Acessibilidade / Reportar erro

Physiological responses of oregano under different water management and application of fermented bokashi compost

ABSTRACT.

Growing conditions such as water supply and soil fertility influence oregano morphological development and physiological responses. Our study aimed to analyse the physiological responses of oregano plants grown under different water conditions and bokashi application rates. The experiment was carried out in a greenhouse under a randomized block design and a 3 x 4 factorial scheme. Treatments encompassed three water replacement levels (60, 80, and 100% crop evapotranspiration - ETc) and four bokashi rates (0, 100, 200, and 300 g m-2), with five replications each. Oregano seedlings were transplanted and grown in a spacing of 0.3 m between plants and 1 m between bed rows. After 60 days, treatments were evaluated for photosynthetic rate (A), stomatal conductance (Gs), internal CO2 rate (Ci), transpiration (E), and water-use efficiency (WUE). Data underwent variance analysis by F-teste, multivariate analysis, and Pearson's linear correlation. Oregano physiological responses were significantly influenced by water replacement level and the application rate of fermented bokashi compost. The multivariate analysis allowed us to analyse the interaction effect between water replacement level and bokashi rate on photosynthesis, stomatal conductance, internal CO2, and transpiration.

Keywords:
organic fertilization; Origanum vulgare L.; water management.

Introduction

Oregano (Origanum vulgare L.) belongs to the Lamiaceae family. It is used as a spice and aromatic plant and presents important bioactive compounds with antioxidant, anti-inflammatory, and antimicrobial actions (Pezzani, Vitalini, & Iriti, 2017Pezzani, R., Vitalini, S., & Iriti, M. (2017). Bioactivities of Origanum vulgare L.: an update. Phytochemistry Reviews, 16, 1253-1268. DOI: https://doi.org/10.1007/s11101-017-9535-z
https://doi.org/https://doi.org/10.1007/...
; Oniga et al., 2018Oniga, H., Puscas, C., Silaghi-Dumitrescu, R., Olah, N., Sevastre, B., Marica, R., … Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules, 23(8), 1-14. DOI: https://doi.org/10.3390/molecules23082077
https://doi.org/https://doi.org/10.3390/...
). Morphological development and physiological responses are influenced by biotic and abiotic conditions during cultivation (Alvarez, Quilaleo, Mazzoni, & Ridiero, 2019Alvarez, H. R., Quilaleo, M. E., Mazzoni, A. O., & Ridiero, E. L. (2019). Experiencias de cultivo de azafrán y orégano en la línea sur de Rio Negro. Presencia, 30(72), 27-31.; Oliveira, Santos, Souza, & Santos, 2017Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591
https://doi.org/https://doi.org/10.17584...
; Skoufogianni, Solomou, & Danalatos, 2019Skoufogianni, E., Solomou, A. D., & Danalatos, N. G. (2019). Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 545-552. DOI: https://doi.org/10.15835/nbha47311296
https://doi.org/https://doi.org/10.15835...
).

Water management is closely related to oregano plant development and physiological activity, having a direct influence on mass accumulation, nutrient extraction, and composition of phenolic compounds, oil yield, and final product quality (Hancioglu, Kurunc, Tontul, & Topuz, 2021Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2021). Growth, water use, yield and quality parameters in oregano affected by reduced irrigation regimes. Journal of the Science of Food and Agriculture, 101(3), 952-959. DOI: https://doi.org/10.1002/jsfa.10703
https://doi.org/https://doi.org/10.1002/...
; Maass, Cespedes, & Cardenas, 2020Maass, V., Cespedes, C., & Cardenas, C. (2020). Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444-451. DOI: https://doi.org/10.4067/S0718-58392020000300444
https://doi.org/https://doi.org/10.4067/...
; Virga et al., 2020Virga, G., Sabatino, L., Licata, M., Tuttolomondo, T., Leto, C., & La Bella, S. (2020). Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants, 9(11), 1-19. DOI: https://doi.org/10.3390/plants9111618
https://doi.org/https://doi.org/10.3390/...
).

The use of fermented compounds, such as bokashi, can improve soil chemical, physical, and biological traits, favouring the development of plants of interest (Quiroz & Céspedes, 2019Quiroz, M., & Céspedes, C. (2019). Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. Journal of Soil Science and Plant Nutrition, 19(1), 237-248. DOI: https://doi.org/10.1007/s42729-019-0009-9
https://doi.org/https://doi.org/10.1007/...
; Cortés-Tello & Jaramillo-López, 2020Cortés-Tello, K., & Jaramillo-López, P. F. (2020). Fermented soil amendments made from stabilized biosolids and fly ash improve maize (Zea mays. L.) nutrition and growth. International Journal of Recycling of Organic Waste in Agriculture, 9(1), 85-98. DOI: https://doi.org/10.30486/ijrowa.2020.671671
https://doi.org/https://doi.org/10.30486...
). Moreover, nutritional management is directly related to plant metabolism, acting in the production of bioactive compounds in aromatic and medicinal plants (Singh, Ali, & Irfan Qureshi, 2017Singh, M., Ali, A. A., & Irfan Qureshi, M. (2017). Unravelling the impact of essential mineral nutrients on active constituents of selected medicinal and aromatic plants. In M. Naeem, A. Ansari, & S. Gill (Eds.), Essential plant nutrients. New York, NY: Springer. DOI: https://doi.org/10.1007/978-3-319-58841-4_9
https://doi.org/https://doi.org/10.1007/...
).

The use of bokashi, together with other management practices, reduce the temperature and evaporation of water in the soil (Lasmini, Nasir, Hayati, & Edy, 2018Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11), 1743-1749. DOI: https://doi.org/10.21475/ajcs.18.12.11.p.1435
https://doi.org/https://doi.org/10.21475...
; Shin, Diepen, Blok, & Bruggen, 2017Shin, K., Diepen, G., Blok, W., & Bruggen, A. H. C. (2017). Variability of effective micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99, 168-176. DOI: https://doi.org/10.1016/j.cropro.2017.05.025
https://doi.org/https://doi.org/10.1016/...
), which can partially mitigate the consequences of water stress and contribute to food production and quality (Olle, 2020Olle, M. (2020). Review: Bokashi technology as a promising technology for crop production in Europe. The Journal of Horticultural Science and Biotechnology, 96(2), 145-152. DOI: https://doi.org/10.1080/14620316.2020.1810140
https://doi.org/https://doi.org/10.1080/...
). The application of fermented bokashi compost into the soil can thus improve growing conditions, favouring physiological activity with a potential impact on crop yield.

Therefore, given the lack of studies on the use of bokashi in oregano cultivation, this study aimed to analyse the effect of water conditions and application of fermented bokashi compost on the physiological responses of oregano plants.

Material and methods

Study area and experimental design

The experiment was carried out in a greenhouse at the State University of Maringá, Maringá, Paraná State, Brazil (23º25'57" S, 51º57'08" W, and 542-m altitude).

The study was performed in a randomized complete block design and 3 x 4 factorial scheme, with three water replacement levels (60, 80, and 100% of crop evapotranspiration - ETc) and four fermented bokashi compost rates (0, 100, 200, and 300 g m-2), with five replications.

Cultivation

Seedlings were acquired from a commercial nursery and transplanted 30 days after sowing, with about 7 cm in height. The plants were transplanted into bed rows (0.5 m wide and 1.5 m long) spaced in 0.3 m between plants and 1.0 m between rows. Each plot consisted of five plants, with the three central plants being considered useful.

The soil in the area is characterized as a Latossolo Vermelho distroférrico according to the Brazilian Soil Classification and shows a correlation with a Ultisol in the Soil Taxonomy (Santos et al., 2018Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., ... Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (5. ed.). Brasília, DF: Embrapa.). The soil physical composition is 72% clay, 16% sand, and 12% silt, with a density of 1.10 t m-3. The soil chemical parameters are phosphorus = 6.13 mg dm-3, potassium = 0.51 cmolc dm-3, calcium = 6.43 cmolc dm-3, magnesium = 1.87 cmolc dm-3, aluminum 0.13 cmolc dm-3, hydrogen 4.3 cmolc dm-3, cation exchange capacity = 9.45 cmolc dm-3, base saturation = 53.11%, organic matter = 1.02%, and pH (CaCl2) = 6.6. In the soil preparation, we applied 2 kg m-2 of compost (bovine manure), which allowed an input of nutrients estimated at 560 g N, 30 g P2O5, 22 g K2O, 39 g CaO, 20 g MgO, and 6 g S.

Fermented bokashi compost was produced on a family property in the municipality of Ubiratã, Paraná State, Brazil (24°33′18″ S, 52°58′40″ W, and 507-m altitude) following the method of Siqueira and Siqueira (2013Siqueira, A. P. P., & Siqueira, M. F. B. (2013). Bokashi: adubo orgânico fermentado. Niterói, RJ: Programa Rio Rural.). Efficient microorganisms (EM) were collected in a native forest and inoculated in a mixture of wheat bran (55%), soybean bran (40%), bone meal (3%), and dolomitic limestone (2%). This compost had an average density of 350 kg m-3, a water content of 10%, and a chemical composition of 46 kg t-1 N, 16 kg t-1 P, 10 kg t-1 K, 18 kg t-1 Ca, 10 kg t-1 Mg, and 2 kg t-1 S.

Water was replaced using a drip irrigation system. Drippers were spaced 0.3 m apart and had a flow rate of 4 L h-1 and a uniformity coefficient of 94%. Irrigation was performed daily (9:00 a.m.). The amount of water applied was determined as a function of Etc, which was monitored through constant groundwater lysimeters installed inside the protected environment.

Gas exchange

After 60 days of transplantation, gas exchange was analysed using a portable photosynthesis system (LI-6400XT, Li-COR) equipped with the following settings: flow rate = 500 μmol s-1, Photosynthetic Photon Flux Density (PPFD) = 1,200 µmol m2 s-1, and Mixer reference CO2 = 400 µmol mol-¹, with measurements taken at room temperature. The evaluated parameters comprised: photosynthetic rate (A, µmol CO2 m-2 s-1), stomatal conductance to water vapour (Gs, mol m-2 s-1), internal CO2 rate (Ci, mmol m-2 s-1), transpiration (E, mmol H2O m-2 s-1), water-use efficiency (WUE, mmol CO2 mol-1 H2O), which is the A/E ratio. The readings were made from 8:30 to 10:30 a.m., during monitoring.

Data analysis

Data were subjected to analysis of variance (ANOVA) by F-test, using the SISVAR software (Ferreira, 2019Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split-plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450
https://doi.org/https://doi.org/10.28951...
). Having obtained a significant effect for interaction between factors (water level and bokashi rate), the data were subjected to multivariate analysis, and mathematical models were estimated for each response variable (A, Gs, Ci, and E), with their respective coefficients of determination. From the fitted equations, three-dimensional plots were constructed. The SurferTM software was used for multivariate analysis and 3D plots. The data were also analysed by Pearson's linear correlation using the Microsoft ExcelTM software.

Results

The interaction between water replacement levels and bokashi application rates into the soil had a significant effect on the physiological variables analysed (Table 1).

Table 1
Photosynthetic rate (A), stomatal conductance (Gs), internal CO2 (Ci), transpiration (E), and water-use efficiency (WUE) in oregano (Origanum vulgare L.) grown in a protected environment under different water replacement and bokashi application conditions.

Given the significance of the interaction between the analysed factors (Table 1), mathematical models with respective coefficients of determination were built for photosynthesis (Equation 1), stomatal conductance (Equation 2), internal CO2 (Equation 3) and transpiration (Equation 4) using multivariate analysis. However, when analysing interaction value, the water-use efficiency (WUE) response did not show such interaction, as its mathematical model had R2 below 0.5.

A = 0.2016 * E T c + 0.01942 * B o k a s h i - 0.14467 R 2 = 0.95 1

G s = 0.0086 * E T c + 0.001115 * B o k a s h i - 0.556 R 2 = 0.81 ( 2 )

C i = 203875 * E T c + 0.38567 * B o k a s h i - 20.1734 R 2 = 0.88 ( 3 )

E = 0.035375 * E T c + 0.0050267 * B o k a s h i + 1.706 R 2 = 0.90 ( 4 )

where in:

A- photosynthetic rate (µmol CO2 m-2 s-1);

Gs- stomatal conductance (mol m-2 s-1);

Ci- internal CO2 (mmol m-2 s-1);

E- transpiration (mmol H2O m-2 s-1);

ETc- water replacement (%).

Bokashi- fermented bokashi compost (g m-2).

From the fitted equations, three-dimensional plots were constructed for photosynthetic rate, stomatal conductance, internal CO2, and transpiration (Figure 1).

When analysing the response surface for variables (Figure 1), we observed that they tended to be similar, which is reflected in the linear correlation values obtained (Table 2).

Discussion

The morphological development and photosynthetic activity of plants are related to genetic and environmental characteristics (Taiz, Zeiger, Möller, & Murphy, 2017Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.). In oregano (Origanum vulgare L.) cultivation, factors such as quality and intensity of incident light, temperature, water availability, and soil fertility are related to physiological responses, mass accumulation, and chemical composition (Oliveira et al., 2017Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591
https://doi.org/https://doi.org/10.17584...
; Virga, 2020Virga, G., Sabatino, L., Licata, M., Tuttolomondo, T., Leto, C., & La Bella, S. (2020). Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants, 9(11), 1-19. DOI: https://doi.org/10.3390/plants9111618
https://doi.org/https://doi.org/10.3390/...
; Hancioglu et al., 2021Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2021). Growth, water use, yield and quality parameters in oregano affected by reduced irrigation regimes. Journal of the Science of Food and Agriculture, 101(3), 952-959. DOI: https://doi.org/10.1002/jsfa.10703
https://doi.org/https://doi.org/10.1002/...
). For the water levels supplied, the severe water deficit when 60% of ETc was replaced decreased average values of physiological responses under all application rates of bokashi compost (Table 1).

Plants can adapt to adverse conditions, improving their photosynthetic and water-use efficiencies (Oliveira & Gualtieri, 2017Oliveira, A. K. M., & Gualtieri, S. C. J. (2017). Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (paratudo) submetidas a alagamento. Ciência Florestal, 27(1), 181-191. DOI: https://doi.org/10.5902/1980509826457
https://doi.org/https://doi.org/10.5902/...
). According to Bell, Schwartz, Mcinnes, Howell, and Morgan (2020Bell, J. M., Schwartz, R. C., Mcinnes, K. J., Howell, T. A., & Morgan, C. L. (2020). Effects of irrigation level and timing on profile soil water use by grain sorghum. Agricultural Water Management, 232, 1-10. DOI: https://doi.org/10.1016/j.agwat.2020.106030
https://doi.org/https://doi.org/10.1016/...
), plant responses to water deficit depend on the amount of water lost by transpiration, application losses, and duration of stressful conditions in the environment.

Figure 1
Three-dimensional response surface for the effect of interaction between water replacement (WR) and bokashi application rates on photosynthetic rate (A), stomatal conductance (Gs), internal CO2 (Ci), and transpiration (E) in oregano leaves (Origanum vulgare L.) grown in a protected environment.

Table 2
Correlation between the factors and variables analysed.

Water deficit decreases photosynthetic efficiency due to stomatal conductance reduction (Peloso, Tatagiba, Reis, Pezzopane, & Amaral, 2017Peloso, A. F., Tatagiba, S. D., Reis, E. F., Pezzopane, J. E. M., & Amaral, J. F. T. (2017). Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Science, 12(3), 389-399. DOI: https://doi.org/10.25186/cs.v12i3.1314
https://doi.org/https://doi.org/10.25186...
), as observed in plants under shading (Oliveira et al., 2017Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591
https://doi.org/https://doi.org/10.17584...
) and flooding (Oliveira & Gualtieri, 2017Oliveira, A. K. M., & Gualtieri, S. C. J. (2017). Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (paratudo) submetidas a alagamento. Ciência Florestal, 27(1), 181-191. DOI: https://doi.org/10.5902/1980509826457
https://doi.org/https://doi.org/10.5902/...
). Qualitatively, water shortage can affect the oregano plant growth and its essential oil yield without necessarily changing its composition (Virga, 2020Virga, G., Sabatino, L., Licata, M., Tuttolomondo, T., Leto, C., & La Bella, S. (2020). Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants, 9(11), 1-19. DOI: https://doi.org/10.3390/plants9111618
https://doi.org/https://doi.org/10.3390/...
).

According to Hancioglu et al. (2021Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2021). Growth, water use, yield and quality parameters in oregano affected by reduced irrigation regimes. Journal of the Science of Food and Agriculture, 101(3), 952-959. DOI: https://doi.org/10.1002/jsfa.10703
https://doi.org/https://doi.org/10.1002/...
), growing conditions in naturally dry environments decrease the sensitivity of oregano plants to water deficit but are resistant to quality parameters such as extract yield, contents of flavonoids and phenolic compounds, including improvements under low water consumption. We observed values of A, Gs, Ci, and E close to those reported by Oliveira et al. (2017Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591
https://doi.org/https://doi.org/10.17584...
), who evaluated oregano development under different shade nets and organic fertilization conditions.

Concerning bokashi, increases in A, Gs, Ci, and E values were observed as a function of the soil application rate, given the coefficients of the equations and positive linear correlation. When considering the soil organic matter content at the beginning of the experiment (1.02%), the bokashi application may have benefited soil fertility since it increased organic carbon content, and the amount of N-fixing and P-solubilizing bacteria (Lasmini et al., 2018Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11), 1743-1749. DOI: https://doi.org/10.21475/ajcs.18.12.11.p.1435
https://doi.org/https://doi.org/10.21475...
).

Maass et al. (2020Maass, V., Cespedes, C., & Cardenas, C. (2020). Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444-451. DOI: https://doi.org/10.4067/S0718-58392020000300444
https://doi.org/https://doi.org/10.4067/...
) applied different types of bokashi and observed increases in P contents in parsley leaves and the soil. Improvements in soil physical traits and sources of nutrients and microorganisms contribute to the development of plants and their responses to adverse conditions (Quiroz & Céspedes, 2019Quiroz, M., & Céspedes, C. (2019). Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. Journal of Soil Science and Plant Nutrition, 19(1), 237-248. DOI: https://doi.org/10.1007/s42729-019-0009-9
https://doi.org/https://doi.org/10.1007/...
; Cortés-Tello & Jaramillo-López, 2020Cortés-Tello, K., & Jaramillo-López, P. F. (2020). Fermented soil amendments made from stabilized biosolids and fly ash improve maize (Zea mays. L.) nutrition and growth. International Journal of Recycling of Organic Waste in Agriculture, 9(1), 85-98. DOI: https://doi.org/10.30486/ijrowa.2020.671671
https://doi.org/https://doi.org/10.30486...
).

When analysing Pearson's linear correlation between factors (bokashi application rate and water replacement level) and variables (photosynthetic rate, stomatal conductance, internal CO2, transpiration, and water-use efficiency), stronger relationships were observed between water replacement level and photosynthetic rate (0.81), and between bokashi application rate and stomatal conductance (0.74). Photosynthesis (Table 2) also showed a high correlation with water-use efficiency (0.73).

Although only physiological responses were analysed, water replacement and bokashi application conditions can also influence oregano morphological development and productivity. Some studies have shown increases in parsley (Maass et al., 2020Maass, V., Cespedes, C., & Cardenas, C. (2020). Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444-451. DOI: https://doi.org/10.4067/S0718-58392020000300444
https://doi.org/https://doi.org/10.4067/...
), Cerrado quince (Santos, Vieira, Zárate, Carnevali, & Gonçalves, 2020Santos, C. C., Vieira, M. C., Zárate, N. A. H., Carnevali, T. O., & Gonçalves, W. V. (2020). Organic residues and bokashi influence in the growth of Alibertia edulis. Floresta e Ambiente, 27(1). DOI: https://doi.org/10.1590/2179-8087.103417
https://doi.org/https://doi.org/10.1590/...
), cabbage (Xavier, Santos, Costa, & Carmo, 2019Xavier, M. C. G., Santos, C. A., Costa, E. S. P., & Carmo, M. G. F. (2019). Produtividade de repolho em função de doses de bokashi. Revista de Agricultura Neotropical, 6(1), 17-22. DOI: https://doi.org/10.32404/rean.v6i1.2372
https://doi.org/https://doi.org/10.32404...
), C. adamantium seedlings (Santos et al., 2019Santos, C. C., Bernardes, R. S., Goelzer, A., Geist, M. L., Vieira, M. C., & Zárate, N. A. H. (2019). Bokashi em mudas de Campomanesia adamantium (Cambess.) O. Berg: aspectos morfométricos e fotoquímicos. Nativa: Pesquisas Agrárias e Ambientais, 7(3), 239-243. DOI: https://doi.org/10.31413/nativa.v7i3.6772
https://doi.org/https://doi.org/10.31413...
), and tomato (Anhar, Junialdi, Zein, Advinda, & Leilani, 2018Anhar, A., Junialdi, R., Zein, A., Advinda, L., & Leilani, I. (2018). Growth and Tomato Nutrition Content with Bandotan (Ageratum conyzoides L) Bokashi Applied. IOP Conference Series: Materials Science and Engineering, 335, 1-9. DOI: https://doi.org/10.1088/1757-899X/335/1/012017
https://doi.org/https://doi.org/10.1088/...
) due to bokashi application. These studies also demonstrated that the best rate of bokashi varies with the variable analysed, species of interest, and growing conditions.

Reduction in soil water availability can affect plant development. Thus, according to Taiz et al. (2017Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.), under low soil water content, plants close their stomata to ensure survival, while reducing gas exchange in photosynthetic activities. Concerning water replacement, oregano plants without water deficit had the production of reserves optimized through high CO2 concentrations, while those under 20 and 40% water restrictions tended to have their ecophysiological activities reduced. Oregano plants under a water restriction of 20% of ETc had their instantaneous and intrinsic water-use efficiencies maximized.

In the dynamics of physiological processes, plants automatically lose water to the atmosphere when stomata open to acquiring CO2 (Taiz et al., 2017Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.). In this sense, Figure 1 shows that stomatal conductance (Gs) increased for all water replacement levels as a function of the bokashi rate applied to the soil. On the other hand, transpiration (i.e., loss of water in the form of vapour in oregano plants under severe water restriction - 40% of ETc) remained constant depending on the bokashi rate used.

For the same water replacement level, CO2 concentration, stomatal conductance (Gs), internal CO2 (Ci), and transpiration rate (E) increased as the rate of bokashi applied to the soil was raised.

Water stress can reduce leaf transpiration rate due to stomatal conductance reductions to limit water loss. According to Alvarenga et al. (2014Alvarenga, C. B., Teixeira, M. M., Zolnier, S., Cecon, P. R., Siqueira, D. L., Rodriguês, D. E., ... Rinaldi, P. C. N. (2014). Efeito do déficit de pressão de vapor d’água no ar na pulverização hidropneumática em alvos artificiais. Bioscience Journal, 30(1), 182-193.), plants develop adaptations to meet water scarcity and tend to optimize water use in times of shortage in the soil (Gupta, Rico-Medina, & Caño-Delgado, 2020Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. DOI: https://doi.org/10.1126/science.aaz7614
https://doi.org/https://doi.org/10.1126/...
).

The addition of bokashi to the soil increased nutrient availability and improved microbiological activity efficiency. Our results (Figure 1) show that the supply of nutrients by bokashi application, besides stimulating the activity of specific microorganisms, such as growth-promoting bacteria naturally in low populations in the soil (Kaushal & Wani, 2016Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. DOI: https://doi.org/10.1016/j.agee.2016.06.031
https://doi.org/https://doi.org/10.1016/...
; Vimal, Singh, Arora, & Singh, 2017Vimal, S. R., Singh, J. S.; Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177-192. DOI: https://doi.org/10.1016/S1002-0160(17)60309-6
https://doi.org/https://doi.org/10.1016/...
; Jardim et al., 2019Jardim, A. M. R. F., Silva, T. G. F., Souza, L. S. B., Alves, H. K. M. N., Araújo, J. F. N., Silva, G. I. N., & Silva, J. O. N. (2019). Dinâmica da água no solo com cultivo de palma forrageira sob quatro sistemas de plantio. Agrometeoros, 27(2), 357-365. DOI: https://doi.org/10.31062/agrom.v27i2.26446
https://doi.org/https://doi.org/10.31062...
), helped mitigate water stress (Jardim et al., 2019Jardim, A. M. R. F., Silva, T. G. F., Souza, L. S. B., Alves, H. K. M. N., Araújo, J. F. N., Silva, G. I. N., & Silva, J. O. N. (2019). Dinâmica da água no solo com cultivo de palma forrageira sob quatro sistemas de plantio. Agrometeoros, 27(2), 357-365. DOI: https://doi.org/10.31062/agrom.v27i2.26446
https://doi.org/https://doi.org/10.31062...
; Sinclair et al., 2017Sinclair, T. R., Devi, J., Shekoofa, A., Choudhary, S., Sadok, W., Vadez, V., … Rufty, T. (2017). Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 260, 109-118. DOI: https://doi.org/10.1016/j.plantsci.2017.04.007
https://doi.org/https://doi.org/10.1016/...
), thus improving plant performance in environments with moderate water limitation.

Under the experimental conditions studied, bokashi application to the soil brought benefits in terms of physiological responses for oregano plants grown under different water management conditions, thus showing the agronomic potential of such an organic compost.

Conclusion

Both water replacement level and bokashi fermented compost application rate significantly influence the physiological responses of oregano plants. The multivariate analysis allows evaluating the interaction effect of water level and bokashi application rate on the photosynthesis, stomatal conductance, internal CO2, and transpiration in oregano leaves.

Acknowledgements

This study was carried out with the support of the Coordination for Improvement of Higher Education Personnel - Brazil (CAPES), under financing Code 001, and the National Council for Scientific and Technological Development - Brazil (CNPq)

References

  • Alvarenga, C. B., Teixeira, M. M., Zolnier, S., Cecon, P. R., Siqueira, D. L., Rodriguês, D. E., ... Rinaldi, P. C. N. (2014). Efeito do déficit de pressão de vapor d’água no ar na pulverização hidropneumática em alvos artificiais. Bioscience Journal, 30(1), 182-193.
  • Alvarez, H. R., Quilaleo, M. E., Mazzoni, A. O., & Ridiero, E. L. (2019). Experiencias de cultivo de azafrán y orégano en la línea sur de Rio Negro. Presencia, 30(72), 27-31.
  • Anhar, A., Junialdi, R., Zein, A., Advinda, L., & Leilani, I. (2018). Growth and Tomato Nutrition Content with Bandotan (Ageratum conyzoides L) Bokashi Applied. IOP Conference Series: Materials Science and Engineering, 335, 1-9. DOI: https://doi.org/10.1088/1757-899X/335/1/012017
    » https://doi.org/https://doi.org/10.1088/1757-899X/335/1/012017
  • Bell, J. M., Schwartz, R. C., Mcinnes, K. J., Howell, T. A., & Morgan, C. L. (2020). Effects of irrigation level and timing on profile soil water use by grain sorghum. Agricultural Water Management, 232, 1-10. DOI: https://doi.org/10.1016/j.agwat.2020.106030
    » https://doi.org/https://doi.org/10.1016/j.agwat.2020.106030
  • Cortés-Tello, K., & Jaramillo-López, P. F. (2020). Fermented soil amendments made from stabilized biosolids and fly ash improve maize (Zea mays L.) nutrition and growth. International Journal of Recycling of Organic Waste in Agriculture, 9(1), 85-98. DOI: https://doi.org/10.30486/ijrowa.2020.671671
    » https://doi.org/https://doi.org/10.30486/ijrowa.2020.671671
  • Ferreira, D. F. (2019). SISVAR: a computer analysis system to fixed effects split-plot type designs. Revista Brasileira de Biometria, 37(4), 529-535. DOI: https://doi.org/10.28951/rbb.v37i4.450
    » https://doi.org/https://doi.org/10.28951/rbb.v37i4.450
  • Hancioglu, N. E., Kurunc, A., Tontul, I., & Topuz, A. (2021). Growth, water use, yield and quality parameters in oregano affected by reduced irrigation regimes. Journal of the Science of Food and Agriculture, 101(3), 952-959. DOI: https://doi.org/10.1002/jsfa.10703
    » https://doi.org/https://doi.org/10.1002/jsfa.10703
  • Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. DOI: https://doi.org/10.1126/science.aaz7614
    » https://doi.org/https://doi.org/10.1126/science.aaz7614
  • Jardim, A. M. R. F., Silva, T. G. F., Souza, L. S. B., Alves, H. K. M. N., Araújo, J. F. N., Silva, G. I. N., & Silva, J. O. N. (2019). Dinâmica da água no solo com cultivo de palma forrageira sob quatro sistemas de plantio. Agrometeoros, 27(2), 357-365. DOI: https://doi.org/10.31062/agrom.v27i2.26446
    » https://doi.org/https://doi.org/10.31062/agrom.v27i2.26446
  • Kaushal, M., & Wani, S. P. (2016). Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agriculture, Ecosystems & Environment, 231, 68-78. DOI: https://doi.org/10.1016/j.agee.2016.06.031
    » https://doi.org/https://doi.org/10.1016/j.agee.2016.06.031
  • Lasmini, S. A., Nasir, B., Hayati, N., & Edy, N. (2018). Improvement of soil quality using bokashi composting and NPK fertilizer to increase shallot yield on dry land. Australian Journal of Crop Science, 12(11), 1743-1749. DOI: https://doi.org/10.21475/ajcs.18.12.11.p.1435
    » https://doi.org/https://doi.org/10.21475/ajcs.18.12.11.p.1435
  • Maass, V., Cespedes, C., & Cardenas, C. (2020). Effect of bokashi improved with rock phosphate on parsley cultivation under organic greenhouse management. Chilean Journal of Agricultural Research, 80(3), 444-451. DOI: https://doi.org/10.4067/S0718-58392020000300444
    » https://doi.org/https://doi.org/10.4067/S0718-58392020000300444
  • Olle, M. (2020). Review: Bokashi technology as a promising technology for crop production in Europe. The Journal of Horticultural Science and Biotechnology, 96(2), 145-152. DOI: https://doi.org/10.1080/14620316.2020.1810140
    » https://doi.org/https://doi.org/10.1080/14620316.2020.1810140
  • Oliveira, A. K. M., & Gualtieri, S. C. J. (2017). Trocas gasosas e grau de tolerância ao estresse hídrico induzido em plantas jovens de Tabebuia aurea (paratudo) submetidas a alagamento. Ciência Florestal, 27(1), 181-191. DOI: https://doi.org/10.5902/1980509826457
    » https://doi.org/https://doi.org/10.5902/1980509826457
  • Oliveira, V. C., Santos, A. R., Souza, G. S., & Santos, R. M. (2017). Physiological responses of orégano plants (Origanum vulgare L.) cultivated undeer colored meshes and with organic fertilizers. Revista Colombiana de Ciencias Hortícolas, 11(2), 75-91. DOI: https://doi.org/10.17584/rcch.2017v11i2.7591
    » https://doi.org/https://doi.org/10.17584/rcch.2017v11i2.7591
  • Oniga, H., Puscas, C., Silaghi-Dumitrescu, R., Olah, N., Sevastre, B., Marica, R., … Hanganu, D. (2018). Origanum vulgare ssp. vulgare: Chemical composition and biological studies. Molecules, 23(8), 1-14. DOI: https://doi.org/10.3390/molecules23082077
    » https://doi.org/https://doi.org/10.3390/molecules23082077
  • Peloso, A. F., Tatagiba, S. D., Reis, E. F., Pezzopane, J. E. M., & Amaral, J. F. T. (2017). Limitações fotossintéticas em folhas de cafeeiro arábica promovidas pelo déficit hídrico. Coffee Science, 12(3), 389-399. DOI: https://doi.org/10.25186/cs.v12i3.1314
    » https://doi.org/https://doi.org/10.25186/cs.v12i3.1314
  • Pezzani, R., Vitalini, S., & Iriti, M. (2017). Bioactivities of Origanum vulgare L.: an update. Phytochemistry Reviews, 16, 1253-1268. DOI: https://doi.org/10.1007/s11101-017-9535-z
    » https://doi.org/https://doi.org/10.1007/s11101-017-9535-z
  • Quiroz, M., & Céspedes, C. (2019). Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. Journal of Soil Science and Plant Nutrition, 19(1), 237-248. DOI: https://doi.org/10.1007/s42729-019-0009-9
    » https://doi.org/https://doi.org/10.1007/s42729-019-0009-9
  • Santos, C. C., Bernardes, R. S., Goelzer, A., Geist, M. L., Vieira, M. C., & Zárate, N. A. H. (2019). Bokashi em mudas de Campomanesia adamantium (Cambess.) O. Berg: aspectos morfométricos e fotoquímicos. Nativa: Pesquisas Agrárias e Ambientais, 7(3), 239-243. DOI: https://doi.org/10.31413/nativa.v7i3.6772
    » https://doi.org/https://doi.org/10.31413/nativa.v7i3.6772
  • Santos, C. C., Vieira, M. C., Zárate, N. A. H., Carnevali, T. O., & Gonçalves, W. V. (2020). Organic residues and bokashi influence in the growth of Alibertia edulis Floresta e Ambiente, 27(1). DOI: https://doi.org/10.1590/2179-8087.103417
    » https://doi.org/https://doi.org/10.1590/2179-8087.103417
  • Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., ... Cunha, T. J. F. (2018). Sistema Brasileiro de Classificação de Solos (5. ed.). Brasília, DF: Embrapa.
  • Shin, K., Diepen, G., Blok, W., & Bruggen, A. H. C. (2017). Variability of effective micro-organisms (EM) in bokashi and soil and effects on soil-borne plant pathogens. Crop Protection, 99, 168-176. DOI: https://doi.org/10.1016/j.cropro.2017.05.025
    » https://doi.org/https://doi.org/10.1016/j.cropro.2017.05.025
  • Sinclair, T. R., Devi, J., Shekoofa, A., Choudhary, S., Sadok, W., Vadez, V., … Rufty, T. (2017). Limited-transpiration response to high vapor pressure deficit in crop species. Plant Science, 260, 109-118. DOI: https://doi.org/10.1016/j.plantsci.2017.04.007
    » https://doi.org/https://doi.org/10.1016/j.plantsci.2017.04.007
  • Singh, M., Ali, A. A., & Irfan Qureshi, M. (2017). Unravelling the impact of essential mineral nutrients on active constituents of selected medicinal and aromatic plants. In M. Naeem, A. Ansari, & S. Gill (Eds.), Essential plant nutrients New York, NY: Springer. DOI: https://doi.org/10.1007/978-3-319-58841-4_9
    » https://doi.org/https://doi.org/10.1007/978-3-319-58841-4_9
  • Siqueira, A. P. P., & Siqueira, M. F. B. (2013). Bokashi: adubo orgânico fermentado Niterói, RJ: Programa Rio Rural.
  • Skoufogianni, E., Solomou, A. D., & Danalatos, N. G. (2019). Ecology, cultivation and utilization of the aromatic Greek oregano (Origanum vulgare L.): A review. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(3), 545-552. DOI: https://doi.org/10.15835/nbha47311296
    » https://doi.org/https://doi.org/10.15835/nbha47311296
  • Taiz, L., Zeiger, E., Möller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6. ed.). Porto Alegre, RS: Artmed.
  • Vimal, S. R., Singh, J. S.; Arora, N. K., & Singh, S. (2017). Soil-plant-microbe interactions in stressed agriculture management: a review. Pedosphere, 27(2), 177-192. DOI: https://doi.org/10.1016/S1002-0160(17)60309-6
    » https://doi.org/https://doi.org/10.1016/S1002-0160(17)60309-6
  • Virga, G., Sabatino, L., Licata, M., Tuttolomondo, T., Leto, C., & La Bella, S. (2020). Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants, 9(11), 1-19. DOI: https://doi.org/10.3390/plants9111618
    » https://doi.org/https://doi.org/10.3390/plants9111618
  • Xavier, M. C. G., Santos, C. A., Costa, E. S. P., & Carmo, M. G. F. (2019). Produtividade de repolho em função de doses de bokashi. Revista de Agricultura Neotropical, 6(1), 17-22. DOI: https://doi.org/10.32404/rean.v6i1.2372
    » https://doi.org/https://doi.org/10.32404/rean.v6i1.2372

Publication Dates

  • Publication in this collection
    09 Oct 2023
  • Date of issue
    2023

History

  • Received
    07 Sept 2021
  • Accepted
    13 Feb 2022
Editora da Universidade Estadual de Maringá - EDUEM Av. Colombo, 5790, bloco 40, 87020-900 - Maringá PR/ Brasil, Tel.: (55 44) 3011-4253, Fax: (55 44) 3011-1392 - Maringá - PR - Brazil
E-mail: actaagron@uem.br