concerted way between the oocyte and granulosa cells (GCs) by glycolysis, the pentose phosphate pathway (PPP), hexosamine biosynthesis pathway (HBP) or the polyol pathways (Sutton-McDowall et al., 2010Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685-95. http://dx.doi.org/10.1530/REP-09-0345. PMid:20089664.
http://dx.doi.org/10.1530/REP-09-0345...
). Pyruvate is the preferred energy substrate for the oocytes, but given the low glycolytic rate and capacity for glucose uptake and transport (Harris et al., 2007Harris SE, Adriaens I, Leese HJ, Gosden RG, Picton HM. Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction. 2007;134(3):415-24. http://dx.doi.org/10.1530/REP-07-0061. PMid:17709560.
http://dx.doi.org/10.1530/REP-07-0061...
; Saito et al., 1994Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994;50(2):266-70. http://dx.doi.org/10.1095/biolreprod50.2.266. PMid:8142545.
http://dx.doi.org/10.1095/biolreprod50.2...
), oocytes are dependent upon GCs to access such metabolic intermediates. Pyruvate is also known to be pivotal for oocyte maturation (Johnson et al., 2007Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007;77(1):2-8. http://dx.doi.org/10.1095/biolreprod.106.059899. PMid:17314311.
http://dx.doi.org/10.1095/biolreprod.106...
) and successful meiotic division. In fact, it was previously corroborated that enhanced tricarboxylic acid (TCA) cycle activity and pyruvate oxidation during this stage favoured the accomplishment of meiosis (Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
). Glucose metabolites were also shown to be essential for nucleic acid and purine synthesis, maintenance of redox state, CCs expansion, cell signalling, and the regulation of oocyte nuclear maturation (Sutton-McDowall et al., 2010Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685-95. http://dx.doi.org/10.1530/REP-09-0345. PMid:20089664.
http://dx.doi.org/10.1530/REP-09-0345...
). The oocyte is however highly sensitive to changes in the availability of glucose, with either high or low levels of glucose resulting in precoucious resumption of nuclear and cytoplasmic maturation, failed fertilization and impaired embryo development (Sutton-McDowall et al., 2010Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685-95. http://dx.doi.org/10.1530/REP-09-0345. PMid:20089664.
http://dx.doi.org/10.1530/REP-09-0345...
). On one hand, low glucose levels may lead to reduced de novo purine synthesis, depleted hyaluronic acid and low energy availability in the oocytes, while on the other hand, high glucose levels may lead to increased reactive oxygen species (ROS) and untimely maturation of the oocyte (Sutton-McDowall et al., 2010Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685-95. http://dx.doi.org/10.1530/REP-09-0345. PMid:20089664.
http://dx.doi.org/10.1530/REP-09-0345...
). Moreover, the intrafollicular hyperglycemia that ensues under conditions like diabetes, obesity, and poor diet was shown to be detrimental to oocyte viability in mice (Moley et al., 1998Moley KH, Chi MMY, Knudson CM, Korsmeyer SJ, Mueckler MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med. 1998;4(12):1421-4. http://dx.doi.org/10.1038/4013. PMid:9846581.
http://dx.doi.org/10.1038/4013...
). Specifically concerning obesity, higher body mass index (BMI) was associated with alterations in the follicular fluid composition showing increased follicular insulin, glucose and lactate concentrations (Robker et al., 2009Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94(5):1533-40. http://dx.doi.org/10.1210/jc.2008-2648.
http://dx.doi.org/10.1210/jc.2008-2648...
). Furthermore, leptin levels were also shown to increased in the follicular fluid of obese women, suggesting that ovarian follicular environment mirrors the systemic alterations seen during obesity (Mantzoros et al., 2000Mantzoros CS, Cramer DW, Liberman RF, Barbieri RL. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome. Hum Reprod. 2000;15(3):539-44. http://dx.doi.org/10.1093/humrep/15.3.539. PMid:10686193.
http://dx.doi.org/10.1093/humrep/15.3.53...
). Indeed, it has been suggested that with the simultaneous increase in the circulating levels of leptin and glucose, the glucose metabolism is altered in various tissues including ovary and possibly the the oocyte (Silva et al., 2012Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev. 2012;79(4):296-307. http://dx.doi.org/10.1002/mrd.22029. PMid:22368147.
http://dx.doi.org/10.1002/mrd.22029...
). Such changes in the metabolism, particularly that of glucose, have also been linked to establishing epigenetic memory, with reports showing glucose-induced alterations of posttranslational modifications to histones, including methylation and acetylation (Pirola et al., 2010Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol. 2010;6(12):665-75. http://dx.doi.org/10.1038/nrendo.2010.188.
http://dx.doi.org/10.1038/nrendo.2010.18...
). Furthermore, it was also reported the strong crosstalk between leptin and insulin signaling pathways during the regulation of glucose metabolism (Koch et al., 2010Koch C, Augustine RA, Steger J, Ganjam GK, Benzler J, Pracht C, Lowe C, Schwartz MW, Shepherd PR, Anderson GM, Grattan DR, Tups A. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci. 2010;30(48):16180-7. http://dx.doi.org/10.1523/JNEUROSCI.3202-10.2010. PMid:21123564.
http://dx.doi.org/10.1523/JNEUROSCI.3202...
). Leptin increase has been shown mitigate the deleterious effects of high glucose on oocyte development, mostly through the downregulation of insulin-like growth factor 1 (IGF1) expression in CCs, and the upregulation of insulin receptor substrate 1 (IRS1) in oocytes (Silva et al., 2012Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev. 2012;79(4):296-307. http://dx.doi.org/10.1002/mrd.22029. PMid:22368147.
http://dx.doi.org/10.1002/mrd.22029...
). High leptin was also shown to alter glucose metabolism in cumulus-oocyte-complexes (COCs) by downregulation of glucose transporter 1 (GLUT1) (Silva et al., 2012Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev. 2012;79(4):296-307. http://dx.doi.org/10.1002/mrd.22029. PMid:22368147.
http://dx.doi.org/10.1002/mrd.22029...
). Finally, leptin was also shown to improve glycolytic activity in the oocytes through IRS1 upregulation and IGF1 receptor action leading to phosphatidylinositol 3-kinase activation and thereby significantly influencing glucose metabolism in different tissues including the ovary(Poretsky et al., 1999Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20(4):535-82. http://dx.doi.org/10.1210/edrv.20.4.0374. PMid:10453357.
http://dx.doi.org/10.1210/edrv.20.4.0374...
). Collectively, these findings indicate that metabolism of glucose and leptin action are closely interconected in the oocytes. Glucose and its metabolites are indispensable for normal oocyte growth and quality, and therefore any alteration in its metabolism, particularly associated with fluctuations in leptin signalling in obese individuals, may cause decreased competence and subfertility.

Lipid metabolism

Fatty acids, stored in the form of triglycerides, are the major energy reserves in the oocytes. The intracellular lipid levels change throughout oocyte growth and development, especially during maturation, in a species-specific manner (Gu et al., 2015Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251-71. http://dx.doi.org/10.1007/s00018-014-1739-4. PMid:25280482.
http://dx.doi.org/10.1007/s00018-014-173...
). As reported by a recent study characterising the metabolome of mouse oocytes, a 3- to 4-fold increase in carnitine and palmitoyl-carnitine content was reported in oocytes around the time of meiotic resumption (Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
), while lipid-metabolism related products including cholesterol and arachidonic acid were shown to be depleted as the oocytes progress through meiosis(Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
). Mitochondrial oxidation follows the breakdown of fatty acids by lipases in the oocyte or CCs and releases acetyl-CoA, which can then enter the TCA cycle to produce energy in the form of adenosine triphosphate (ATP) (Dunning et al., 2014Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15-27. http://dx.doi.org/10.1530/REP-13-0251. PMid:24760880.
http://dx.doi.org/10.1530/REP-13-0251...
). The importance of oocyte lipid metabolism, especially that of beta-oxidation can be ascertained by a number of studies reporting the reduction of embryo viability (Ferguson and Leese, 2006Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://dx.doi.org/10.1002/mrd.20494. PMid:16804881.
http://dx.doi.org/10.1002/mrd.20494...
) and inhibition of meiotic oocyte resumption (Downs et al., 2009Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev. 2009;76(9):844-53. http://dx.doi.org/10.1002/mrd.21047. PMid:19455666.
http://dx.doi.org/10.1002/mrd.21047...
) following inhibited beta-oxidation activity. Conversely, enhanced oocyte nuclear and cytoplasmic maturation was confirmed under conditions of active lipid metabolism (Dunning et al., 2011Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL. Increased beta-oxidation and improved oocyte developmental competence in response to L-Carnitine during ovarian in vitro follicle development in mice. Biol Reprod. 2011;85(3):548-55. http://dx.doi.org/10.1095/biolreprod.110.090415. PMid:21613630.
http://dx.doi.org/10.1095/biolreprod.110...
). Furthermore, fatty acid metabolites were also shown to be involved in cell signalling events, regulating oxidative stress, membrane composition, and controlling gene expression in the female gamete (McKeegan and Sturmey, 2011McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24(1):59-67. http://dx.doi.org/10.1071/RD11907. PMid:22394718.
http://dx.doi.org/10.1071/RD11907...
). For instance, diacylglycerol (DAG), which acts as a secondary messenger in the triphosphoinositol (IP3) /DAG pathway, is known to facilitate the activation of protein kinase C (PKC), which has been implied to play specific roles in oocyte development, such as meiotic resumption, spindle organization, and activation (Kalive et al., 2010Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev. 2010;77(2):95-104. http://dx.doi.org/10.1002/mrd.21112. PMid:19777543.
http://dx.doi.org/10.1002/mrd.21112...
). Other lipid metabolites such as ceramide, are known to promote meiosis ressumption (Strum et al., 1995Strum JC, Swenson KI, Turner JE, Bell RM. Ceramide triggers meiotic cell cycle progression in Xenopus oocytes. A potential mediator of progesterone-induced maturation. J Biol Chem. 1995;270(22):13541-7. http://dx.doi.org/10.1074/jbc.270.22.13541. PMid:7768956.
http://dx.doi.org/10.1074/jbc.270.22.135...
), while fatty acids binding to nuclear receptors and transcription factors (Sampath and Ntambi, 2005Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr. 2005;25(1):317-40. http://dx.doi.org/10.1146/annurev.nutr.25.051804.101917. PMid:16011470.
http://dx.doi.org/10.1146/annurev.nutr.2...
), have been linked to successful embryo development and female fertility(al Darwich et al., 2010Al Darwich A, Perreau C, Petit MH, Papillier P, Dupont J, Guillaume D, Mermillod P, Guignot F. Effect of PUFA on embryo cryoresistance, gene expression and AMPKalpha phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat. 2010;93(1-2):30-6. http://dx.doi.org/10.1016/j.prostaglandins.2010.06.002. PMid:20601073.
http://dx.doi.org/10.1016/j.prostaglandi...
; Cui et al., 2002Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ, Flaws J, Wagner KU, Hennighausen L. Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem. 2002;277(20):17830-5. http://dx.doi.org/10.1074/jbc.M200186200. PMid:11884400.
http://dx.doi.org/10.1074/jbc.M200186200...
). Given the crucial roles that lipids play in all stages of normal oocyte development, the importance of an optimal state of lipid metabolism as well as that of its regulator is insurmountable.

Leptin is a well established regulator of lipid metabolism, known to stimulate lipolysis and fatty acid oxidation in many cell types (Reidy and Weber, 2000Reidy SP, Weber JM. Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2000;125(3):285-98. http://dx.doi.org/10.1016/S1095-6433(00)00159-8. PMid:10794958.
http://dx.doi.org/10.1016/S1095-6433(00)...
), including the components of the ovarian follicles (Zhang et al., 2015Zhang LH, Tan XY, Wu K, Zhuo MQ, Song YF, Chen QL. Regulation and mechanism of leptin on lipid metabolism in ovarian follicle cells from yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol. 2015;222:116-23. http://dx.doi.org/10.1016/j.ygcen.2015.06.008. PMid:26119184.
http://dx.doi.org/10.1016/j.ygcen.2015.0...
). Leptin is also known to be a key modulator of cellular triacylglycerol content (Reidy and Weber, 2000Reidy SP, Weber JM. Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2000;125(3):285-98. http://dx.doi.org/10.1016/S1095-6433(00)00159-8. PMid:10794958.
http://dx.doi.org/10.1016/S1095-6433(00)...
), which, as previously discussed, is the main energy source described for the oocytes. Moreover, it has also been reported that leptin is an important factor linking fatty acid β-oxidation with oocyte maturation, through the JAK-STAT pathway (Zhang et al., 2015Zhang LH, Tan XY, Wu K, Zhuo MQ, Song YF, Chen QL. Regulation and mechanism of leptin on lipid metabolism in ovarian follicle cells from yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol. 2015;222:116-23. http://dx.doi.org/10.1016/j.ygcen.2015.06.008. PMid:26119184.
http://dx.doi.org/10.1016/j.ygcen.2015.0...
). However, under conditions of obesity, ovaries and oocytes are known to accumulate excessive lipids resulting in increased oxidative stress and ovarian inflammation (Cardozo et al., 2016Cardozo ER, Karmon AE, Gold J, Petrozza JC, Styer AK. Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Hum Reprod. 2016;31(2):385-92. http://dx.doi.org/10.1093/humrep/dev298. PMid:26677960.
http://dx.doi.org/10.1093/humrep/dev298...
; Gu et al., 2015Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251-71. http://dx.doi.org/10.1007/s00018-014-1739-4. PMid:25280482.
http://dx.doi.org/10.1007/s00018-014-173...
). This can be a result of the putative pathogenic role of hyperleptinemia in lipid accumulation (Shen et al., 2019Shen L, Cordero JF, Wang JS, Shen Y, Li S, Liang L, Zou Z, Li C. Association between genetically determined leptin and blood lipids considering alcohol consumption: a Mendelian randomisation study. BMJ Open. 2019;9(11):e026860. http://dx.doi.org/10.1136/bmjopen-2018-026860. PMid:31699712.
http://dx.doi.org/10.1136/bmjopen-2018-0...
). Although different mechanisms may be at play, the downregulation of master regulators of lipid metabolism like Sterol regulatory element binding protein 1 (SREBP-1c) under high leptin levels has been previously reported(Shen et al., 2019Shen L, Cordero JF, Wang JS, Shen Y, Li S, Liang L, Zou Z, Li C. Association between genetically determined leptin and blood lipids considering alcohol consumption: a Mendelian randomisation study. BMJ Open. 2019;9(11):e026860. http://dx.doi.org/10.1136/bmjopen-2018-026860. PMid:31699712.
http://dx.doi.org/10.1136/bmjopen-2018-0...
). Such long-term exposure to altered lipid levels may therefore impair the oocyte function or their somatic counterparts (T. Liu et al., 2022Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid metabolic process involved in oocyte maturation during folliculogenesis. Front Cell Dev Biol. 2022;10:806890. http://dx.doi.org/10.3389/fcell.2022.806890. PMid:35433675.
http://dx.doi.org/10.3389/fcell.2022.806...
). Finally, as shown by studies on polycystic ovarian syndrome (PCOS) (Khan et al., 2021Khan R, Jiang X, Hameed U, Shi Q. Role of lipid metabolism and signaling in mammalian oocyte maturation, quality, and acquisition of competence. Front Cell Dev Biol. 2021;9:639704. http://dx.doi.org/10.3389/fcell.2021.639704. PMid:33748128.
http://dx.doi.org/10.3389/fcell.2021.639...
), associated most commonly with obesity, impaired lipogenesis and lipolysis events are commonly seen in the ovaries. This could be also ascribed to leptin resistance during obesity which impairs leptin’s peripheral role in regulating lipid metabolism in cells (Sáinz et al., 2015Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35-46. http://dx.doi.org/10.1016/j.metabol.2014.10.015. PMid:25497342.
http://dx.doi.org/10.1016/j.metabol.2014...
). Generally, leptin is well known to control lipid oxidation and regulate triglyceride cellular homeostasis, critical for energy generation and the development of the oocyte. Therefore, changes in leptin levels during obesity levels can potentially affect oocyte fatty acid oxidation and energy provision during critical phases of oocyte growth and developmental competence.

Amino-acid metabolism

Oocytes access amino-acids via their unique transport systems like β, L, GLY, xc, and b0,+ (Pelland et al., 2009Pelland AMD, Corbett HE, Baltz JM. Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol Reprod. 2009;81(6):1041-54. http://dx.doi.org/10.1095/biolreprod.109.079046. PMid:19605782.
http://dx.doi.org/10.1095/biolreprod.109...
). Alternativelly, they also depend on GCs and CCs for the uptake of specific amino acids like L-alanine, glycine, taurine, and lysine. Amino acids are utilised in the oocyte as substrates for energy, for protein synthesis, to facilitate osmosis, and also as redox buffering elements (van Winkle, 2001van Winkle LJ. Amino acid transport regulation and early embryo development. Biol Reprod. 2001;64(1):1-12. http://dx.doi.org/10.1095/biolreprod64.1.1. PMid:11133652.
http://dx.doi.org/10.1095/biolreprod64.1...
). Specifically, they are also known to support the development of preimplantation embryos, while in post-implantation embryos, amino acids are known for their roles in fostering viable embryos and supporting early embryo cleavage (van Winkle, 2001van Winkle LJ. Amino acid transport regulation and early embryo development. Biol Reprod. 2001;64(1):1-12. http://dx.doi.org/10.1095/biolreprod64.1.1. PMid:11133652.
http://dx.doi.org/10.1095/biolreprod64.1...
). For instance, the addition of glutamine to the oocyte culture medium turned out as an efficient energy substrate, improving oocyte maturation (Songsasen and Wildt, 2007Songsasen N, Wildt DE. Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim Reprod Sci. 2007;98(1-2):2-22. http://dx.doi.org/10.1016/j.anireprosci.2006.10.004. PMid:17097840.
http://dx.doi.org/10.1016/j.anireprosci....
) and initiating meiotic resumption (Downs and Hudson, 2000Downs SM, Hudson ED. Energy substrates and the completion of spontaneous meiotic maturation. Zygote. 2000;8(4):339-51. http://dx.doi.org/10.1017/S0967199400001131. PMid:11108555.
http://dx.doi.org/10.1017/S0967199400001...
). Glutamine and other amino acids like aspartate and valine have also been shown to avert polyspermy in pigs (Hong and Lee, 2007Hong J, Lee E. Intrafollicular amino acid concentration and the effect of amino acids in a defined maturation medium on porcine oocyte maturation, fertilization, and preimplantation development. Theriogenology. 2007;68(5):728-35. http://dx.doi.org/10.1016/j.theriogenology.2007.06.002. PMid:17658593.
http://dx.doi.org/10.1016/j.theriogenolo...
) and glycine has been implicated in exerting unique cell volume regulatory mechanisms (Baltz and Tartia, 2010Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16(2):166-76. http://dx.doi.org/10.1093/humupd/dmp045. PMid:19825850.
http://dx.doi.org/10.1093/humupd/dmp045...
). Typical temporal metabolite profiles of amino acids are evident during the course of oocyte growth and development, with different amino acid subsets increasing in abundance at particular stages of development, while declining during others. For example, a significant increase in the levels of serine, glutamate and histidine was evidenced during meiotic resumption, whereas their availability was shown to be decreased post-maturation (Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
). Amino acids may act as key components in the synthesis of de novo purine and pyrimidines, guanosine triphosphate (GTP), nicotinamide adenine dinucleotide (NAD+) and are the sources of carbon and fixed nitrogen (Sturmey et al., 2008Sturmey RG, Brison DR, Leese HJ. Assessing embryo viability by measurement of amino acid turnover. Reprod Biomed Online. 2008;17(4):486-96. http://dx.doi.org/10.1016/S1472-6483(10)60234-9. PMid:18854101.
http://dx.doi.org/10.1016/S1472-6483(10)...
). Besides their metabolic regulation and role in protein synthesis, some amino acids were shown to be involved in the regulation of DNA methylation. As an exmple, methionine along with folate and vitamin B12 were shown to be important co-factors that integrate the methylation cycle (Gilbody et al., 2007Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol. 2007;165(1):1-13. http://dx.doi.org/10.1093/aje/kwj347. PMid:17074966.
http://dx.doi.org/10.1093/aje/kwj347...
). Additionally, the Serine-Glycine-One-Carbon (SGOC) pathway, which involves the folate and the methionine cycles, was shown to be upregulated during meiotic resumption of the oocytes (Li et al., 2020Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022. PMid:33068521.
http://dx.doi.org/10.1016/j.molcel.2020....
), with SGOC fuelling methyltransferase activity (Reina-Campos et al., 2020Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol. 2020;219(1):e201907022. http://dx.doi.org/10.1083/jcb.201907022. PMid:31690618.
http://dx.doi.org/10.1083/jcb.201907022...
) and shaping the epigenetic landscape of the oocytes. Hence, protein metabolism is one of the most diverse yet important biochemical process that dictate the developmental potential of the oocyte. Amino acids and their metabolites are equally susceptible to alteration in their normal metabolism under conditions of obesity (Short et al., 2019Short KR, Chadwick JQ, Teague AM, Tullier MA, Wolbert L, Coleman C, Copeland KC. Effect of obesity and exercise training on plasma amino acids and amino metabolites in american indian adolescents. J Clin Endocrinol Metab. 2019;104(8):3249-61. http://dx.doi.org/10.1210/jc.2018-02698. PMid:31216576.
http://dx.doi.org/10.1210/jc.2018-02698...
; Zhou et al., 2013Zhou Y, Qiu L, Xiao Q, Wang Y, Meng X, Xu R, Wang S, Na R. Obesity and diabetes related plasma amino acid alterations. Clin Biochem. 2013;46(15):1447-52. http://dx.doi.org/10.1016/j.clinbiochem.2013.05.045. PMid:23697717.
http://dx.doi.org/10.1016/j.clinbiochem....
), most likely driven by conditions of hyperleptinemia. As shown by a metabolomic study on lipodystrophy patients receiving leptin treatment, a drastic change in protein and amino acid catabolism was evident leading to overall increased protein turnover (Grewal et al., 2020Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, Brown RJ, Muniyappa R. Metabolomic analysis of the effects of leptin replacement therapy in patients with lipodystrophy. J Endocr Soc. 2020;4(1):bvz022. http://dx.doi.org/10.1210/jendso/bvz022. PMid:32010873.
http://dx.doi.org/10.1210/jendso/bvz022...
). The study reported that leptin caused an increase in markers of protein degradation, like gamma-glutamyl amino acids, 3-methylhistidine, and N-acetyl-3-methylhistidine along with metabolites involved in urea cycle (Grewal et al., 2020Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, Brown RJ, Muniyappa R. Metabolomic analysis of the effects of leptin replacement therapy in patients with lipodystrophy. J Endocr Soc. 2020;4(1):bvz022. http://dx.doi.org/10.1210/jendso/bvz022. PMid:32010873.
http://dx.doi.org/10.1210/jendso/bvz022...
). This can be particularly detrimental in the context of ovarian funciton and oogenesis, since increased protein catabolism and the resulting presence of high concentrations of ammonium and urea have been shown to reduce embryonic development and promote sustained metabolic stress in the surviving embryos (Sinclair et al., 2000Sinclair KD, Kuran M, Gebbie FE, Webb R, McEvoy TG. Nitrogen metabolism and fertility in cattle: II. Development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J Anim Sci. 2000;78(10):2670-80. http://dx.doi.org/10.2527/2000.78102670x. PMid:11048933.
http://dx.doi.org/10.2527/2000.78102670x...
). Also, the altered profiles of plasma amino-acids observed during obesity, can further dysregulate carbohydrate metabolism in oocytes. For instance, high levels of leucine and tyrosine in the plasma are known to increase the levels of glucagon (Rooke et al., 2009Rooke JA, Ainslie A, Watt RG, Alink FM, McEvoy TG, Sinclair KD, Garnsworthy PC, Webb R. Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reprod Fertil Dev. 2009;21(3):419-27. http://dx.doi.org/10.1071/RD08193. PMid:19261219.
http://dx.doi.org/10.1071/RD08193...
) and also stimulate insulin release (Calbet and MacLean, 2002Calbet JAL, MacLean DA. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr. 2002;132(8):2174-82. http://dx.doi.org/10.1093/jn/132.8.2174. PMid:12163658.
http://dx.doi.org/10.1093/jn/132.8.2174...
). This is particularly relevant for the environment of the growing gamete, as the free amino acid profile in plasma is broadly similar to follicular fluid free amino acid composition (Orsi et al., 2005Orsi NM, Gopichandran N, Leese HJ, Picton HM, Harris SE. Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction. 2005;129(2):219-28. http://dx.doi.org/10.1530/rep.1.00460. PMid:15695616.
http://dx.doi.org/10.1530/rep.1.00460...
). Furthermore, the total free amino acid concentration is proven to be very closely related to oocyte quality (Rooke et al., 2009Rooke JA, Ainslie A, Watt RG, Alink FM, McEvoy TG, Sinclair KD, Garnsworthy PC, Webb R. Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reprod Fertil Dev. 2009;21(3):419-27. http://dx.doi.org/10.1071/RD08193. PMid:19261219.
http://dx.doi.org/10.1071/RD08193...
). In conclusion, increased levels of leptin, or leptin resistance, may be at least partly responsible for the oocyte abnormalities taking place under conditions of metabolic dysregulation during obesity.

Overall, in this section we have seen that obesity leads to a state of systemic and local metabolic dysregulation, which is likely to be affected by altered levels of circulating leptin. Through its metabolic actions on various substrates, leptin may alter the levels as well as profiles of available metabolites. In the ovarian context, such events may impede the physiological development of the gamete, through direct actions on oocytes or through the metabolic dysregulation of the surrounding GCs and CCs. In fact, our recent study on the transcriptome of CCs isolated from DIO mice revealed dramatic changes in the expression of genes particularly involved in cellular trafficking and cytoskeleton organisation of the CCs, which were also found in the CCs of mice treated with leptin (Wołodko et al., 2020Wołodko K, Walewska E, Adamowski M, Castillo-Fernandez J, Kelsey G, Galvão A. Leptin resistance in the ovary of obese mice is associated with profound changes in the transcriptome of cumulus cells. Cell Physiol Biochem. 2020;54(3):417-37. http://dx.doi.org/10.33594/000000228. PMid:32348667.
http://dx.doi.org/10.33594/000000228...
). Such changes can render the CCs inefficient in supplying the oocytes with the metabolites or metabolic precursors it demands, compromising the oocyte developmental competence. For instance, leptin treatment of COCs during in vitro maturation at 100 ng/ml of concentration, was reported to downregulate the expression of GLUT1 in CCs (Silva et al., 2012Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev. 2012;79(4):296-307. http://dx.doi.org/10.1002/mrd.22029. PMid:22368147.
http://dx.doi.org/10.1002/mrd.22029...
). In fact, the oocyte relies on the CCs critical supply of glucose and its metabolites, cholesterol biosynthesis as well as for some amino-acids (Su et al., 2009Su Y-Q, Sugiura K, Eppig JJ. mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):032-042. http://dx.doi.org/10.1055/s-0028-1108008. PMid:19197803.
http://dx.doi.org/10.1055/s-0028-1108008...
.). Moreover, the potential of leptin to influence the function of CCs have been also studied in bovine oocytes, where an optimal level of leptin was shown to enhance developmental potential of oocytes via CC-dependent mechanisms (Paula-Lopes et al., 2007Paula-Lopes FF, Boelhauve M, Habermann FA, Sinowatz F, Wolf E. Leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell-independent and-dependent mechanisms. Biol Reprod. 2007;76(3):532-41. http://dx.doi.org/10.1095/biolreprod.106.054551. PMid:17093200.
http://dx.doi.org/10.1095/biolreprod.106...
). Thus, owing to its systemic and ovarian roles in metabolic homeostasis, fluctuations in leptin circulating levels observed during maternal obesity may affect the oocyte metabolism, quality and fertility outcomes. In a nutshell, the periconceptional period encompassing the active stages of oocyte growth and development is sensitive to metabolite availability in the germ cell. The presence of adequate metabolic substrates at physiological levels ensures that nutritional needs are met, as well as critical events for the quality and competency of the female gamete are maintained. Any form of deficiency or excess of macro- or micro-nutrients or other metabolic substrates during this period can therefore lead to reduced fertility, altered foetal development and compromised long-term offspring health.

Leptin and the oocyte mitochondrial function

Highly acclaimed as the ‘powerhouse of the cell’, mitochondria are indispensable for oocyte growth and development, being a critical indicator of oocyte quality (Schatten et al., 2014Schatten H, Sun Q-Y, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12(1):111. http://dx.doi.org/10.1186/1477-7827-12-111. PMid:25421171.
http://dx.doi.org/10.1186/1477-7827-12-1...
). Therefore, we dedicate a chapter specifically to the putative effects of leptin signalling dysregulation on mitochondrial function in oocytes during obesity.

The developing oocyte and the surrounding follicular cells are highly reliant on the biosynthetic precursors and the energy produced by mitochondrial oxidative phosphorylation (Qi et al., 2019Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02. PMid:32042805.
http://dx.doi.org/10.21037/atm.2019.12.0...
). Hence, ATP, the main product from oxidative phosphorylation, is particularly important for active transcription and translation, which drives oocyte maturation (Kirillova et al., 2021Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. The role of mitochondria in oocyte maturation. Cells. 2021;10(9):2484. http://dx.doi.org/10.3390/cells10092484. PMid:34572133.
http://dx.doi.org/10.3390/cells10092484...
). Furthermore, optimal mitochondrial function is required for the formation of the meiotic spindles before and during oocyte activation (Benkhalifa et al., 2014Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P, Copin H. Mitochondria: participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol. 2014;55:60-4. http://dx.doi.org/10.1016/j.biocel.2014.08.011. PMid:25150832.
http://dx.doi.org/10.1016/j.biocel.2014....
), as well as for the maintenance of redox homeostasis (Spinelli and Haigis, 2018Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. http://dx.doi.org/10.1038/s41556-018-0124-1. PMid:29950572.
http://dx.doi.org/10.1038/s41556-018-012...
). Given the pivotal roles played by the mitochondria, it is critical that oocytes contain a minimum threshold number of mitochondria, and adequate copies of mtDNA (Wai et al., 2010Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52-62. http://dx.doi.org/10.1095/biolreprod.109.080887. PMid:20130269.
http://dx.doi.org/10.1095/biolreprod.109...
). In other cellular contexts, mitochondria play a central role in the regulation of cell senescence and death, facilitating cell signalling and the biosynthesis of compounds like nucleotides, fatty acids, cholesterol, amino acids, and heme (Spinelli and Haigis, 2018Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. http://dx.doi.org/10.1038/s41556-018-0124-1. PMid:29950572.
http://dx.doi.org/10.1038/s41556-018-012...
). Importantly, in immature oocytes, mitochondria are initially transcriptionally and bioenergetically silent (Allen and Paula, 2013Allen JF, Paula WBM. Mitochondrial genome function and maternal inheritance. Biochem Soc Trans. 2013;41(5):1298-304. http://dx.doi.org/10.1042/BST20130106. PMid:24059523.
http://dx.doi.org/10.1042/BST20130106...
), which certainly minimises the occurrence of mitochondrial DNA (mtDNA) mutations (Allen and Paula, 2013). Conversely, after fertilization, mitochondrial activation is necessary to protect the oocyte from oxidative damage and support early embryo development (Qi et al., 2019Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02. PMid:32042805.
http://dx.doi.org/10.21037/atm.2019.12.0...
). In fact, mitochondrial inheritance is exclusively maternal and oocyte-derived mitochondria give rise to the entire mitochondrial content present in the various tissues of the offspring (McPherson et al., 2015McPherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL, Lane M. When two obese parents are worse than one! Impacts on embryo and fetal development. Am J Physiol Endocrinol Metab. 2015;309(6):E568-81. http://dx.doi.org/10.1152/ajpendo.00230.2015. PMid:26199280.
http://dx.doi.org/10.1152/ajpendo.00230....
). As a result, coordinated regulation of mitochondrial activity in oocytes ensures not only the competence of the gamete but also the successful development of the embryo and metabolic performance in the offspring.

Numerous reports have recently described the dramatic impact of maternal obesity on oocyte mitochondrial activity. Studies in mice have shown that diet-induced obesity alters oocyte mitochondrial morphology, such as decreased number of cristae and vacuoles (Luzzo et al., 2012Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217. http://dx.doi.org/10.1371/journal.pone.0049217. PMid:23152876.
http://dx.doi.org/10.1371/journal.pone.0...
), increased mtDNA copy number and higher mitochondrial biogenesis (Igosheva et al., 2010Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074. http://dx.doi.org/10.1371/journal.pone.0010074. PMid:20404917.
http://dx.doi.org/10.1371/journal.pone.0...
; Luzzo et al., 2012Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217. http://dx.doi.org/10.1371/journal.pone.0049217. PMid:23152876.
http://dx.doi.org/10.1371/journal.pone.0...
), or changes in mitochondrial potential (Igosheva et al., 2010Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074. http://dx.doi.org/10.1371/journal.pone.0010074. PMid:20404917.
http://dx.doi.org/10.1371/journal.pone.0...
; Wu et al., 2010Wu LLY, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438-45. http://dx.doi.org/10.1210/en.2010-0551. PMid:20861227.
http://dx.doi.org/10.1210/en.2010-0551...
). It was also observed that energetic surplus in mothers is associated with increased ROS formation, and altered spatial distribution of mitochondria in the oocyte (Igosheva et al., 2010Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074. http://dx.doi.org/10.1371/journal.pone.0010074. PMid:20404917.
http://dx.doi.org/10.1371/journal.pone.0...
). Hence, spindle and chromosome alignment defects leading to aneuploidy, failed oocyte maturation, poor fertilization rates and abnormal embryo development frequently reported in obese women may be explained by the underlying mitochondrial dysfunction in the oocytes from obese mothers.

Importantly, mitochondrial metabolites were shown to affect gene expression regulation and promote epigenetic changes during oocyte maturation and embryo development (Ge et al., 2015Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction. 2015;149(3):R103-14. http://dx.doi.org/10.1530/REP-14-0242. PMid:25391845.
http://dx.doi.org/10.1530/REP-14-0242...
; Matilainen et al., 2017Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics: crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27(6):453-63. http://dx.doi.org/10.1016/j.tcb.2017.02.004. PMid:28274652.
http://dx.doi.org/10.1016/j.tcb.2017.02....
; Whidden et al., 2016Whidden L, Martel J, Rahimi S, Chaillet JR, Chan D, Trasler JM. Compromised oocyte quality and assisted reproduction contribute to sex-specific effects on offspring outcomes and epigenetic patterning. Hum Mol Genet. 2016;25(21):4649-60. http://dx.doi.org/10.1093/hmg/ddw293. PMid:28173052.
http://dx.doi.org/10.1093/hmg/ddw293...
). For instance, mitochondrial metabolites of the TCA cycle such as ATP, alpha ketoglutarate (α-KG), and citrate were shown to alter chromatin configuration which was associated with gene expression (Qi et al., 2019Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02. PMid:32042805.
http://dx.doi.org/10.21037/atm.2019.12.0...
). Additionally, citrate is known to facilitate histone acetylation and drive gene expression by changes in chromatin conformation. This was shown to be facilitated by the conversion of citrate into acetyl-CoA, with the donation of the acetyl group to histone acetyltransferases (HATs) (Montgomery et al., 2015Montgomery DC, Sorum AW, Guasch L, Nicklaus MC, Meier JL. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors. Chem Biol. 2015;22(8):1030-9. http://dx.doi.org/10.1016/j.chembiol.2015.06.015. PMid:26190825.
http://dx.doi.org/10.1016/j.chembiol.201...
). Similarly, α-KG is known to promote DNA demethylation, working as a co-factor of ten-eleven translocation (TET) enzymes, which in turn are known to catalyse the hydroxylation of methylated cytosines in the genome (Qi et al., 2019Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02. PMid:32042805.
http://dx.doi.org/10.21037/atm.2019.12.0...
). With regard to histone methylation, α-KG was shown to act as a crucial co-factor of histone demethylases (HDMs) (Kooistra and Helin, 2012Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13(5):297-311. http://dx.doi.org/10.1038/nrm3327. PMid:22473470.
http://dx.doi.org/10.1038/nrm3327...
). Another metabolite, the S-adenosyl methionine (SAM), a universal methyl- donor and a common substrate for numerous enzymatic reactions, is known to be originated from the folate cycle and ATP generated by the mitochondria (Qi et al., 2019Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02. PMid:32042805.
http://dx.doi.org/10.21037/atm.2019.12.0...
). In fact, SAM is a critical regulator of DNA methylation as is often utilised as a coenzyme involved in the transfer of methyl groups (Smith and Denu, 2009Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta. 2009;1789(1):45-57. http://dx.doi.org/10.1016/j.bbagrm.2008.06.005. PMid:18603028.
http://dx.doi.org/10.1016/j.bbagrm.2008....
). As previously reported, the availability of mitochondrial substrates like SAM are known to maintain human embryonic stem cells (hESCs) pluripotency, as decreased levels of SAM in culture resulted in cell differentiation (Sperber et al., 2015Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin AA, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H. The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523-35. http://dx.doi.org/10.1038/ncb3264. PMid:26571212.
http://dx.doi.org/10.1038/ncb3264...
). Also, the energy required for the modulation of changes in chromatin configuration and specific binding of the chromatin remodelling complexes is largely ATP-dependent (Flaus and Owen-Hughes, 2011Flaus A, Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J. 2011;278(19):3579-95. http://dx.doi.org/10.1111/j.1742-4658.2011.08281.x. PMid:21810178.
http://dx.doi.org/10.1111/j.1742-4658.20...
). Finally, acetyl-CoA dependent HAT activity was also shown to control oocyte maturation and the activation of follicular reserve (Yin et al., 2017Yin S, Jiang X, Jiang H, Gao Q, Wang F, Fan S, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita TK, Fan H-Y, Zhang Y, Shi Q. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development. 2017;144(12):2165-74. http://dx.doi.org/10.1242/dev.149518. PMid:28506985.
http://dx.doi.org/10.1242/dev.149518...
). This suggests that mitochondria, and the metabolites generated through their activity, not only play major physiological roles in regulating energy homeostasis but also maintain the stability of both genetic and epigenetic signatures in gametes and developing embryos.

Of great relevance within the scope of obesity, but largely understudied, is the potential impact of altered local leptin signalling on mitochondrial function in the oocyte from obese mothers. This seems plausible, especially considering that leptin treatment was shown to increase mitochondrial metabolism and ATP production, decrease oxidative stress, promote mtDNA replication, and increase mitophagy, generally affecting mitochondrial function in oocytes (Blanquer-Rossellõ et al., 2015Blanquer-Rossellõ MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039-48. http://dx.doi.org/10.1002/jcb.25158. PMid:25752935.
http://dx.doi.org/10.1002/jcb.25158...
). In addition, it has also been suggested that leptin can influence the routes of mitochondrial ATP production, since the ATP production in db mice lacking functional leptin receptors was less reliant on glycolysis, but rather on beta-oxidation (J. Park et al., 2010Park J, Kusminski CM, Chua SC, Scherer PE. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol. 2010;177(6):3133-44. http://dx.doi.org/10.2353/ajpath.2010.100595. PMid:21056997.
http://dx.doi.org/10.2353/ajpath.2010.10...
). A number of other studies on muscle, endothelial cells, and adipocytes have also revealed the stimulatory role of leptin on fatty acid oxidation, glucose uptake and ROS production (Yamagishi et al., 2001Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem. 2001;276(27):25096-100. http://dx.doi.org/10.1074/jbc.M007383200. PMid:11342529.
http://dx.doi.org/10.1074/jbc.M007383200...
; Minokoshi et al., 2002Minokoshi Y, Kim YB, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415(6869):339-43. http://dx.doi.org/10.1038/415339a. PMid:11797013.
http://dx.doi.org/10.1038/415339a...
; Luo et al., 2008Luo GF, Yu TY, Wen XH, Li Y, Yang GS. Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin. Mol Cell Biochem. 2008;307(1-2):83-91. http://dx.doi.org/10.1007/s11010-007-9587-2. PMid:17909948.
http://dx.doi.org/10.1007/s11010-007-958...
), which resulted in increased mitochondrial activity (Henry et al., 2011Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Endocrinology. 2011;152(7):2609-18. http://dx.doi.org/10.1210/en.2011-0143. PMid:21558317.
http://dx.doi.org/10.1210/en.2011-0143...
). Therefore, under the influence of leptin, mitochondrial metabolism appears to be enhanced, with subsequent changes in metabolites and major outcomes for gene expression regulation and epigenetic changes. For instance, the availability of acetyl-CoA is mostly dependent on the rate of mitochondrial metabolism. Under increased metabolism, the actyl-CoA in excess facilitates histone acetylation, which has been associated with active gene transcription (Menzies et al., 2016Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol. 2016;12(1):43-60. http://dx.doi.org/10.1038/nrendo.2015.181. PMid:26503676.
http://dx.doi.org/10.1038/nrendo.2015.18...
). Furthermore, glucose derived acetyl-CoA supplies most of the acetyl group for histone H4K16 acetylation (Morrish et al., 2010Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, VanGilst M, Hockenbery D. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem. 2010;285(47):36267-74. http://dx.doi.org/10.1074/jbc.M110.141606. PMid:20813845.
http://dx.doi.org/10.1074/jbc.M110.14160...
), as well as to histone acetyltransferases enzymes (Montgomery et al., 2015Montgomery DC, Sorum AW, Guasch L, Nicklaus MC, Meier JL. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors. Chem Biol. 2015;22(8):1030-9. http://dx.doi.org/10.1016/j.chembiol.2015.06.015. PMid:26190825.
http://dx.doi.org/10.1016/j.chembiol.201...
), the availability of which can be influenced by leptin regulatory effects on mitochondrial activity (Blanquer-Rossellõ et al., 2015Blanquer-Rossellõ MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039-48. http://dx.doi.org/10.1002/jcb.25158. PMid:25752935.
http://dx.doi.org/10.1002/jcb.25158...
; Henry et al., 2011Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Endocrinology. 2011;152(7):2609-18. http://dx.doi.org/10.1210/en.2011-0143. PMid:21558317.
http://dx.doi.org/10.1210/en.2011-0143...
). Thus, the epigenome can be modulated in response to the availability of essential metabolites, which can in turn be regulated by leptin.

Mitochondria are one of the most relevant organelles for oocyte development. Obesity clearly affects the oocyte mitochondrial function, leading to mitophagy and impaired oocyte function and quality. Such changes are accompanied by the dysregulation of oocyte gene expression and the epigenetic program and may be determined by local changes in leptin signalling, which can directly modulate oocyte mitochondrial activity and function. Thus, altered leptin signalling and associated impaired mitochondrial function most certainly affect the oocyte quality and contributes to the pathogenesis of ovarian failure and infertility in maternal obesity.

Leptin and methylation changes

We have previously discussed the putative role of leptin on epigenetic actions mostly through the modulation of metabolite availability and mitochondrial function. Despite being scarce, evidences of leptin direct actions on epigenetic machinery start getting noticed. Leptin has been recently associated with changes in DNA methylation, and post-transcriptional histone modifications, as well as the regulation of microRNA (miRNA) (Wróblewski et al., 2019Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular insight into the interaction between epigenetics and leptin in metabolic disorders. Nutrients. 2019;11(8):1872. http://dx.doi.org/10.3390/nu11081872. PMid:31408957.
http://dx.doi.org/10.3390/nu11081872...
) in various cellular contexts. Therefore, we presently discuss the most up-to-date studies on leptin-mediated epigenetic changes.

Studies related to carcinogenesis showed leptin involvement in the modulation of important enzymes controlling epigenetic processes. For instance, in a study on human colon cancer cells, leptin was found to up-regulate the expression of histone deacetylase enzyme sirtuin 1 (SIRT1) (Song et al., 2018Song NY, Lee YH, Na HK, Baek JH, Surh YJ. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: implications for obesity-associated colon carcinogenesis. Biochem Pharmacol. 2018;153:282-91. http://dx.doi.org/10.1016/j.bcp.2018.02.001. PMid:29427626.
http://dx.doi.org/10.1016/j.bcp.2018.02....
) . In another study in ovarian cancer, it was reported that leptin modulated HDACs gene expression, in which class I and II HDACs were increased in OVCAR-3 cells, while class II HDAC expression was increased in folliculoma cells (Fiedor et al., 2018Fiedor E, Zajda K, Gregoraszczuk EL. Leptin receptor antagonists’ action on HDAC expression eliminating the negative effects of leptin in ovarian cancer. Cancer Genomics Proteomics. 2018;15(4):329-36. http://dx.doi.org/10.21873/cgp.20091. PMid:29976638.
http://dx.doi.org/10.21873/cgp.20091...
). Importantly, animals with dysregulated leptin signalling, the diabetic mouse (db) and obese mouse (ob), showed lower expression of SIRT1 in colon cells, suggesting its involvement in leptin-induced pathogenesis of colon carcinogenesis (Song et al., 2018Song NY, Lee YH, Na HK, Baek JH, Surh YJ. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: implications for obesity-associated colon carcinogenesis. Biochem Pharmacol. 2018;153:282-91. http://dx.doi.org/10.1016/j.bcp.2018.02.001. PMid:29427626.
http://dx.doi.org/10.1016/j.bcp.2018.02....
). In another study, leptin was shown to induce the progression and chemoresistance of pancreatic adenocarcinoma by affecting the levels of HDACs and the miRNAs miR21 and miR200a/c in tumors, promoting cancer cell survival and division by acting as a proliferative factor (Tchio et al., 2016Tchio CM, Harbuzariu A, Harmon T, Beech D, Gonzalez-Perez R. Abstract 1901: leptin modulation of PCSC, HDAC, and microRNA in pancreatic adenocarcinoma. Cancer Res. 2016;76(14, Suppl):1901. http://dx.doi.org/10.1158/1538-7445.AM2016-1901.
http://dx.doi.org/10.1158/1538-7445.AM20...
). Finally, a recent study on rat adrenal cells revealed that leptin demethylated the promoter of a cation channel- Trpm7 (transient receptor potential melastatin 7) and also induced posttranslational modifications of histone proteins (H3K4me3, H3K27ac and H3K27me3), leading to increased Trpm7 transcription via LEPRb-dependent STAT3 activation (Yeung et al., 2021Yeung BHY, Griffiths K, Berger L, Paudel O, Shin MK, Rui L, Sham JSK, Polotsky VY, Tang WY. Leptin induces epigenetic regulation of transient receptor potential melastatin 7 in rat adrenal pheochromocytoma cells. Am J Respir Cell Mol Biol. 2021;65(2):214-21. http://dx.doi.org/10.1165/rcmb.2020-0374OC. PMid:33891828.
http://dx.doi.org/10.1165/rcmb.2020-0374...
). Thus, leptin was recently shown to directly regulate the activity of enzymes controlling histone post-translational modifications.

Concerning the direct regulation of DNA methylation, a number of studies have evidenced the ability of leptin to control de novo DNA methylation. Leptin was shown to induce changes in the methylation of CpG sites in the Pomc promoter, the precursor of the melanocyte-stimulating hormone. Indeed, animals treated with leptin during lactation showed hypomethylation of CpG dinucleotides in a specific region of Pomc promoter in the hypothalamus, when exposed to high-fat diet conditions later in life (Palou et al., 2011Palou M, Picó C, McKay JA, Sánchez J, Priego T, Mathers JC, Palou A. Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr. 2011;106(5):769-78. http://dx.doi.org/10.1017/S0007114511000973. PMid:21554805.
http://dx.doi.org/10.1017/S0007114511000...
). This suggests the putative role of leptin in programming, as the treatment with leptin in early life affected the establishment or maintenance of DNA methylation patterns and subsequent gene expression later in life, after an environmental challenge such as obesity (Palou et al., 2018Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev. 2018;76(12):875-92. http://dx.doi.org/10.1093/nutrit/nuy046. PMid:30285146.
http://dx.doi.org/10.1093/nutrit/nuy046...
). Furthermore, leptin was shown to drive the obesity-dependent changes in global DNA methylation and gene expression in the adipose tissue of diet-induced or genetically obese mice, with evidence for obesity related global DNA hypomethylation and subsequent increased gene expression (Sonne et al., 2017Sonne SB, Yadav R, Yin G, Dalgaard MD, Myrmel LS, Gupta R, Wang J, Madsen L, Kajimura S, Kristiansen K. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte. 2017;6(2):124-33. http://dx.doi.org/10.1080/21623945.2017.1320002. PMid:28481699.
http://dx.doi.org/10.1080/21623945.2017....
). Also, the leptin-deficient ob/ob mouse was shown to have increased expression profiles of DNA methyltransferases (DNMT) 3a and 3b in adipose tissue, suggesting the potential role of leptin in the regulation of these de novo DNA methylation enzymes (Kamei et al., 2010Kamei Y, Suganami T, Ehara T, Kanai S, Hayashi K, Yamamoto Y, Miura S, Ezaki O, Okano M, Ogawa Y. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity. 2010;18(2):314-21. http://dx.doi.org/10.1038/oby.2009.246. PMid:19680236.
http://dx.doi.org/10.1038/oby.2009.246...
; You et al., 2017You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, Deng J, Dawes BA, Vaag A, Ling C, Rosen ED, Kang S. Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife. 2017;6:e30766. http://dx.doi.org/10.7554/eLife.30766. PMid:29091029.
http://dx.doi.org/10.7554/eLife.30766...
). Finally, leptin has been also associated with the regulation of various miRNAs, which in turn may regulate gene expression (Derghal et al., 2015Derghal A, Djelloul M, Airault C, Pierre C, Dallaporta M, Troadec JD, Tillement V, Tardivel C, Bariohay B, Trouslard J, Mounien L. Leptin is required for hypothalamic regulation of miRNA stargeting POMC 3′UTR. Front Cell Neurosci. 2015;9:172. http://dx.doi.org/10.3389/FNCEL.2015.00172/ABSTRACT. PMid:25999818.
http://dx.doi.org/10.3389/FNCEL.2015.001...
; Nakanishi et al., 2009Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A, Suzuki H, Urayama O, Yamada N, Shimano H. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun. 2009;385(4):492-6. http://dx.doi.org/10.1016/j.bbrc.2009.05.058. PMid:19460359.
http://dx.doi.org/10.1016/j.bbrc.2009.05...
; Sangiao-Alvarellos et al., 2014Sangiao-Alvarellos S, Pena-Bello L, Manfredi-Lozano M, Tena-Sempere M, Cordido F. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance. Endocrinology. 2014;155(5):1838-50. http://dx.doi.org/10.1210/en.2013-1770. PMid:24517225.
http://dx.doi.org/10.1210/en.2013-1770...
). Therefore, there is increasing evidence in the literature that supports the direct involvement of leptin in DNA methylation regulation at various cellular levels, with potential consequences for gene expression regulation.

Given the evidence here presented, it is expectable that fluctuations in ovarian leptin may affect the oocyte epigenome, through the modulation of its epigenetic machinery. Such effects on DNA de novo methylation could impact not only the oocyte epigenome, quality, and competence but also the embryo and its development. As a matter of fact, the epigenetic program of the germ cells, seems to be affected by leptin, with reports showing a decrease in sperm quality as a result of elevated HDAC1 and HDAC2 expression following leptin administration in rats (Almabhouh et al., 2017Almabhouh F, Osman K, Ibrahim S, Gupalo S, Gnanou J, Ibrahim E, Singh HJ. Melatonin ameliorates the adverse effects of leptin on sperm. Asian J Androl. 2017;19(6):647-54. http://dx.doi.org/10.4103/1008-682X.183379. PMid:27748315.
http://dx.doi.org/10.4103/1008-682X.1833...
). Similarly, leptin treatment was shown to prevent oocyte apoptosis in buffalos against an inhibitor of the first and second-class HDACs called trichostatin A (Reza Shafiei Sheykhani et al., 2016Shafiei Sheykhani HR, Batavani RA, Najafi GR. Protective effect of leptin on induced apoptosis with trichostatin A on buffalo oocytes. Vet Res Forum. 2016;7(2):99-104. PMid:27482353.). Hence, under conditions of dysregulated leptin signalling (hyperleptinemia or resistance) during the course of obesity, leptin may well negatively impact the establishment of the epigenetic programme, affecting oocyte development and growth. The need for more studies are therefore justified specifically on the roles of leptin on epigenetic regulations, with particular focus on any inter- or trans-generational consequences that an altered epigenome of germ cell may have, on not only the developing offspring, but also potentially subsequent generations.

The putative role of leptin in developmental programming

It is widely accepted that obesity not only affects maternal health and reproductive outcomes but also exerts deleterious effects on the normal growth and development of the foetus (Guelinckx et al., 2008Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9(2):140-50. http://dx.doi.org/10.1111/j.1467-789X.2007.00464.x. PMid:18221480.
http://dx.doi.org/10.1111/j.1467-789X.20...
). Maternal obesity was previously associated with foetal macrosomia (Guelinckx et al., 2008Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9(2):140-50. http://dx.doi.org/10.1111/j.1467-789X.2007.00464.x. PMid:18221480.
http://dx.doi.org/10.1111/j.1467-789X.20...
), congenital anomalies (Moore et al., 2000Moore LL, Singer MR, Bradlee ML, Rothman KJ, Milunsky A. A prospective study of the risk of congenital defects associated with maternal obesity and diabetes mellitus. Epidemiology. 2000;11(6):689-94. http://dx.doi.org/10.1097/00001648-200011000-00013. PMid:11055631.
http://dx.doi.org/10.1097/00001648-20001...
), stillbirth, and perinatal death (Kristensen et al., 2005Kristensen J, Vestergaard M, Wisborg K, Kesmodel U, Secher NJ. Pre-pregnancy weight and the risk of stillbirth and neonatal death. BJOG. 2005;112(4):403-8. http://dx.doi.org/10.1111/j.1471-0528.2005.00437.x. PMid:15777435.
http://dx.doi.org/10.1111/j.1471-0528.20...
). On the other hand, postnatal studies revealed the association between maternal obesity, metabolic syndrome, and childhood obesity in the offspring (Stocker and Cawthorne, 2008Stocker CJ, Cawthorne MA. The influence of leptin on early life programming of obesity. Trends Biotechnol. 2008;26(10):545-51. http://dx.doi.org/10.1016/j.tibtech.2008.06.004. PMid:18706724.
http://dx.doi.org/10.1016/j.tibtech.2008...
). The nutritional and health status of the mother has always been known to be critical for foetal growth. However, the precise molecular mechanisms relating offspring predisposition to obesity and associated comorbidities to maternal obesity are still unclear. It is unclear what is the exact contribution of a low oocyte quality, or that of an altered intrauterine environment, to such effects in the offspring. Pregnancy is known to be associated with dramatic developmental plasticity, which through intrauterine adaptations determine the impact of prenatal environment and maternal metabolic performance (Santangeli et al., 2015Santangeli L, Sattar N, Huda SS. Impact of maternal obesity on perinatal and childhood outcomes. Best Pract Res Clin Obstet Gynaecol. 2015;29(3):438-48. http://dx.doi.org/10.1016/j.bpobgyn.2014.10.009. PMid:25497183.
http://dx.doi.org/10.1016/j.bpobgyn.2014...
) on the future health of the offspring (Dunkerton et al., 2022Dunkerton S, Mrcog M, Aiken C, Bchir M, Mrcp M. Impact of the intrauterine environment on future reproductive and metabolic health. Obstet Gynaecol. 2022;24(2):93-100. http://dx.doi.org/10.1111/tog.12797.
http://dx.doi.org/10.1111/tog.12797...
). Nonetheless, several lines of evidence support the contribution of altered gametes, rather than the intrauterine environment, to offspring predisposition to disease. For instance, studies showed that one-cell zygote, and blastocysts, from mice with diabetes retain the ability to result in congenital malformations and growth retardation in the offspring, despite being transferred into healthy pseudo-pregnant female recipients (Wyman et al., 2008Wyman A, Pinto AB, Sheridan R, Moley KH. One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology. 2008;149(2):466-9. http://dx.doi.org/10.1210/en.2007-1273. PMid:18039778.
http://dx.doi.org/10.1210/en.2007-1273...
). Another similar study employing embryo transfer experiments from mice fed a high-fat diet also claimed that defects observed on the foetus arose prior to the blastocyst stage and were not determined by potential changes in the uterine environment of obese mothers (Luzzo et al., 2012Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217. http://dx.doi.org/10.1371/journal.pone.0049217. PMid:23152876.
http://dx.doi.org/10.1371/journal.pone.0...
). However, the key question about the maternal factors carried on by the oocyte leading to altered developmental programming in the offspring remains unanswered. We speculate that conditions like hyperleptinemia or leptin resistance in obese mothers may drive such changes in the gamete with potential repercussions to the offspring.

Considering the evidence presented throughout this review, supporting the potential roles of leptin in the regulation of oocyte metabolism, mitochondrial function, and epigenetic landscape, it cannot be dismissed that leptin may play a role in determining short- and long-term health outcomes in the offspring. Leptin itself is an important contributor to metabolic disease, as increased leptin and reduced adiponectin levels have been described as a major feature of obesity that contributes to the establishment and maintenance of metabolic syndrome (Frühbeck et al., 2019Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, Colina I, Gómez-Ambrosi J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients. 2019;11(2):454. http://dx.doi.org/10.3390/nu11020454. PMid:30813240.
http://dx.doi.org/10.3390/nu11020454...
). Also, environmental cues in early life, especially that of the maternal health and diet likely the state of altered leptin levels, were shown to alter epigenetic regulation in the offspring (Park et al., 2008Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316-24. http://dx.doi.org/10.1172/JCI33655. PMid:18464933.
http://dx.doi.org/10.1172/JCI33655...
; Pinney et al., 2011Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia. 2011;54(10):2606-14. http://dx.doi.org/10.1007/s00125-011-2250-1. PMid:21779870.
http://dx.doi.org/10.1007/s00125-011-225...
; Pinney and Simmons, 2010Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab. 2010;21(4):223-9. http://dx.doi.org/10.1016/j.tem.2009.10.002. PMid:19864158.
http://dx.doi.org/10.1016/j.tem.2009.10....
; Thompson and Einstein, 2010Thompson RF, Einstein FH. Epigenetic basis for fetal origins of age-related disease. J Womens Health (Larchmt). 2010;19(3):581-7. http://dx.doi.org/10.1089/jwh.2009.1408. PMid:20136551.
http://dx.doi.org/10.1089/jwh.2009.1408...
). Interestingly, studies also supported the notion of such epigenetic control through inheritance via both male and female gametes (Chen et al., 2016Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016;17(12):733-43. http://dx.doi.org/10.1038/nrg.2016.106. PMid:27694809.
http://dx.doi.org/10.1038/nrg.2016.106...
; Daxinger and Whitelaw, 2012Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13(3):153-62. http://dx.doi.org/10.1038/nrg3188. PMid:22290458.
http://dx.doi.org/10.1038/nrg3188...
; Z. J. Ge et al., 2014Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect. 2014;122(2):159-64. http://dx.doi.org/10.1289/ehp.1307047. PMid:24316659.
http://dx.doi.org/10.1289/ehp.1307047...
; Huypens et al., 2016Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, de Angelis MH, Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48(5):497-9. http://dx.doi.org/10.1038/ng.3527. PMid:26974008.
http://dx.doi.org/10.1038/ng.3527...
; Rando and Simmons, 2015Rando OJ, Simmons RA. I’m eating for two: parental dietary effects on offspring metabolism. Cell. 2015;161(1):93-105. http://dx.doi.org/10.1016/j.cell.2015.02.021. PMid:25815988.
http://dx.doi.org/10.1016/j.cell.2015.02...
). Thus, changes in the epigenome and other content of the gametes, can be passed on and affect the health state of the offspring. For instance, a study involving the fertilization of gametes from mice subjected to different dietary treatment, suggested that epigenetic changes in the oocyte and sperm play an important role in the intergenerational transmission of susceptibility to obesity in the offspring (Huypens et al., 2016Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, de Angelis MH, Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48(5):497-9. http://dx.doi.org/10.1038/ng.3527. PMid:26974008.
http://dx.doi.org/10.1038/ng.3527...
). Similarly, Chen and coworkers revealed more recently that reduced levels of TET3 dioxygenase in the oocytes from hyperglycemic mothers, could lead to maternally inherited glucose intolerance in the offspring in mice (X. Wu et al., 2022Wu X, Xu S, Weng J. Hyperglycemia-mediated oocyte TET3 insufficiency predisposes offspring to glucose intolerance. J Diabetes Investig. 2022;13(10):1649-51. http://dx.doi.org/10.1111/jdi.13885. PMid:35839128.
http://dx.doi.org/10.1111/jdi.13885...
). This was mediated through the potential effect on the zygotic genome reprogramming via TET3-dependent DNA demethylation of genes involved in insulin secretion, sensitizing the offspring to glucose intolerance (X. Wu et al., 2022Wu X, Xu S, Weng J. Hyperglycemia-mediated oocyte TET3 insufficiency predisposes offspring to glucose intolerance. J Diabetes Investig. 2022;13(10):1649-51. http://dx.doi.org/10.1111/jdi.13885. PMid:35839128.
http://dx.doi.org/10.1111/jdi.13885...
). Another study seeking to understand the oocyte-mediated effects of maternal obesity on embryo development reported that reduced levels of the Stella protein in oocytes obtained from mice fed high-fat diet, drove the genome-wide changes in methylation in the zygote, culminating in compromised adult metabolic phenotypes (Leong, 2018Leong I. Link between maternal obesity and offspring is STELLA. Nat Rev Endocrinol. 2018;14(4):189. http://dx.doi.org/10.1038/nrendo.2018.26. PMid:29498374.
http://dx.doi.org/10.1038/nrendo.2018.26...
). Hence, specifically for the oocyte, disrupted metabolism in response to changes in metabolite availability and mitochondrial function, as the result of compromised local leptin signalling, can lead to alterations in the epigenome that may exert a detrimental effect on the developmental programming of the offspring.

In light of the intricate set of interactions between epigenetic mechanisms, metabolite availability, and gene expression regulation during embryo development, as well as the established role of leptin mediating such processes, one may anticipate that substantial evidence from studies will be generated in the soon future examining the impact of altered leptin levels on the female gamete and possible consequences for offspring health. Of important note, leptin has been already started to be recognized as a factor capable of affecting developmental programming in other contexts than obesity (Vickers et al., 2005Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211-6. http://dx.doi.org/10.1210/en.2005-0581. PMid:16020474.
http://dx.doi.org/10.1210/en.2005-0581...
). In fact, an optimal level of leptin in the umbilical cord blood was shown to be key for adequate intrauterine development of the foetus (Sivan et al., 1997Sivan E, Lin WM, Homko CJ, Reece EA, Boden G. Leptin is present in human cord blood. Diabetes. 1997;46(5):917-9. http://dx.doi.org/10.2337/diab.46.5.917. PMid:9133565.
http://dx.doi.org/10.2337/diab.46.5.917...
), whereas increased leptin levels in maternal obesity were suggested to alter metabolic programming (Karakosta et al., 2013Karakosta P, Georgiou V, Fthenou E, Papadopoulou E, Roumeliotaki T, Margioris A, Castanas E, Kampa M, Kogevinas M, Chatzi L. Maternal weight status, cord blood leptin and fetal growth: a prospective mother-child cohort study (Rhea study). Paediatr Perinat Epidemiol. 2013;27(5):461-71. http://dx.doi.org/10.1111/ppe.12074. PMid:23930782.
http://dx.doi.org/10.1111/ppe.12074...
). For instance, leptin has been shown to be necessary for successful trophoblast invasion, having a mitogenic and anti-apoptotic effect in cultured human trophoblast cells (Magariños et al., 2007Magariños MP, Sánchez-Margalet V, Kotler M, Calvo JC, Varone CL. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007;76(2):203-10. http://dx.doi.org/10.1095/biolreprod.106.051391. PMid:17021346.
http://dx.doi.org/10.1095/biolreprod.106...
). Leptin levels have also been inversely correlated with placental weight (Buchbinder et al., 2001Buchbinder A, Lang U, Baker RS, Khoury JC, Mershon J, Clark KE. Leptin in the ovine fetus correlates with fetal and placental size. Am J Obstet Gynecol. 2001;185(4):786-91. http://dx.doi.org/10.1067/mob.2001.117313. PMid:11641652.
http://dx.doi.org/10.1067/mob.2001.11731...
). Metabolically, leptin was shown to upregulate placental lipolysis (White et al., 2006White V, González E, Capobianco E, Pustovrh C, Martínez N, Higa R, Baier M, Jawerbaum A. Leptin modulates nitric oxide production and lipid metabolism in human placenta. Reprod Fertil Dev. 2006;18(4):425-32. http://dx.doi.org/10.1071/RD05105. PMid:16737635.
http://dx.doi.org/10.1071/RD05105...
) and stimulate the activity of amino acid transporter system A in the placental villi (Jansson et al., 2003Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab. 2003;88(3):1205-11. http://dx.doi.org/10.1210/jc.2002-021332. PMid:12629107.
http://dx.doi.org/10.1210/jc.2002-021332...
), ensuring the adequate transfer of free fatty acids and neutral amino acids to the growing foetus. Leptin has also been suggested to control the intrauterine foetal glucogenic capacity, particularly by inhibition of endogenous glucose production towards term (Forhead et al., 2008Forhead AJ, Lamb CA, Franko KL, O’Connor DM, Wooding FBP, Cripps RL, Ozanne S, Blache D, Shen QW, Du M, Fowden AL. Role of leptin in the regulation of growth and carbohydrate metabolism in the ovine fetus during late gestation. J Physiol. 2008;586(Pt 9):2393-403. http://dx.doi.org/10.1113/jphysiol.2007.149237. PMid:18325979.
http://dx.doi.org/10.1113/jphysiol.2007....
). More generally, leptin is considered an important modulator of foetal growth and develpment (Hassink et al., 1997Hassink SG, de Lancey E, Sheslow D, Smith-Kirwin SM, O’Connor DM, Considine R, Opentanova I, Dostal K, Spear ML, Leef K, Ash M, Spitzer AR, Funanage VL. Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics. 1997;100(1):E1. http://dx.doi.org/10.1542/peds.100.1.e1. PMid:9200375.
http://dx.doi.org/10.1542/peds.100.1.e1...
), controlling the proliferation of pancreatic islet cells(Islam et al., 2000Islam MS, Sjöholm Å, Emilsson V. Fetal pancreatic islets express functional leptin receptors and leptin stimulates proliferation of fetal islet cells. Int J Obes. 2000;24(10):1246-53. http://dx.doi.org/10.1038/sj.ijo.0801370. PMid:11093284.
http://dx.doi.org/10.1038/sj.ijo.0801370...
), the development and migration of neuronal cells in the cerebral cortex (Udagawa et al., 2007Udagawa J, Hatta T, Hashimoto R, Otani H. Roles of leptin in prenatal and perinatal brain development. Congenit Anom (Kyoto). 2007;47(3):77-83. http://dx.doi.org/10.1111/j.1741-4520.2007.00150.x. PMid:17688465.
http://dx.doi.org/10.1111/j.1741-4520.20...
), and the development of foetal adipose tissue and foetal length and body weight (Javaid et al., 2005Javaid MK, Godfrey KM, Taylor P, Robinson SM, Crozier SR, Dennison EM, Robinson JS, Breier BR, Arden NK, Cooper C. Umbilical cord leptin predicts neonatal bone mass. Calcif Tissue Int. 2005;76(5):341-7. http://dx.doi.org/10.1007/s00223-004-1128-3. PMid:15864467.
http://dx.doi.org/10.1007/s00223-004-112...
; Valūnienė et al., 2007Valūnienė M, Verkauskienė R, Boguszewski M, Dahlgren J, Lašienė D, Lašas L, Wikland KA. Leptin levels at birth and in early postnatal life in small- and appropriate-for-gestational-age infants. Medicina. 2007;43(10):784. http://dx.doi.org/10.3390/medicina43100100.
http://dx.doi.org/10.3390/medicina431001...
; Varvarigou et al., 1999Varvarigou A, Mantzoros CS, Beratis NG. Cord blood leptin concentrations in relation to intrauterine growth. Clin Endocrinol. 1999;50(2):177-83. http://dx.doi.org/10.1046/j.1365-2265.1999.00630.x. PMid:10396359.
http://dx.doi.org/10.1046/j.1365-2265.19...
). In fact, the synthesis and circulating levels of leptin in utero is known to be sensitive to changes in nutrients, hormones, or genetic influence (Forhead and Fowden, 2009Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol. 2009;587(Pt 6):1145-52. http://dx.doi.org/10.1113/jphysiol.2008.167072. PMid:19188249.
http://dx.doi.org/10.1113/jphysiol.2008....
). Hence, maternal overnutrition was reported to increase gene expression in foetal adipose tissues (Mühlhäusler et al., 2002Mühlhäusler BS, Roberts CT, McFarlane JR, Kauter KG, McMillen IC. Fetal leptin is a signal of fat mass independent of maternal nutrition in ewes fed at or above maintenance energy requirements. Biol Reprod. 2002;67(2):493-9. http://dx.doi.org/10.1095/biolreprod67.2.493. PMid:12135887.
http://dx.doi.org/10.1095/biolreprod67.2...
). As a result, leptin is widely regarded as one of the main hormones capable of modulating the intrauterine environment, controlling foetal growth and development (Forhead and Fowden, 2009Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol. 2009;587(Pt 6):1145-52. http://dx.doi.org/10.1113/jphysiol.2008.167072. PMid:19188249.
http://dx.doi.org/10.1113/jphysiol.2008....
). Concerning the putative role of leptin in progmramming, it was shown that leptin can affect the formation and activity of hypothalamic networks in the foetus, which will dictate the regulation of appetite and energy balance in adult life (Bouret and Simerly, 2006Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet. 2006;70(4):295-301. http://dx.doi.org/10.1111/j.1399-0004.2006.00684.x. PMid:16965320.
http://dx.doi.org/10.1111/j.1399-0004.20...
; McMillen et al., 2005McMillen IC, Adam CL, Mühlhäusler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9-17. http://dx.doi.org/10.1113/jphysiol.2004.081992. PMid:15705647.
http://dx.doi.org/10.1113/jphysiol.2004....
). Thus, exposure of the foetus to altered leptin levels at any critical period of development may, therefore, have important programming consequences. Additionally, new functions of leptin in milk (Palou et al., 2018Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev. 2018;76(12):875-92. http://dx.doi.org/10.1093/nutrit/nuy046. PMid:30285146.
http://dx.doi.org/10.1093/nutrit/nuy046...
) and amniotic fluid (Yau-Qiu et al., 2020Yau-Qiu ZX, Picó C, Rodríguez AM, Palou A. Leptin distribution in rat foetal and extraembryonic tissues in late gestation: a physiological view of amniotic fluid leptin. Nutrients. 2020;12(9):1-14. http://dx.doi.org/10.3390/nu12092542. PMid:32825787.
http://dx.doi.org/10.3390/nu12092542...
) regardig early metabolic programming and metabolic health have also been reported in recent studies, in which animals showed long-term beneficial effects of leptin treatment against metabolic disease when leptin was administered during the lactation period. This portrays leptin as an important factor capable of modulating programming events at various developmental stages in the perinatal period.

When reproducing, women transfer through the gametes a complex cargo that comprises not only the genetic code but also the epigenome, proteins, metabolites, and other components relevant for embryo growth and, most importantly, capable of affecting developmental programming. The putative role of leptin in regulating the oocyte metabolome and epigenome renders this adipokine an important factor controlling the legacy of the gamete capable of affecting embryo development. Furthermore, the direct actions of leptin on the intrauterine environment and placentation also account for its putative impact on developmental programming. Finally, programming events can be also established post-natally (McMillen et al., 2005McMillen IC, Adam CL, Mühlhäusler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9-17. http://dx.doi.org/10.1113/jphysiol.2004.081992. PMid:15705647.
http://dx.doi.org/10.1113/jphysiol.2004....
)during lactation, an equally relevant developmental timepoint concerning the hyperleptinemic environment seen during maternal obesity. It however remains, uncharacterised whether reversing leptin signalling in these developmental stages eventually rescues the phenotypic consequences in the offspring.

Conclusion

The obesity epidemic is a global health problem with a profound impact on maternal-foetal health. Maternal obesity not only produces the usual grave outcomes of obesity but also poses significant risks to the development of the offspring both in the short and long run. This is due to the fact that the female gamete develops and matures in a physiologically altered conditions which may have impair the oocyte quality and alters its epigenome and metabolome. Given that the oocyte epigenome has the potential to control initial reprogramming events in the early embryo as well as longer-term metabolic outcomes, the oocyte legacy has the potential ability to affect predisposition to health and disease in the offspring. However, a better understanding of the maternal factors contributing to the alterations in developmental programming in the offspring is of extreme relevance. With growing evidence on the support of leptin in maintaining an optimal metabolic state, and mitochondrial function as well as a normal epigenetic landscape in the oocyte and other cellular contexts, its role as a major modulator of oocyte quality and successful embryo development seems secure. Generally, it is attractive to propose that perturbed leptin signalling observed during obesity, has detrimental effects as early as the oocyte stage, which further predisposes them to embryo developmental abnormalities and even metabolic diseases in the offspring.

Glossary

Acronym Full form
ATF4 Activating transcription factor 4
ATP Adenosine triphosphate
BDNF Brain-derived neurotrophic factor
BMI Body mass index
c- JNKs C-Jun N-terminal kinases
CCs Cumulus cells
COCs Cumulus-oocyte-complexes
DAG Diacylglycerol
Db Diabetic mouse
DIO Diet induced obesity
DNMT DNA methyltransferases
ERK Extracellular signal regulated kinase
GCs Granulosa cells
GLUT1 Glucose transporter 1
GTP Guanosine triphosphate
H3K27Ac Acetylation of Histone3 Lysine 27
H3K27M3 Trimethylation of Histone 3 lysine 27
H3K4M3 Trimethylation of Histone 3 lysine4
HATs Histone acetyltransferases
HBP Hexosamine biosynthesis pathway
HDAC5 Histone deacetylase 5
HDACs Histone deacetylases
hESCs Human embryonic stem cells
HFD High fat diet
HPG-axis Hypothalamic-pituitary-gonadal axis
IGF-1 Insulin-like growth factor 1
IKKε I-kappa-B kinase epsilon
IP3 Triphosphoinositol
IRS Insulin receptor substrate
JAK/STAT Janus kinase /signal transducer and activator of transcription
JAK2 Janus Kinase-2
MAPK Mitogen-activated protein kinase
MeCP2 Methyl-cpg-binding protein 2
MFN2 Mitofusin 2
miRNA Microrna
mtDNA Mitochondrial DNA
MyD88 Myeloid differentiation factor 88
NAD+ Nicotinamide adenine dinucleotide
Ob Obese mouse
ObRb Leptin receptor b
PCOS Polycystic ovarian syndrome
PI3K Phosphatidylinositol 3 kinase
PKC Protein kinase C
PPP Pentose phosphate pathway
PTP1B Phosphotyrosine phosphatase-1B
PTPs Protein tyrosine phosphatases
PUFA Polyunsaturated fatty acids
ROS Reactive oxygen species
SAM S-adenosyl methionine
SGOC Serine-glycine-one-carbon
SIRT1 Sirtuin 1
SOCS-3 Suppressor of cytokine signaling 3
SREBP-1c Sterol regulatory element binding protein 1
STAT3 Signal transducer and activator of transcription 3
TCA Tricarboxyllic
TET Ten-eleven translocation
Trpm7 Transient receptor potential melastatin 7
α-KG Alpha ketoglutarate
  • Financial support: Work supported by grants from the Polish National Science Centre (2019/34/E/NZ4/00349) awarded to AG.
  • How to cite: Sharma Y, Galvão AM. Maternal obesity and ovarian failure: is leptin the culprit?. Anim Reprod. 2022;19(4):e20230007. https://doi.org/10.1590/1984-3143-AR2023-0007

References

  • Al Darwich A, Perreau C, Petit MH, Papillier P, Dupont J, Guillaume D, Mermillod P, Guignot F. Effect of PUFA on embryo cryoresistance, gene expression and AMPKalpha phosphorylation in IVF-derived bovine embryos. Prostaglandins Other Lipid Mediat. 2010;93(1-2):30-6. http://dx.doi.org/10.1016/j.prostaglandins.2010.06.002 PMid:20601073.
    » http://dx.doi.org/10.1016/j.prostaglandins.2010.06.002
  • Allen JF, Paula WBM. Mitochondrial genome function and maternal inheritance. Biochem Soc Trans. 2013;41(5):1298-304. http://dx.doi.org/10.1042/BST20130106 PMid:24059523.
    » http://dx.doi.org/10.1042/BST20130106
  • Almabhouh F, Osman K, Ibrahim S, Gupalo S, Gnanou J, Ibrahim E, Singh HJ. Melatonin ameliorates the adverse effects of leptin on sperm. Asian J Androl. 2017;19(6):647-54. http://dx.doi.org/10.4103/1008-682X.183379 PMid:27748315.
    » http://dx.doi.org/10.4103/1008-682X.183379
  • Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update. 2010;16(2):166-76. http://dx.doi.org/10.1093/humupd/dmp045 PMid:19825850.
    » http://dx.doi.org/10.1093/humupd/dmp045
  • Banks AS, Davis SM, Bates SH, Myers MG Jr. Activation of downstream signals by the long form of the leptin receptor. J Biol Chem. 2000;275(19):14563-72. http://dx.doi.org/10.1074/jbc.275.19.14563 PMid:10799542.
    » http://dx.doi.org/10.1074/jbc.275.19.14563
  • Bellver J, Melo MAB, Bosch E, Serra V, Remohí J, Pellicer A. Obesity and poor reproductive outcome: the potential role of the endometrium. Fertil Steril. 2007;88(2):446-51. http://dx.doi.org/10.1016/j.fertnstert.2006.11.162 PMid:17418840.
    » http://dx.doi.org/10.1016/j.fertnstert.2006.11.162
  • Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12(8):917-24. http://dx.doi.org/10.1038/nm1435 PMid:16845389.
    » http://dx.doi.org/10.1038/nm1435
  • Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P, Copin H. Mitochondria: participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol. 2014;55:60-4. http://dx.doi.org/10.1016/j.biocel.2014.08.011 PMid:25150832.
    » http://dx.doi.org/10.1016/j.biocel.2014.08.011
  • Bjørbæk C, Buchholz RM, Davis SM, Bates SH, Pierroz DD, Gu H, Neel BG, Myers MG Jr, Flier JS. Divergent roles of SHP-2 in ERK activation by leptin receptors. J Biol Chem. 2001;276(7):4747-55. http://dx.doi.org/10.1074/jbc.M007439200 PMid:11085989.
    » http://dx.doi.org/10.1074/jbc.M007439200
  • Bjørbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery. Recent Prog Horm Res. 2004;59(1):305-31. http://dx.doi.org/10.1210/rp.59.1.305 PMid:14749508.
    » http://dx.doi.org/10.1210/rp.59.1.305
  • Bjørbæk C, Lavery HJ, Bates SH, Olson RK, Davis SM, Flier JS, Myers MG Jr. SOCS3 mediates feedback inhibition of the leptin receptor via Tyr985. J Biol Chem. 2000;275(51):40649-57. http://dx.doi.org/10.1074/jbc.M007577200 PMid:11018044.
    » http://dx.doi.org/10.1074/jbc.M007577200
  • Bjørbæk C, Uotani S, Silva B, Flier JS. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J Biol Chem. 1997;272(51):32686-95. http://dx.doi.org/10.1074/jbc.272.51.32686 PMid:9405487.
    » http://dx.doi.org/10.1074/jbc.272.51.32686
  • Blanquer-Rossellõ MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin modulates mitochondrial function, dynamics and biogenesis in MCF-7 cells. J Cell Biochem. 2015;116(9):2039-48. http://dx.doi.org/10.1002/jcb.25158 PMid:25752935.
    » http://dx.doi.org/10.1002/jcb.25158
  • Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits. Clin Genet. 2006;70(4):295-301. http://dx.doi.org/10.1111/j.1399-0004.2006.00684.x PMid:16965320.
    » http://dx.doi.org/10.1111/j.1399-0004.2006.00684.x
  • Brabant G, Müller G, Horn R, Anderwald C, Roden M, Nave H. Hepatic leptin signaling in obesity. FASEB J. 2005;19(8):1048-50. http://dx.doi.org/10.1096/fj.04-2846fje PMid:15788447.
    » http://dx.doi.org/10.1096/fj.04-2846fje
  • Brannian JD, Hansen KA. Leptin and ovarian folliculogenesis: implications for ovulation induction and ART outcomes. Semin Reprod Med. 2002;20(2):103-12. http://dx.doi.org/10.1055/s-2002-32501 PMid:12087495.
    » http://dx.doi.org/10.1055/s-2002-32501
  • Buchbinder A, Lang U, Baker RS, Khoury JC, Mershon J, Clark KE. Leptin in the ovine fetus correlates with fetal and placental size. Am J Obstet Gynecol. 2001;185(4):786-91. http://dx.doi.org/10.1067/mob.2001.117313 PMid:11641652.
    » http://dx.doi.org/10.1067/mob.2001.117313
  • Calbet JAL, MacLean DA. Plasma glucagon and insulin responses depend on the rate of appearance of amino acids after ingestion of different protein solutions in humans. J Nutr. 2002;132(8):2174-82. http://dx.doi.org/10.1093/jn/132.8.2174 PMid:12163658.
    » http://dx.doi.org/10.1093/jn/132.8.2174
  • Cardozo ER, Karmon AE, Gold J, Petrozza JC, Styer AK. Reproductive outcomes in oocyte donation cycles are associated with donor BMI. Hum Reprod. 2016;31(2):385-92. http://dx.doi.org/10.1093/humrep/dev298 PMid:26677960.
    » http://dx.doi.org/10.1093/humrep/dev298
  • Castracane V, Henson MC. (2003). Leptin and reproduction. New York: Springer. http://dx.doi.org/10.1007/978-1-4615-0157-2
    » http://dx.doi.org/10.1007/978-1-4615-0157-2
  • Cervero A, Horcajadas JA, Martín J, Pellicer A, Simón C. The leptin system during human endometrial receptivity and preimplantation development. J Clin Endocrinol Metab. 2004;89(5):2442-51. http://dx.doi.org/10.1210/jc.2003-032127 PMid:15126576.
    » http://dx.doi.org/10.1210/jc.2003-032127
  • Chen Q, Yan W, Duan E. Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet. 2016;17(12):733-43. http://dx.doi.org/10.1038/nrg.2016.106 PMid:27694809.
    » http://dx.doi.org/10.1038/nrg.2016.106
  • Cheng A, Uetani N, Simoncic PD, Chaubey VP, Lee-Loy A, McGlade CJ, Kennedy BP, Tremblay ML. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev Cell. 2002;2(4):497-503. http://dx.doi.org/10.1016/S1534-5807(02)00149-1 PMid:11970899.
    » http://dx.doi.org/10.1016/S1534-5807(02)00149-1
  • Childs G, Odle AK, MacNicol MC, MacNicol AM. The importance of leptin to reproduction. Endocrinology. 2021;162(2):1-18. http://dx.doi.org/10.1210/endocr/bqaa204 PMid:33165520.
    » http://dx.doi.org/10.1210/endocr/bqaa204
  • Chou SH, Mantzoros C. 20 years of leptin: role of leptin in human reproductive disorders. J Endocrinol. 2014;223(1):T49-62. http://dx.doi.org/10.1530/JOE-14-0245 PMid:25056118.
    » http://dx.doi.org/10.1530/JOE-14-0245
  • Considine R, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334(5):292-5. http://dx.doi.org/10.1056/NEJM199602013340503 PMid:8532024.
    » http://dx.doi.org/10.1056/NEJM199602013340503
  • Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ, Flaws J, Wagner KU, Hennighausen L. Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem. 2002;277(20):17830-5. http://dx.doi.org/10.1074/jbc.M200186200 PMid:11884400.
    » http://dx.doi.org/10.1074/jbc.M200186200
  • D’souza AM, Neumann UH, Glavas MM, Kieffer TJ. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052-65. http://dx.doi.org/10.1016/j.molmet.2017.04.011 PMid:28951828.
    » http://dx.doi.org/10.1016/j.molmet.2017.04.011
  • Dağ ZÖ, Dilbaz B. Impact of obesity on infertility in women. J Turk Ger Gynecol Assoc. 2015;16(2):111-7. http://dx.doi.org/10.5152/jtgga.2015.15232 PMid:26097395.
    » http://dx.doi.org/10.5152/jtgga.2015.15232
  • Dalamaga M, Chou SH, Shields K, Papageorgiou P, Polyzos SA, Mantzoros CS. Leptin at the intersection of neuroendocrinology and metabolism: current evidence and therapeutic perspectives. Cell Metab. 2013;18(1):29-42. http://dx.doi.org/10.1016/j.cmet.2013.05.010 PMid:23770129.
    » http://dx.doi.org/10.1016/j.cmet.2013.05.010
  • Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet. 2012;13(3):153-62. http://dx.doi.org/10.1038/nrg3188 PMid:22290458.
    » http://dx.doi.org/10.1038/nrg3188
  • Derghal A, Djelloul M, Airault C, Pierre C, Dallaporta M, Troadec JD, Tillement V, Tardivel C, Bariohay B, Trouslard J, Mounien L. Leptin is required for hypothalamic regulation of miRNA stargeting POMC 3′UTR. Front Cell Neurosci. 2015;9:172. http://dx.doi.org/10.3389/FNCEL.2015.00172/ABSTRACT PMid:25999818.
    » http://dx.doi.org/10.3389/FNCEL.2015.00172/ABSTRACT
  • Downs SM, Hudson ED. Energy substrates and the completion of spontaneous meiotic maturation. Zygote. 2000;8(4):339-51. http://dx.doi.org/10.1017/S0967199400001131 PMid:11108555.
    » http://dx.doi.org/10.1017/S0967199400001131
  • Downs SM, Mosey JL, Klinger J. Fatty acid oxidation and meiotic resumption in mouse oocytes. Mol Reprod Dev. 2009;76(9):844-53. http://dx.doi.org/10.1002/mrd.21047 PMid:19455666.
    » http://dx.doi.org/10.1002/mrd.21047
  • Dunkerton S, Mrcog M, Aiken C, Bchir M, Mrcp M. Impact of the intrauterine environment on future reproductive and metabolic health. Obstet Gynaecol. 2022;24(2):93-100. http://dx.doi.org/10.1111/tog.12797
    » http://dx.doi.org/10.1111/tog.12797
  • Dunning KR, Akison LK, Russell DL, Norman RJ, Robker RL. Increased beta-oxidation and improved oocyte developmental competence in response to L-Carnitine during ovarian in vitro follicle development in mice. Biol Reprod. 2011;85(3):548-55. http://dx.doi.org/10.1095/biolreprod.110.090415 PMid:21613630.
    » http://dx.doi.org/10.1095/biolreprod.110.090415
  • Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148(1):R15-27. http://dx.doi.org/10.1530/REP-13-0251 PMid:24760880.
    » http://dx.doi.org/10.1530/REP-13-0251
  • Enriori PJ, Evans AE, Sinnayah P, Cowley MA. Leptin resistance and obesity. Obesity. 2006;14(Suppl 5):254S-8S. http://dx.doi.org/10.1038/oby.2006.319 PMid:17021377.
    » http://dx.doi.org/10.1038/oby.2006.319
  • Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson BE, Perello M, Nillni EA, Grove KL, Cowley MA. Diet-induced obesity causes severe but reversible leptin resistance in arcuate melanocortin neurons. Cell Metab. 2007;5(3):181-94. http://dx.doi.org/10.1016/j.cmet.2007.02.004 PMid:17339026.
    » http://dx.doi.org/10.1016/j.cmet.2007.02.004
  • Eppig JJ, Marin-Bivens C, Viveiros MM, de la Fuente R. Regulation of mammalian oocyte maturation. In: Leung PCK, Adashi EY, editors. The ovary. 2nd ed. London: Academic Press; 2004. p. 113-29. http://dx.doi.org/10.1016/B978-012444562-8/50008-2
    » http://dx.doi.org/10.1016/B978-012444562-8/50008-2
  • Farooqi IS, O’Rahilly S. Leptin: a pivotal regulator of human energy homeostasis. Am J Clin Nutr. 2009;89(3):980S-4S. http://dx.doi.org/10.3945/ajcn.2008.26788C PMid:19211814.
    » http://dx.doi.org/10.3945/ajcn.2008.26788C
  • Ferguson EM, Leese HJ. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73(9):1195-201. http://dx.doi.org/10.1002/mrd.20494 PMid:16804881.
    » http://dx.doi.org/10.1002/mrd.20494
  • Fiedor E, Zajda K, Gregoraszczuk EL. Leptin receptor antagonists’ action on HDAC expression eliminating the negative effects of leptin in ovarian cancer. Cancer Genomics Proteomics. 2018;15(4):329-36. http://dx.doi.org/10.21873/cgp.20091 PMid:29976638.
    » http://dx.doi.org/10.21873/cgp.20091
  • Flaus A, Owen-Hughes T. Mechanisms for ATP-dependent chromatin remodelling: the means to the end. FEBS J. 2011;278(19):3579-95. http://dx.doi.org/10.1111/j.1742-4658.2011.08281.x PMid:21810178.
    » http://dx.doi.org/10.1111/j.1742-4658.2011.08281.x
  • Forhead AJ, Fowden AL. The hungry fetus? Role of leptin as a nutritional signal before birth. J Physiol. 2009;587(Pt 6):1145-52. http://dx.doi.org/10.1113/jphysiol.2008.167072 PMid:19188249.
    » http://dx.doi.org/10.1113/jphysiol.2008.167072
  • Forhead AJ, Lamb CA, Franko KL, O’Connor DM, Wooding FBP, Cripps RL, Ozanne S, Blache D, Shen QW, Du M, Fowden AL. Role of leptin in the regulation of growth and carbohydrate metabolism in the ovine fetus during late gestation. J Physiol. 2008;586(Pt 9):2393-403. http://dx.doi.org/10.1113/jphysiol.2007.149237 PMid:18325979.
    » http://dx.doi.org/10.1113/jphysiol.2007.149237
  • Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763-70. http://dx.doi.org/10.1038/27376 PMid:9796811.
    » http://dx.doi.org/10.1038/27376
  • Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, Colina I, Gómez-Ambrosi J. Adiponectin-leptin ratio is a functional biomarker of adipose tissue inflammation. Nutrients. 2019;11(2):454. http://dx.doi.org/10.3390/nu11020454 PMid:30813240.
    » http://dx.doi.org/10.3390/nu11020454
  • Galvão A, Henriques S, Pestka D, Lukasik K, Skarzynski D, Mateus LM, Ferreira-Dias GML. Equine luteal function regulation may depend on the interaction between cytokines and vascular endothelial growth factor: an in vitro study. Biol Reprod. 2012;86(6):187. http://dx.doi.org/10.1095/biolreprod.111.097147 PMid:22492973.
    » http://dx.doi.org/10.1095/biolreprod.111.097147
  • Ge H, Tollner TL, Hu Z, Dai M, Li X, Guan H, Shan D, Zhang X, Lv J, Huang C, Dong Q. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev. 2012;79(6):392-401. http://dx.doi.org/10.1002/mrd.22042 PMid:22467220.
    » http://dx.doi.org/10.1002/mrd.22042
  • Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, Hou Y, Han ZM, Schatten H, Sun QY. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect. 2014;122(2):159-64. http://dx.doi.org/10.1289/ehp.1307047 PMid:24316659.
    » http://dx.doi.org/10.1289/ehp.1307047
  • Ge ZJ, Schatten H, Zhang CL, Sun QY. Oocyte ageing and epigenetics. Reproduction. 2015;149(3):R103-14. http://dx.doi.org/10.1530/REP-14-0242 PMid:25391845.
    » http://dx.doi.org/10.1530/REP-14-0242
  • Gilbody S, Lewis S, Lightfoot T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol. 2007;165(1):1-13. http://dx.doi.org/10.1093/aje/kwj347 PMid:17074966.
    » http://dx.doi.org/10.1093/aje/kwj347
  • Grewal S, Gubbi S, Fosam A, Sedmak C, Sikder S, Talluru H, Brown RJ, Muniyappa R. Metabolomic analysis of the effects of leptin replacement therapy in patients with lipodystrophy. J Endocr Soc. 2020;4(1):bvz022. http://dx.doi.org/10.1210/jendso/bvz022 PMid:32010873.
    » http://dx.doi.org/10.1210/jendso/bvz022
  • Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251-71. http://dx.doi.org/10.1007/s00018-014-1739-4 PMid:25280482.
    » http://dx.doi.org/10.1007/s00018-014-1739-4
  • Guelinckx I, Devlieger R, Beckers K, Vansant G. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev. 2008;9(2):140-50. http://dx.doi.org/10.1111/j.1467-789X.2007.00464.x PMid:18221480.
    » http://dx.doi.org/10.1111/j.1467-789X.2007.00464.x
  • Harris SE, Adriaens I, Leese HJ, Gosden RG, Picton HM. Carbohydrate metabolism by murine ovarian follicles and oocytes grown in vitro. Reproduction. 2007;134(3):415-24. http://dx.doi.org/10.1530/REP-07-0061 PMid:17709560.
    » http://dx.doi.org/10.1530/REP-07-0061
  • Hassink SG, de Lancey E, Sheslow D, Smith-Kirwin SM, O’Connor DM, Considine R, Opentanova I, Dostal K, Spear ML, Leef K, Ash M, Spitzer AR, Funanage VL. Placental leptin: an important new growth factor in intrauterine and neonatal development? Pediatrics. 1997;100(1):E1. http://dx.doi.org/10.1542/peds.100.1.e1 PMid:9200375.
    » http://dx.doi.org/10.1542/peds.100.1.e1
  • Hausman GJ, Barb CR, Lents CA. Leptin and reproductive function. Biochimie. 2012;94(10):2075-81. http://dx.doi.org/10.1016/j.biochi.2012.02.022 PMid:22980196.
    » http://dx.doi.org/10.1016/j.biochi.2012.02.022
  • He M, Zhang T, Yang Y, Wang C. Mechanisms of oocyte maturation and related epigenetic regulation. Front Cell Dev Biol. 2021;9:654028. http://dx.doi.org/10.3389/fcell.2021.654028 PMid:33842483.
    » http://dx.doi.org/10.3389/fcell.2021.654028
  • Hegyi K, Fülöp K, Kovács K, Tóth S, Falus A. Leptin-induced signal transduction pathways. Cell Biol Int. 2004;28(3):159-69. http://dx.doi.org/10.1016/j.cellbi.2003.12.003 PMid:14984741.
    » http://dx.doi.org/10.1016/j.cellbi.2003.12.003
  • Henry BA, Andrews ZB, Rao A, Clarke IJ. Central leptin activates mitochondrial function and increases heat production in skeletal muscle. Endocrinology. 2011;152(7):2609-18. http://dx.doi.org/10.1210/en.2011-0143 PMid:21558317.
    » http://dx.doi.org/10.1210/en.2011-0143
  • Hong J, Lee E. Intrafollicular amino acid concentration and the effect of amino acids in a defined maturation medium on porcine oocyte maturation, fertilization, and preimplantation development. Theriogenology. 2007;68(5):728-35. http://dx.doi.org/10.1016/j.theriogenology.2007.06.002 PMid:17658593.
    » http://dx.doi.org/10.1016/j.theriogenology.2007.06.002
  • Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. PharmacoEconomics. 2015;33(7):673-89. http://dx.doi.org/10.1007/s40273-014-0243-x PMid:25471927.
    » http://dx.doi.org/10.1007/s40273-014-0243-x
  • Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet. 2008;24(2):86-93. http://dx.doi.org/10.1016/j.tig.2007.11.010 PMid:18192063.
    » http://dx.doi.org/10.1016/j.tig.2007.11.010
  • Huypens P, Sass S, Wu M, Dyckhoff D, Tschöp M, Theis F, Marschall S, de Angelis MH, Beckers J. Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet. 2016;48(5):497-9. http://dx.doi.org/10.1038/ng.3527 PMid:26974008.
    » http://dx.doi.org/10.1038/ng.3527
  • Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, Duchen MR, McConnell J. Maternal diet-induced obesity alters mitochondrial activity and redox status in mouse oocytes and zygotes. PLoS One. 2010;5(4):e10074. http://dx.doi.org/10.1371/journal.pone.0010074 PMid:20404917.
    » http://dx.doi.org/10.1371/journal.pone.0010074
  • Islam MS, Sjöholm Å, Emilsson V. Fetal pancreatic islets express functional leptin receptors and leptin stimulates proliferation of fetal islet cells. Int J Obes. 2000;24(10):1246-53. http://dx.doi.org/10.1038/sj.ijo.0801370 PMid:11093284.
    » http://dx.doi.org/10.1038/sj.ijo.0801370
  • Jansson N, Greenwood SL, Johansson BR, Powell TL, Jansson T. Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J Clin Endocrinol Metab. 2003;88(3):1205-11. http://dx.doi.org/10.1210/jc.2002-021332 PMid:12629107.
    » http://dx.doi.org/10.1210/jc.2002-021332
  • Javaid MK, Godfrey KM, Taylor P, Robinson SM, Crozier SR, Dennison EM, Robinson JS, Breier BR, Arden NK, Cooper C. Umbilical cord leptin predicts neonatal bone mass. Calcif Tissue Int. 2005;76(5):341-7. http://dx.doi.org/10.1007/s00223-004-1128-3 PMid:15864467.
    » http://dx.doi.org/10.1007/s00223-004-1128-3
  • Johnson MT, Freeman EA, Gardner DK, Hunt PA. Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo. Biol Reprod. 2007;77(1):2-8. http://dx.doi.org/10.1095/biolreprod.106.059899 PMid:17314311.
    » http://dx.doi.org/10.1095/biolreprod.106.059899
  • Kalive M, Faust JJ, Koeneman BA, Capco DG. Involvement of the PKC family in regulation of early development. Mol Reprod Dev. 2010;77(2):95-104. http://dx.doi.org/10.1002/mrd.21112 PMid:19777543.
    » http://dx.doi.org/10.1002/mrd.21112
  • Kamei Y, Suganami T, Ehara T, Kanai S, Hayashi K, Yamamoto Y, Miura S, Ezaki O, Okano M, Ogawa Y. Increased expression of DNA methyltransferase 3a in obese adipose tissue: studies with transgenic mice. Obesity. 2010;18(2):314-21. http://dx.doi.org/10.1038/oby.2009.246 PMid:19680236.
    » http://dx.doi.org/10.1038/oby.2009.246
  • Karakosta P, Georgiou V, Fthenou E, Papadopoulou E, Roumeliotaki T, Margioris A, Castanas E, Kampa M, Kogevinas M, Chatzi L. Maternal weight status, cord blood leptin and fetal growth: a prospective mother-child cohort study (Rhea study). Paediatr Perinat Epidemiol. 2013;27(5):461-71. http://dx.doi.org/10.1111/ppe.12074 PMid:23930782.
    » http://dx.doi.org/10.1111/ppe.12074
  • Khan R, Jiang X, Hameed U, Shi Q. Role of lipid metabolism and signaling in mammalian oocyte maturation, quality, and acquisition of competence. Front Cell Dev Biol. 2021;9:639704. http://dx.doi.org/10.3389/fcell.2021.639704 PMid:33748128.
    » http://dx.doi.org/10.3389/fcell.2021.639704
  • Kirchberg FF, Brandt S, Moß A, Peissner W, Koenig W, Rothenbacher D, Brenner H, Koletzko B, Hellmuth C, Wabitsch M. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluconeogenesis in healthy children. PLoS One. 2017;12(8):e0183185. http://dx.doi.org/10.1371/journal.pone.0183185 PMid:28817652.
    » http://dx.doi.org/10.1371/journal.pone.0183185
  • Kirillova A, Smitz JEJ, Sukhikh GT, Mazunin I. The role of mitochondria in oocyte maturation. Cells. 2021;10(9):2484. http://dx.doi.org/10.3390/cells10092484 PMid:34572133.
    » http://dx.doi.org/10.3390/cells10092484
  • Koch C, Augustine RA, Steger J, Ganjam GK, Benzler J, Pracht C, Lowe C, Schwartz MW, Shepherd PR, Anderson GM, Grattan DR, Tups A. Leptin rapidly improves glucose homeostasis in obese mice by increasing hypothalamic insulin sensitivity. J Neurosci. 2010;30(48):16180-7. http://dx.doi.org/10.1523/JNEUROSCI.3202-10.2010 PMid:21123564.
    » http://dx.doi.org/10.1523/JNEUROSCI.3202-10.2010
  • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13(5):297-311. http://dx.doi.org/10.1038/nrm3327 PMid:22473470.
    » http://dx.doi.org/10.1038/nrm3327
  • Kristensen J, Vestergaard M, Wisborg K, Kesmodel U, Secher NJ. Pre-pregnancy weight and the risk of stillbirth and neonatal death. BJOG. 2005;112(4):403-8. http://dx.doi.org/10.1111/j.1471-0528.2005.00437.x PMid:15777435.
    » http://dx.doi.org/10.1111/j.1471-0528.2005.00437.x
  • Kurus M, Karakaya C, Karalok MH, To G, Johnson J. The control of oocyte survival by intrinsic and extrinsic factors. Adv Exp Med Biol. 2013;761:7-18. http://dx.doi.org/10.1007/978-1-4614-8214-7_2 PMid:24097378.
    » http://dx.doi.org/10.1007/978-1-4614-8214-7_2
  • Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO. Clinical problems caused by obesity. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, Herder WW, Dhatariya K, Hofland J, Dungan K, Hofland J, Kalra S, Kaltsas G, Kapoor N, Koch C, Kopp P, Korbonits M, Kovacs CS, Kuohung W, Laferrère B, Levy M, McGee EA, McLachlan R, New M, Purnell J, Sahay R, Singer F, Sperling MA, Stratakis CA, Trence DL, Wilson DP, editors. Endotext [Internet]. South Dartmouth: MDText.com; 2018 [cited 2023 Jan 10]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK278973/
    » https://www.ncbi.nlm.nih.gov/books/NBK278973/
  • Lawler K, Huang-Doran I, Sonoyama T, Collet TH, Keogh JM, Henning E, O’Rahilly S, Bottolo L, Farooqi IS. Leptin-mediated changes in the human metabolome. J Clin Endocrinol Metab. 2020;105(8):2541-52. http://dx.doi.org/10.1210/clinem/dgaa251 PMid:32392278.
    » http://dx.doi.org/10.1210/clinem/dgaa251
  • Leong I. Link between maternal obesity and offspring is STELLA. Nat Rev Endocrinol. 2018;14(4):189. http://dx.doi.org/10.1038/nrendo.2018.26 PMid:29498374.
    » http://dx.doi.org/10.1038/nrendo.2018.26
  • Li L, Zhu S, Shu W, Guo Y, Guan Y, Zeng J, Wang H, Han L, Zhang J, Liu X, Li C, Hou X, Gao M, Ge J, Ren C, Zhang H, Schedl T, Guo X, Chen M, Wang Q. Characterization of metabolic patterns in mouse oocytes during meiotic maturation. Mol Cell. 2020;80(3):525-540.e9. http://dx.doi.org/10.1016/j.molcel.2020.09.022 PMid:33068521.
    » http://dx.doi.org/10.1016/j.molcel.2020.09.022
  • Lin J, Barb CR, Matteri RL, Kraeling RR, Chen X, Meinersmann RJ, Rampacek GB. Long form leptin receptor mRNA expression in the brain, pituitary, and other tissues in the pig. Domest Anim Endocrinol. 2000;19(1):53-61. http://dx.doi.org/10.1016/S0739-7240(00)00064-3 PMid:10962198.
    » http://dx.doi.org/10.1016/S0739-7240(00)00064-3
  • Liu J, Yang X, Yu S, Zheng R. The leptin resistance. Adv Exp Med Biol. 2018;1090:145-63. http://dx.doi.org/10.1007/978-981-13-1286-1_8 PMid:30390289.
    » http://dx.doi.org/10.1007/978-981-13-1286-1_8
  • Liu T, Qu J, Tian M, Yang R, Song X, Li R, Yan J, Qiao J. Lipid metabolic process involved in oocyte maturation during folliculogenesis. Front Cell Dev Biol. 2022;10:806890. http://dx.doi.org/10.3389/fcell.2022.806890 PMid:35433675.
    » http://dx.doi.org/10.3389/fcell.2022.806890
  • Luo GF, Yu TY, Wen XH, Li Y, Yang GS. Alteration of mitochondrial oxidative capacity during porcine preadipocyte differentiation and in response to leptin. Mol Cell Biochem. 2008;307(1-2):83-91. http://dx.doi.org/10.1007/s11010-007-9587-2 PMid:17909948.
    » http://dx.doi.org/10.1007/s11010-007-9587-2
  • Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One. 2012;7(11):e49217. http://dx.doi.org/10.1371/journal.pone.0049217 PMid:23152876.
    » http://dx.doi.org/10.1371/journal.pone.0049217
  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S, Kern PA, Friedman JM. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med. 1995;1(11):1155-61. http://dx.doi.org/10.1038/nm1195-1155 PMid:7584987.
    » http://dx.doi.org/10.1038/nm1195-1155
  • Magariños MP, Sánchez-Margalet V, Kotler M, Calvo JC, Varone CL. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod. 2007;76(2):203-10. http://dx.doi.org/10.1095/biolreprod.106.051391 PMid:17021346.
    » http://dx.doi.org/10.1095/biolreprod.106.051391
  • Mantzoros CS, Cramer DW, Liberman RF, Barbieri RL. Predictive value of serum and follicular fluid leptin concentrations during assisted reproductive cycles in normal women and in women with the polycystic ovarian syndrome. Hum Reprod. 2000;15(3):539-44. http://dx.doi.org/10.1093/humrep/15.3.539 PMid:10686193.
    » http://dx.doi.org/10.1093/humrep/15.3.539
  • Mark AL, Correia MLG, Rahmouni K, Haynes WG. Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J Hypertens. 2002;20(7):1245-50. http://dx.doi.org/10.1097/00004872-200207000-00001 PMid:12131511.
    » http://dx.doi.org/10.1097/00004872-200207000-00001
  • Matarese G, Procaccini C, De Rosa V. Leptin and immune function, inflammation and angiognenesis. In: Castracane VD, Henson MC, editors. Leptin. Boston: Springer; 2006. (Endocrine Updates; no. 25). http://dx.doi.org/10.1007/978-0-387-31416-7_7
    » http://dx.doi.org/10.1007/978-0-387-31416-7_7
  • Matilainen O, Quirós PM, Auwerx J. Mitochondria and epigenetics: crosstalk in homeostasis and stress. Trends Cell Biol. 2017;27(6):453-63. http://dx.doi.org/10.1016/j.tcb.2017.02.004 PMid:28274652.
    » http://dx.doi.org/10.1016/j.tcb.2017.02.004
  • McKeegan PJ, Sturmey RG. The role of fatty acids in oocyte and early embryo development. Reprod Fertil Dev. 2011;24(1):59-67. http://dx.doi.org/10.1071/RD11907 PMid:22394718.
    » http://dx.doi.org/10.1071/RD11907
  • McMillen IC, Adam CL, Mühlhäusler BS. Early origins of obesity: programming the appetite regulatory system. J Physiol. 2005;565(Pt 1):9-17. http://dx.doi.org/10.1113/jphysiol.2004.081992 PMid:15705647.
    » http://dx.doi.org/10.1113/jphysiol.2004.081992
  • McPherson NO, Bell VG, Zander-Fox DL, Fullston T, Wu LL, Robker RL, Lane M. When two obese parents are worse than one! Impacts on embryo and fetal development. Am J Physiol Endocrinol Metab. 2015;309(6):E568-81. http://dx.doi.org/10.1152/ajpendo.00230.2015 PMid:26199280.
    » http://dx.doi.org/10.1152/ajpendo.00230.2015
  • Menzies KJ, Zhang H, Katsyuba E, Auwerx J. Protein acetylation in metabolism-metabolites and cofactors. Nat Rev Endocrinol. 2016;12(1):43-60. http://dx.doi.org/10.1038/nrendo.2015.181 PMid:26503676.
    » http://dx.doi.org/10.1038/nrendo.2015.181
  • Miller KK, Parulekar MS, Schoenfeld E, Anderson E, Hubbard J, Klibanski A, Grinspoon SK. Decreased leptin levels in normal weight women with hypothalamic amenorrhea: the effects of body composition and nutritional intake. J Clin Endocrinol Metab. 1998;83(7):2309-12. http://dx.doi.org/10.1210/jc.83.7.2309 PMid:9661600.
    » http://dx.doi.org/10.1210/jc.83.7.2309
  • Minokoshi Y, Kim YB, Peroni OD, Fryer LGD, Müller C, Carling D, Kahn BB. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature. 2002;415(6869):339-43. http://dx.doi.org/10.1038/415339a PMid:11797013.
    » http://dx.doi.org/10.1038/415339a
  • Minokoshi Y, Toda C, Okamoto S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J Endocrinol Metab. 2012;16(9, Suppl 3):S562. http://dx.doi.org/10.4103/2230-8210.105573 PMid:23565491.
    » http://dx.doi.org/10.4103/2230-8210.105573
  • Moley KH, Chi MMY, Knudson CM, Korsmeyer SJ, Mueckler MM. Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways. Nat Med. 1998;4(12):1421-4. http://dx.doi.org/10.1038/4013 PMid:9846581.
    » http://dx.doi.org/10.1038/4013
  • Montgomery DC, Sorum AW, Guasch L, Nicklaus MC, Meier JL. Metabolic regulation of histone acetyltransferases by endogenous Acyl-CoA cofactors. Chem Biol. 2015;22(8):1030-9. http://dx.doi.org/10.1016/j.chembiol.2015.06.015 PMid:26190825.
    » http://dx.doi.org/10.1016/j.chembiol.2015.06.015
  • Moore LL, Singer MR, Bradlee ML, Rothman KJ, Milunsky A. A prospective study of the risk of congenital defects associated with maternal obesity and diabetes mellitus. Epidemiology. 2000;11(6):689-94. http://dx.doi.org/10.1097/00001648-200011000-00013 PMid:11055631.
    » http://dx.doi.org/10.1097/00001648-200011000-00013
  • Morgan DA, Thedens DR, Weiss R, Rahmouni K. Mechanisms mediating renal sympathetic activation to leptin in obesity. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R1730-6. http://dx.doi.org/10.1152/ajpregu.90324.2008 PMid:18815209.
    » http://dx.doi.org/10.1152/ajpregu.90324.2008
  • Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, VanGilst M, Hockenbery D. Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem. 2010;285(47):36267-74. http://dx.doi.org/10.1074/jbc.M110.141606 PMid:20813845.
    » http://dx.doi.org/10.1074/jbc.M110.141606
  • Moslehi N, Shab-Bidar S, Tehrani FR, Mirmiran P, Azizi F. Is ovarian reserve associated with body mass index and obesity in reproductive aged women? A meta-analysis. Menopause. 2018;25(9):1046-55. http://dx.doi.org/10.1097/GME.0000000000001116 PMid:29738413.
    » http://dx.doi.org/10.1097/GME.0000000000001116
  • Mühlhäusler BS, Roberts CT, McFarlane JR, Kauter KG, McMillen IC. Fetal leptin is a signal of fat mass independent of maternal nutrition in ewes fed at or above maintenance energy requirements. Biol Reprod. 2002;67(2):493-9. http://dx.doi.org/10.1095/biolreprod67.2.493 PMid:12135887.
    » http://dx.doi.org/10.1095/biolreprod67.2.493
  • Münzberg H, Flier JS, Bjørbæk C. Region-specific leptin resistance within the hypothalamus of diet-induced obese mice. Endocrinology. 2004;145(11):4880-9. http://dx.doi.org/10.1210/en.2004-0726 PMid:15271881.
    » http://dx.doi.org/10.1210/en.2004-0726
  • Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. trends endocrinol metab. 2010;21(11):643-51. http://dx.doi.org/10.1016/j.tem.2010.08.002 PMid:20846876.
    » http://dx.doi.org/10.1016/j.tem.2010.08.002
  • Myers MG Jr. Leptin receptor signaling and the regulation of mammalian physiology. Recent Prog Horm Res. 2004;59(1):287-304. http://dx.doi.org/10.1210/rp.59.1.287 PMid:14749507.
    » http://dx.doi.org/10.1210/rp.59.1.287
  • Myers MP, Andersen JN, Cheng A, Tremblay ML, Horvath CM, Parisien JP, Salmeen A, Barford D, Tonks NK. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J Biol Chem. 2001;276(51):47771-4. http://dx.doi.org/10.1074/jbc.C100583200 PMid:11694501.
    » http://dx.doi.org/10.1074/jbc.C100583200
  • Nakanishi N, Nakagawa Y, Tokushige N, Aoki N, Matsuzaka T, Ishii K, Yahagi N, Kobayashi K, Yatoh S, Takahashi A, Suzuki H, Urayama O, Yamada N, Shimano H. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochem Biophys Res Commun. 2009;385(4):492-6. http://dx.doi.org/10.1016/j.bbrc.2009.05.058 PMid:19460359.
    » http://dx.doi.org/10.1016/j.bbrc.2009.05.058
  • Orsi NM, Gopichandran N, Leese HJ, Picton HM, Harris SE. Fluctuations in bovine ovarian follicular fluid composition throughout the oestrous cycle. Reproduction. 2005;129(2):219-28. http://dx.doi.org/10.1530/rep.1.00460 PMid:15695616.
    » http://dx.doi.org/10.1530/rep.1.00460
  • Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 2009;9(1):35-51. http://dx.doi.org/10.1016/j.cmet.2008.12.004 PMid:19117545.
    » http://dx.doi.org/10.1016/j.cmet.2008.12.004
  • Palou M, Picó C, McKay JA, Sánchez J, Priego T, Mathers JC, Palou A. Protective effects of leptin during the suckling period against later obesity may be associated with changes in promoter methylation of the hypothalamic pro-opiomelanocortin gene. Br J Nutr. 2011;106(5):769-78. http://dx.doi.org/10.1017/S0007114511000973 PMid:21554805.
    » http://dx.doi.org/10.1017/S0007114511000973
  • Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev. 2018;76(12):875-92. http://dx.doi.org/10.1093/nutrit/nuy046 PMid:30285146.
    » http://dx.doi.org/10.1093/nutrit/nuy046
  • Park J, Kusminski CM, Chua SC, Scherer PE. Leptin receptor signaling supports cancer cell metabolism through suppression of mitochondrial respiration in vivo. Am J Pathol. 2010;177(6):3133-44. http://dx.doi.org/10.2353/ajpath.2010.100595 PMid:21056997.
    » http://dx.doi.org/10.2353/ajpath.2010.100595
  • Park JH, Stoffers DA, Nicholls RD, Simmons RA. Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest. 2008;118(6):2316-24. http://dx.doi.org/10.1172/JCI33655 PMid:18464933.
    » http://dx.doi.org/10.1172/JCI33655
  • Paula-Lopes FF, Boelhauve M, Habermann FA, Sinowatz F, Wolf E. Leptin promotes meiotic progression and developmental capacity of bovine oocytes via cumulus cell-independent and-dependent mechanisms. Biol Reprod. 2007;76(3):532-41. http://dx.doi.org/10.1095/biolreprod.106.054551 PMid:17093200.
    » http://dx.doi.org/10.1095/biolreprod.106.054551
  • Pelland AMD, Corbett HE, Baltz JM. Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol Reprod. 2009;81(6):1041-54. http://dx.doi.org/10.1095/biolreprod.109.079046 PMid:19605782.
    » http://dx.doi.org/10.1095/biolreprod.109.079046
  • Pereira S, Cline DL, Glavas MM, Covey SD, Kieffer TJ. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr Rev. 2021;42(1):1-28. http://dx.doi.org/10.1210/endrev/bnaa027 PMid:33150398.
    » http://dx.doi.org/10.1210/endrev/bnaa027
  • Pérez-Pérez A, Sánchez-Jiménez F, Maymó J, Dueñas JL, Varone C, Sánchez-Margalet V. Role of leptin in female reproduction. Clin Chem Lab Med. 2015;53(1):15-28. http://dx.doi.org/10.1515/cclm-2014-0387 PMid:25014521.
    » http://dx.doi.org/10.1515/cclm-2014-0387
  • Pinney SE, Jaeckle Santos LJ, Han Y, Stoffers DA, Simmons RA. Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat. Diabetologia. 2011;54(10):2606-14. http://dx.doi.org/10.1007/s00125-011-2250-1 PMid:21779870.
    » http://dx.doi.org/10.1007/s00125-011-2250-1
  • Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab. 2010;21(4):223-9. http://dx.doi.org/10.1016/j.tem.2009.10.002 PMid:19864158.
    » http://dx.doi.org/10.1016/j.tem.2009.10.002
  • Pirola L, Balcerczyk A, Okabe J, El-Osta A. Epigenetic phenomena linked to diabetic complications. Nat Rev Endocrinol. 2010;6(12):665-75. http://dx.doi.org/10.1038/nrendo.2010.188
    » http://dx.doi.org/10.1038/nrendo.2010.188
  • Poretsky L, Cataldo NA, Rosenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocr Rev. 1999;20(4):535-82. http://dx.doi.org/10.1210/edrv.20.4.0374 PMid:10453357.
    » http://dx.doi.org/10.1210/edrv.20.4.0374
  • Qi L, Chen X, Wang J, Lv B, Zhang J, Ni B, Xue Z. Mitochondria: the panacea to improve oocyte quality? Ann Transl Med. 2019;7(23):789. http://dx.doi.org/10.21037/atm.2019.12.02 PMid:32042805.
    » http://dx.doi.org/10.21037/atm.2019.12.02
  • Rabe K, Lehrke M, Parhofer KG, Broedl UC. Adipokines and insulin resistance. Mol Med. 2008;14(11-12):741-51. http://dx.doi.org/10.2119/2008-00058.Rabe PMid:19009016.
    » http://dx.doi.org/10.2119/2008-00058.Rabe
  • Rando OJ, Simmons RA. I’m eating for two: parental dietary effects on offspring metabolism. Cell. 2015;161(1):93-105. http://dx.doi.org/10.1016/j.cell.2015.02.021 PMid:25815988.
    » http://dx.doi.org/10.1016/j.cell.2015.02.021
  • Reidy SP, Weber JM. Leptin: an essential regulator of lipid metabolism. Comp Biochem Physiol A Mol Integr Physiol. 2000;125(3):285-98. http://dx.doi.org/10.1016/S1095-6433(00)00159-8 PMid:10794958.
    » http://dx.doi.org/10.1016/S1095-6433(00)00159-8
  • Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer. J Cell Biol. 2020;219(1):e201907022. http://dx.doi.org/10.1083/jcb.201907022 PMid:31690618.
    » http://dx.doi.org/10.1083/jcb.201907022
  • Robker RL, Akison LK, Bennett BD, Thrupp PN, Chura LR, Russell DL, Lane M, Norman RJ. Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J Clin Endocrinol Metab. 2009;94(5):1533-40. http://dx.doi.org/10.1210/jc.2008-2648
    » http://dx.doi.org/10.1210/jc.2008-2648
  • Robker RL, Wu LLY, Yang X. Inflammatory pathways linking obesity and ovarian dysfunction. J Reprod Immunol. 2011;88(2):142-8. http://dx.doi.org/10.1016/j.jri.2011.01.008 PMid:21333359.
    » http://dx.doi.org/10.1016/j.jri.2011.01.008
  • Rooke JA, Ainslie A, Watt RG, Alink FM, McEvoy TG, Sinclair KD, Garnsworthy PC, Webb R. Dietary carbohydrates and amino acids influence oocyte quality in dairy heifers. Reprod Fertil Dev. 2009;21(3):419-27. http://dx.doi.org/10.1071/RD08193 PMid:19261219.
    » http://dx.doi.org/10.1071/RD08193
  • Ruiz-Cortés ZT, Men T, Palin MF, Downey BR, Lacroix DA, Murphy BD. Porcine leptin receptor: molecular structure and expression in the ovary. Mol Reprod Dev. 2000;56(4):465-74. http://dx.doi.org/10.1002/1098-2795(200008)56:4<465::AID-MRD4>3.0.CO;2-Q PMid:10911396.
    » http://dx.doi.org/10.1002/1098-2795(200008)56:4<465::AID-MRD4>3.0.CO;2-Q
  • Russell DL, Gilchrist RB, Brown HM, Thompson JG. Bidirectional communication between cumulus cells and the oocyte: old hands and new players? Theriogenology. 2016;86(1):62-8. http://dx.doi.org/10.1016/j.theriogenology.2016.04.019 PMid:27160446.
    » http://dx.doi.org/10.1016/j.theriogenology.2016.04.019
  • Ryan NK, Woodhouse CM, van der Hoek KH, Gilchrist RB, Armstrong DT, Norman RJ. Expression of leptin and its receptor in the murine ovary: possible role in the regulation of oocyte maturation. Biol Reprod. 2002;66(5):1548-54. http://dx.doi.org/10.1095/biolreprod66.5.1548 PMid:11967222.
    » http://dx.doi.org/10.1095/biolreprod66.5.1548
  • Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35-46. http://dx.doi.org/10.1016/j.metabol.2014.10.015 PMid:25497342.
    » http://dx.doi.org/10.1016/j.metabol.2014.10.015
  • Saito T, Hiroi M, Kato T. Development of glucose utilization studied in single oocytes and preimplantation embryos from mice. Biol Reprod. 1994;50(2):266-70. http://dx.doi.org/10.1095/biolreprod50.2.266 PMid:8142545.
    » http://dx.doi.org/10.1095/biolreprod50.2.266
  • Sampath H, Ntambi JM. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr. 2005;25(1):317-40. http://dx.doi.org/10.1146/annurev.nutr.25.051804.101917 PMid:16011470.
    » http://dx.doi.org/10.1146/annurev.nutr.25.051804.101917
  • Sangiao-Alvarellos S, Pena-Bello L, Manfredi-Lozano M, Tena-Sempere M, Cordido F. Perturbation of hypothalamic microRNA expression patterns in male rats after metabolic distress: impact of obesity and conditions of negative energy balance. Endocrinology. 2014;155(5):1838-50. http://dx.doi.org/10.1210/en.2013-1770 PMid:24517225.
    » http://dx.doi.org/10.1210/en.2013-1770
  • Santangeli L, Sattar N, Huda SS. Impact of maternal obesity on perinatal and childhood outcomes. Best Pract Res Clin Obstet Gynaecol. 2015;29(3):438-48. http://dx.doi.org/10.1016/j.bpobgyn.2014.10.009 PMid:25497183.
    » http://dx.doi.org/10.1016/j.bpobgyn.2014.10.009
  • Schatten H, Sun Q-Y, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol. 2014;12(1):111. http://dx.doi.org/10.1186/1477-7827-12-111 PMid:25421171.
    » http://dx.doi.org/10.1186/1477-7827-12-111
  • Shafiei Sheykhani HR, Batavani RA, Najafi GR. Protective effect of leptin on induced apoptosis with trichostatin A on buffalo oocytes. Vet Res Forum. 2016;7(2):99-104. PMid:27482353.
  • Shen L, Cordero JF, Wang JS, Shen Y, Li S, Liang L, Zou Z, Li C. Association between genetically determined leptin and blood lipids considering alcohol consumption: a Mendelian randomisation study. BMJ Open. 2019;9(11):e026860. http://dx.doi.org/10.1136/bmjopen-2018-026860 PMid:31699712.
    » http://dx.doi.org/10.1136/bmjopen-2018-026860
  • Short KR, Chadwick JQ, Teague AM, Tullier MA, Wolbert L, Coleman C, Copeland KC. Effect of obesity and exercise training on plasma amino acids and amino metabolites in american indian adolescents. J Clin Endocrinol Metab. 2019;104(8):3249-61. http://dx.doi.org/10.1210/jc.2018-02698 PMid:31216576.
    » http://dx.doi.org/10.1210/jc.2018-02698
  • Silva E, Paczkowski M, Krisher RL. The effect of leptin on maturing porcine oocytes is dependent on glucose concentration. Mol Reprod Dev. 2012;79(4):296-307. http://dx.doi.org/10.1002/mrd.22029 PMid:22368147.
    » http://dx.doi.org/10.1002/mrd.22029
  • Sinclair KD, Kuran M, Gebbie FE, Webb R, McEvoy TG. Nitrogen metabolism and fertility in cattle: II. Development of oocytes recovered from heifers offered diets differing in their rate of nitrogen release in the rumen. J Anim Sci. 2000;78(10):2670-80. http://dx.doi.org/10.2527/2000.78102670x PMid:11048933.
    » http://dx.doi.org/10.2527/2000.78102670x
  • Sirard MA. Follicle environment and quality of in vitro matured oocytes. J Assist Reprod Genet. 2011;28(6):483-8. http://dx.doi.org/10.1007/s10815-011-9554-4 PMid:21394521.
    » http://dx.doi.org/10.1007/s10815-011-9554-4
  • Sivan E, Lin WM, Homko CJ, Reece EA, Boden G. Leptin is present in human cord blood. Diabetes. 1997;46(5):917-9. http://dx.doi.org/10.2337/diab.46.5.917 PMid:9133565.
    » http://dx.doi.org/10.2337/diab.46.5.917
  • Smith BC, Denu JM. Chemical mechanisms of histone lysine and arginine modifications. Biochim Biophys Acta. 2009;1789(1):45-57. http://dx.doi.org/10.1016/j.bbagrm.2008.06.005 PMid:18603028.
    » http://dx.doi.org/10.1016/j.bbagrm.2008.06.005
  • Song NY, Lee YH, Na HK, Baek JH, Surh YJ. Leptin induces SIRT1 expression through activation of NF-E2-related factor 2: implications for obesity-associated colon carcinogenesis. Biochem Pharmacol. 2018;153:282-91. http://dx.doi.org/10.1016/j.bcp.2018.02.001 PMid:29427626.
    » http://dx.doi.org/10.1016/j.bcp.2018.02.001
  • Songsasen N, Wildt DE. Oocyte biology and challenges in developing in vitro maturation systems in the domestic dog. Anim Reprod Sci. 2007;98(1-2):2-22. http://dx.doi.org/10.1016/j.anireprosci.2006.10.004 PMid:17097840.
    » http://dx.doi.org/10.1016/j.anireprosci.2006.10.004
  • Sonne SB, Yadav R, Yin G, Dalgaard MD, Myrmel LS, Gupta R, Wang J, Madsen L, Kajimura S, Kristiansen K. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression. Adipocyte. 2017;6(2):124-33. http://dx.doi.org/10.1080/21623945.2017.1320002 PMid:28481699.
    » http://dx.doi.org/10.1080/21623945.2017.1320002
  • Sperber H, Mathieu J, Wang Y, Ferreccio A, Hesson J, Xu Z, Fischer KA, Devi A, Detraux D, Gu H, Battle SL, Showalter M, Valensisi C, Bielas JH, Ericson NG, Margaretha L, Robitaille AM, Margineantu D, Fiehn O, Hockenbery D, Blau CA, Raftery D, Margolin AA, Hawkins RD, Moon RT, Ware CB, Ruohola-Baker H. The metabolome regulates the epigenetic landscape during naïve to primed human embryonic stem cell transition. Nat Cell Biol. 2015;17(12):1523-35. http://dx.doi.org/10.1038/ncb3264 PMid:26571212.
    » http://dx.doi.org/10.1038/ncb3264
  • Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol. 2018;20(7):745-54. http://dx.doi.org/10.1038/s41556-018-0124-1 PMid:29950572.
    » http://dx.doi.org/10.1038/s41556-018-0124-1
  • Stocker CJ, Cawthorne MA. The influence of leptin on early life programming of obesity. Trends Biotechnol. 2008;26(10):545-51. http://dx.doi.org/10.1016/j.tibtech.2008.06.004 PMid:18706724.
    » http://dx.doi.org/10.1016/j.tibtech.2008.06.004
  • Strum JC, Swenson KI, Turner JE, Bell RM. Ceramide triggers meiotic cell cycle progression in Xenopus oocytes. A potential mediator of progesterone-induced maturation. J Biol Chem. 1995;270(22):13541-7. http://dx.doi.org/10.1074/jbc.270.22.13541 PMid:7768956.
    » http://dx.doi.org/10.1074/jbc.270.22.13541
  • Sturmey RG, Brison DR, Leese HJ. Assessing embryo viability by measurement of amino acid turnover. Reprod Biomed Online. 2008;17(4):486-96. http://dx.doi.org/10.1016/S1472-6483(10)60234-9 PMid:18854101.
    » http://dx.doi.org/10.1016/S1472-6483(10)60234-9
  • Su Y-Q, Sugiura K, Eppig JJ. mouse oocyte control of granulosa cell development and function: paracrine regulation of cumulus cell metabolism. Semin Reprod Med. 2009;27(1):032-042. http://dx.doi.org/10.1055/s-0028-1108008 PMid:19197803.
    » http://dx.doi.org/10.1055/s-0028-1108008
  • Sugiura K, Eppig JJ. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev. 2005;17(7):667-74. http://dx.doi.org/10.1071/RD05071 PMid:16364219.
    » http://dx.doi.org/10.1071/RD05071
  • Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139(4):685-95. http://dx.doi.org/10.1530/REP-09-0345 PMid:20089664.
    » http://dx.doi.org/10.1530/REP-09-0345
  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI. Identification and expression cloning of a leptin receptor, OB-R. Cell. 1995;83(7):1263-71. http://dx.doi.org/10.1016/0092-8674(95)90151-5 PMid:8548812.
    » http://dx.doi.org/10.1016/0092-8674(95)90151-5
  • Tchio CM, Harbuzariu A, Harmon T, Beech D, Gonzalez-Perez R. Abstract 1901: leptin modulation of PCSC, HDAC, and microRNA in pancreatic adenocarcinoma. Cancer Res. 2016;76(14, Suppl):1901. http://dx.doi.org/10.1158/1538-7445.AM2016-1901
    » http://dx.doi.org/10.1158/1538-7445.AM2016-1901
  • Thompson RF, Einstein FH. Epigenetic basis for fetal origins of age-related disease. J Womens Health (Larchmt). 2010;19(3):581-7. http://dx.doi.org/10.1089/jwh.2009.1408 PMid:20136551.
    » http://dx.doi.org/10.1089/jwh.2009.1408
  • Tong Q, Xu Y. Central Leptin Regulation of Obesity and Fertility. Curr Obes Rep. 2012;1(4):236-44. http://dx.doi.org/10.1007/s13679-012-0025-8 PMid:23243628.
    » http://dx.doi.org/10.1007/s13679-012-0025-8
  • Tups A. Physiological Models of Leptin Resistance. J Neuroendocrinol. 2009;21(11):961-71. http://dx.doi.org/10.1111/j.1365-2826.2009.01916.x PMid:19732287.
    » http://dx.doi.org/10.1111/j.1365-2826.2009.01916.x
  • Udagawa J, Hatta T, Hashimoto R, Otani H. Roles of leptin in prenatal and perinatal brain development. Congenit Anom (Kyoto). 2007;47(3):77-83. http://dx.doi.org/10.1111/j.1741-4520.2007.00150.x PMid:17688465.
    » http://dx.doi.org/10.1111/j.1741-4520.2007.00150.x
  • Valūnienė M, Verkauskienė R, Boguszewski M, Dahlgren J, Lašienė D, Lašas L, Wikland KA. Leptin levels at birth and in early postnatal life in small- and appropriate-for-gestational-age infants. Medicina. 2007;43(10):784. http://dx.doi.org/10.3390/medicina43100100
    » http://dx.doi.org/10.3390/medicina43100100
  • van Winkle LJ. Amino acid transport regulation and early embryo development. Biol Reprod. 2001;64(1):1-12. http://dx.doi.org/10.1095/biolreprod64.1.1 PMid:11133652.
    » http://dx.doi.org/10.1095/biolreprod64.1.1
  • Varvarigou A, Mantzoros CS, Beratis NG. Cord blood leptin concentrations in relation to intrauterine growth. Clin Endocrinol. 1999;50(2):177-83. http://dx.doi.org/10.1046/j.1365-2265.1999.00630.x PMid:10396359.
    » http://dx.doi.org/10.1046/j.1365-2265.1999.00630.x
  • Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. Neonatal leptin treatment reverses developmental programming. Endocrinology. 2005;146(10):4211-6. http://dx.doi.org/10.1210/en.2005-0581 PMid:16020474.
    » http://dx.doi.org/10.1210/en.2005-0581
  • Wai T, Ao A, Zhang X, Cyr D, Dufort D, Shoubridge EA. The role of mitochondrial DNA copy number in mammalian fertility. Biol Reprod. 2010;83(1):52-62. http://dx.doi.org/10.1095/biolreprod.109.080887 PMid:20130269.
    » http://dx.doi.org/10.1095/biolreprod.109.080887
  • Watson AJ. Oocyte cytoplasmic maturation: a key mediator of oocyte and embryo developmental competence. J Anim Sci. 2007;85(13, Suppl):E1-3. http://dx.doi.org/10.2527/jas.2006-432 PMid:17322120.
    » http://dx.doi.org/10.2527/jas.2006-432
  • Welt CK, Chan JL, Bullen J, Murphy R, Smith P, DePaoli AM, Karalis A, Mantzoros CS. Recombinant human leptin in women with hypothalamic amenorrhea. N Engl J Med. 2004;351(10):987-97. http://dx.doi.org/10.1056/NEJMoa040388 PMid:15342807.
    » http://dx.doi.org/10.1056/NEJMoa040388
  • Whidden L, Martel J, Rahimi S, Chaillet JR, Chan D, Trasler JM. Compromised oocyte quality and assisted reproduction contribute to sex-specific effects on offspring outcomes and epigenetic patterning. Hum Mol Genet. 2016;25(21):4649-60. http://dx.doi.org/10.1093/hmg/ddw293 PMid:28173052.
    » http://dx.doi.org/10.1093/hmg/ddw293
  • White V, González E, Capobianco E, Pustovrh C, Martínez N, Higa R, Baier M, Jawerbaum A. Leptin modulates nitric oxide production and lipid metabolism in human placenta. Reprod Fertil Dev. 2006;18(4):425-32. http://dx.doi.org/10.1071/RD05105 PMid:16737635.
    » http://dx.doi.org/10.1071/RD05105
  • Wołodko K, Castillo‐fernandez J, Kelsey G, Galvão A. Revisiting the impact of local leptin signaling in folliculogenesis and oocyte maturation in obese mothers. Int J Mol Sci. 2021;22(8):4270. http://dx.doi.org/10.3390/ijms22084270 PMid:33924072.
    » http://dx.doi.org/10.3390/ijms22084270
  • Wołodko K, Walewska E, Adamowski M, Castillo-Fernandez J, Kelsey G, Galvão A. Leptin resistance in the ovary of obese mice is associated with profound changes in the transcriptome of cumulus cells. Cell Physiol Biochem. 2020;54(3):417-37. http://dx.doi.org/10.33594/000000228 PMid:32348667.
    » http://dx.doi.org/10.33594/000000228
  • Wróblewski A, Strycharz J, Świderska E, Drewniak K, Drzewoski J, Szemraj J, Kasznicki J, Śliwińska A. Molecular insight into the interaction between epigenetics and leptin in metabolic disorders. Nutrients. 2019;11(8):1872. http://dx.doi.org/10.3390/nu11081872 PMid:31408957.
    » http://dx.doi.org/10.3390/nu11081872
  • Wu LLY, Dunning KR, Yang X, Russell DL, Lane M, Norman RJ, Robker RL. High-fat diet causes lipotoxicity responses in cumulus-oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151(11):5438-45. http://dx.doi.org/10.1210/en.2010-0551 PMid:20861227.
    » http://dx.doi.org/10.1210/en.2010-0551
  • Wu X, Xu S, Weng J. Hyperglycemia-mediated oocyte TET3 insufficiency predisposes offspring to glucose intolerance. J Diabetes Investig. 2022;13(10):1649-51. http://dx.doi.org/10.1111/jdi.13885 PMid:35839128.
    » http://dx.doi.org/10.1111/jdi.13885
  • Wyman A, Pinto AB, Sheridan R, Moley KH. One-cell zygote transfer from diabetic to nondiabetic mouse results in congenital malformations and growth retardation in offspring. Endocrinology. 2008;149(2):466-9. http://dx.doi.org/10.1210/en.2007-1273 PMid:18039778.
    » http://dx.doi.org/10.1210/en.2007-1273
  • Yamagishi SI, Edelstein D, Du XL, Kaneda Y, Guzmán M, Brownlee M. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. J Biol Chem. 2001;276(27):25096-100. http://dx.doi.org/10.1074/jbc.M007383200 PMid:11342529.
    » http://dx.doi.org/10.1074/jbc.M007383200
  • Yang X, Wu LL, Chura LR, Liang X, Lane M, Norman RJ, Robker RL. Exposure to lipid-rich follicular fluid is associated with endoplasmic reticulum stress and impaired oocyte maturation in cumulus-oocyte complexes. Fertil Steril. 2012;97(6):1438-43. http://dx.doi.org/10.1016/j.fertnstert.2012.02.034 PMid:22440252.
    » http://dx.doi.org/10.1016/j.fertnstert.2012.02.034
  • Yau-Qiu ZX, Picó C, Rodríguez AM, Palou A. Leptin distribution in rat foetal and extraembryonic tissues in late gestation: a physiological view of amniotic fluid leptin. Nutrients. 2020;12(9):1-14. http://dx.doi.org/10.3390/nu12092542 PMid:32825787.
    » http://dx.doi.org/10.3390/nu12092542
  • Yeung BHY, Griffiths K, Berger L, Paudel O, Shin MK, Rui L, Sham JSK, Polotsky VY, Tang WY. Leptin induces epigenetic regulation of transient receptor potential melastatin 7 in rat adrenal pheochromocytoma cells. Am J Respir Cell Mol Biol. 2021;65(2):214-21. http://dx.doi.org/10.1165/rcmb.2020-0374OC PMid:33891828.
    » http://dx.doi.org/10.1165/rcmb.2020-0374OC
  • Yin S, Jiang X, Jiang H, Gao Q, Wang F, Fan S, Khan T, Jabeen N, Khan M, Ali A, Xu P, Pandita TK, Fan H-Y, Zhang Y, Shi Q. Histone acetyltransferase KAT8 is essential for mouse oocyte development by regulating reactive oxygen species levels. Development. 2017;144(12):2165-74. http://dx.doi.org/10.1242/dev.149518 PMid:28506985.
    » http://dx.doi.org/10.1242/dev.149518
  • You D, Nilsson E, Tenen DE, Lyubetskaya A, Lo JC, Jiang R, Deng J, Dawes BA, Vaag A, Ling C, Rosen ED, Kang S. Dnmt3a is an epigenetic mediator of adipose insulin resistance. eLife. 2017;6:e30766. http://dx.doi.org/10.7554/eLife.30766 PMid:29091029.
    » http://dx.doi.org/10.7554/eLife.30766
  • Zhang F, Chen Y, Heiman M, DiMarchi R. Leptin: structure, function and biology. Vitam Horm. 2005;71:345-72. http://dx.doi.org/10.1016/S0083-6729(05)71012-8 PMid:16112274.
    » http://dx.doi.org/10.1016/S0083-6729(05)71012-8
  • Zhang LH, Tan XY, Wu K, Zhuo MQ, Song YF, Chen QL. Regulation and mechanism of leptin on lipid metabolism in ovarian follicle cells from yellow catfish Pelteobagrus fulvidraco. Gen Comp Endocrinol. 2015;222:116-23. http://dx.doi.org/10.1016/j.ygcen.2015.06.008 PMid:26119184.
    » http://dx.doi.org/10.1016/j.ygcen.2015.06.008
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425-32. http://dx.doi.org/10.1038/372425a0 PMid:7984236.
    » http://dx.doi.org/10.1038/372425a0
  • Zhou Y, Qiu L, Xiao Q, Wang Y, Meng X, Xu R, Wang S, Na R. Obesity and diabetes related plasma amino acid alterations. Clin Biochem. 2013;46(15):1447-52. http://dx.doi.org/10.1016/j.clinbiochem.2013.05.045 PMid:23697717.
    » http://dx.doi.org/10.1016/j.clinbiochem.2013.05.045

Publication Dates

  • Publication in this collection
    20 Feb 2023
  • Date of issue
    2022

History

  • Received
    10 Jan 2023
  • Accepted
    24 Jan 2023
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com