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ABSTRACT 
 

Metabolic network alignments enable comparison of the similarities and differences between pathways in two 

metabolic networks and help to uncover the conserved sub-blocks therein. Such analysis is important in the 

understanding of metabolic networks and species evolution. The fundamental parts of metabolic network alignment 

algorithms all involve comparisons of the similarity between two enzymes as a similarity measure of network nodes. 

As a result, the study of methods for measuring enzyme similarity becomes highly relevant. Currently, two 

approaches are mainly used to measure enzyme similarity. One of the methods is based on similarity measures of 

gene or protein sequences; the other is based on enzyme classification. In this study, multiple metabolic network 

alignments were performed using both the methods. The results showed that, in general, the sequence similarity 

method yielded higher accuracy, especially with respect to reflecting evolutionary distances. 
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INTRODUCTION 

 
With the advent of the post-genomic era, a major 

challenge faced by biologists is to understand 

how biomolecules such as proteins and enzymes 

interact with each other to fulfill various 

functions in organisms, for example, in gene 

regulatory networks, protein interaction networks, 

and metabolic networks (Li et al. 2008; Kuchaiev 

et al. 2010). The differences between these 

interactive networks of biomolecules lie not only 

in their composition but also in their topology 

(Doncheva et al. 2012). Therefore, the study of 

the differences between various biological 

networks by using biological network alignment 

becomes highly relevant. Biological network 

alignment is a crucial approach for understanding 

the structures, functions, and evolution of 

organisms (Sharan et al. 2006). Similarities and 

differences between network topologies can be 

determined by performing comparative analysis 

of the biological networks of different species; 

this enables further investigations of the 

conserved regions in a network for uncovering 

new biological functions and for understanding 

the relationships between the structures and 

functions of various molecules (Yamada et al. 

2009). 
A metabolic network involves multiple in vivo 

chemical reactions. Individual intracellular 

biochemical reactions can be studied at the level 

of the whole network. Therefore, metabolic 

networks comprise the final output that integrates 

the interaction of multiple types of data (i.e., data 

from genes, proteins, and metabolites). 

In metabolic network alignments, enzymes that 

catalyze reactions can be seen as nodes in a 

pathway diagram, while the substrates and 

products can be seen as edges connecting these 

enzymes in the diagram. From this perspective, 

metabolic network alignment is used to compare 

the similarity of nodes and edges in pathway 

diagrams. As a result, matches between enzymes 

in a network model not only help determine the 

differences between nodes but also significantly 

influence the overall network alignment score. 

Currently, two approaches are available for 

measuring enzyme similarity. One is based on the 

enzyme classification proposed by Tohsato et al. 

(2000). The method utilizes the Enzyme 

Commission (EC) classification numbering to 

quantify the differences between enzymes in two 

metabolic networks. The other method (Altschul 

et al. 1997; Francke et al. 2005; Amir-Ghiasvand 

et al. 2014) refers to the common practice of 

protein interaction network alignment. Analysis 

of the genes encoding enzymes in metabolic 

networks helps to determine the differences 

between enzymes in two different metabolic 

networks based on the similarity in their DNA 

and amino acid sequences.  

In this study, we compared the two metabolic 

network alignment methods described above and 

obtained the following results: In general, as the 

sequence similarity method takes into account the 

topological structure and sequence characteristics 

of the enzymes, it has higher accuracy, especially 

with respect to reflecting 

phylogenetic/evolutionary relationships. 

 

MATERIAL AND METHODS 

 
Data Source 

All the metabolic network models used in this 

study were obtained from the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 

Metabolic PATHWAY Database of Kyoto 

University. The specific steps were as follows: 

the ―Amino sugar and nucleotide sugar 

metabolism‖ pathway under KEGG PATHWAY 

in the KEGG website was selected. Next, under 

the Organism menu, the following two classes of 

bacteria were selected: Gammaproteobacteria - 

Enterobacteria and Betaproteobacteria; under 

each class, the desired species and their 

metabolic networks were selected. 

Using the traversal method, all the enzymes in 

the metabolic network of each species, the 

sequence similarity measures of each enzyme 

pair, and the similarity measures of the EC 

numbers between enzymes were obtained. 

 

Metabolic Network Alignment Algorithms and 

Selection of the Enzymes’ Similarity Measures 

Let a network be represented by a graph G(V, E), 

where each node v∈V denotes the enzyme node 

in the network and each edge (u,v)∈E denotes the 

lines connecting enzyme u and enzyme v. Given 

two metabolic networks G1=(V1,E1) and 

G2=(V2, E2), the one-to-one mapping between a 

subset of V1, denoted as V1′, and a subset of V2, 

denoted as V2′, is defined as a network alignment. 
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In this study, the alignment method used is a 

modification of the method proposed by Li et al. 

(Li et al. 2007). This method determines the 

alignment measure as a constraint-based non-

integer quadratic programming problem in order 

to find the node-matching and edge-matching 

mappings between two metabolic networks, i.e., 

the optimal state of matching these two metabolic 

networks. In this method, Sij denotes the 

similarity measure of two graphs, where i  G1 

and j  G2. As mentioned above, there are two 

ways to determine Sij: 

Method 1: This method involves obtaining the 

EC numbers of two different enzymes from 

KEGG and finding the lowest class in the 

hierarchy shared by the two EC numbers. For 

example, considering Enzyme (1.1.1.1) and 

Enzyme (1.1.1.2), the lowest class in the 

hierarchy is (1.1.1.-). The enzyme similarity is 

then defined as the inverse of all the enzyme 

numbers below the lowest class in the hierarchy. 

Method 2: This method involves obtaining the 

protein sequences of the enzymes of a given 

species from KEGG and determining the 

similarity in the protein sequences of the two 

enzymes using the common BLASTP algorithm. 

The ratio of the sequence identity and length is 

then used to define the enzyme similarity. 

 

Selection of Metabolic Networks and Plotting 

Pathway Diagrams 

To compare the differences between the two 

aforementioned metabolic pathway alignment 

methods, we analyzed a few aspects of the results 

obtained using both the methods. First, amino 

sugar and nucleotide sugar metabolic model 

alignment was conducted for Dickeya dadantii 

Ech703 and Escherichia coli K-12 MG1655, and 

the differences between the accurate matching 

results obtained from the two methods were 

compared (Table 1). Then, the performances of 

these two methods were investigated with respect 

to aligning multiple metabolic networks and 

constructing phylogenetic trees. The source of the 

metabolic networks is shown in Table 1.  

The metabolic pathway diagrams (Fig. 1) of these 

two species (D. dadantii Ech703 and E. coli K-12 

MG1655) were plotted using the software 

VANTED (Junker B et al. 2006) (version 2.2.1). 

The resulting relationship diagrams (Fig. 2 and 

Fig. 3) of the metabolic pathway alignment were 

preliminarily plotted using the newest version of 

Cytoscape.js (Ono et al. 2014) together with 

HTML. The phylogenetic trees (Fig. 4 and Fig. 5) 

were first constructed using the R package (Ihaka 

et al. 1996) and then plotted using the EvolView 

software (Zhang et al. 2012). 

 
Figure 1- Dickeya dadantii Ech703 and Escherichia coli K-12 MG1655 amino sugar and nucleotide sugar 

metabolic networks from KEGG. 
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Figure 2- Comparison of results obtained with the EC classification method. This result is the alignment between 

the Dickeya dadantii Ech703 and Escherichia coli K-12 MG1655 amino sugar and nucleotide sugar metabolic 

networks. 

 
Figure 3- Comparison of results obtained with the sequence similarity method. This result is the alignment between 

the Dickeya dadantii Ech703 and Escherichia coli K-12 MG1655 amino sugar and nucleotide sugar metabolic 

networks. 

 

RESULTS 

 
Comparison of the Precise Details of the Two 

Network Alignment Results 

The amino sugar and nucleotide sugar metabolic 

network models were selected from KEGG for E. 

coli K-12 MG1655 and D. dadantii Ech703, each 

of which possessed 47 and 43 nodes, respectively, 

in their models. A 43*47-dimension similarity 

matrix was derived using the two similarity 

measurement methods, and the detailed results of 

the comparison are given in Table 1. 
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Table 1- Details of comparison between D. dadantii Ech703 and E. coli K-12 MG1655 

NO. D.dadantii ech703 E.coli  

K-12 MG1655 

(Method of EC) 

E.coli  

K-12 MG1655 

(Method of Blastp) 

0-A
a
 2.7.1.69

b
(Dd703_3193

c
) 2.7.1.69(b0679

d
) 2.7.1.69(b2417) 

1-S 4.2.1.126(Dd703_2775) 4.2.1.126(b2428) 4.2.1.126(b2428 ) 

2-A 2.7.1.69(Dd703_1115) 2.7.1.69(b2417) 2.7.1.69(b0679) 

3-D 3.2.1.52(Dd703_1606) 3.2.1.52(b1107) 5.1.3.9(b3223) 

4-D 2.7.1.59(Dd703_1621) 2.7.1.59(b1119) 3.2.1.52(b1107) 

5-S1 2.7.7.23(Dd703_3997) 2.7.7.23(b3730) 2.3.1.157(b3730 ) 

6-S 3.5.1.25(Dd703_1113) 3.5.1.25(b0677) 3.5.1.25(b0677) 

7-S1 2.3.1.157(Dd703_3997) 2.3.1.157(b3730) 2.7.7.23(b3730 ) 

8-S 2.7.1.8(Dd703_0709) 2.7.1.60(b3222) 2.7.1.60(b3222) 

9-S 5.4.2.10(Dd703_3350) 5.4.2.10(b3176) 5.4.2.10(b3176) 

10-S 5.1.3.14(Dd703_0205) 5.1.3.14(b3786 ) 5.1.3.14(b3786 ) 

11-S 1.1.1.336(Dd703_0206) 1.1.1.336(b3787 ) 1.1.1.336(b3787 ) 

12-S 3.5.99.6(Dd703_1114) 3.5.99.6(b0678) 3.5.99.6(b0678) 

13-S 
2.6.1.16(Dd703_3998) 

2.6.1.16(b3729) 
2.6.1.16(b3729) 

14-S 2.7.1.4(Dd703_0696) 2.7.1.4(b0394) 2.7.1.4(b0394) 

15-S 2.5.1.7(Dd703_3644) 2.5.1.7(b3189) 2.5.1.7(b3189) 

16-S 
1.3.1.98(Dd703_3741) 

1.3.1.98(b3972) 1.3.1.98(b3972 ) 

17-S 5.3.1.9(Dd703_0463) 5.3.1.9(b4025 ) 5.3.1.9(b4025 ) 

18-D 4.1.1.35(Dd703_2685) 4.1.3.3(b3225) 3.2.1.37(b0271) 

19-S1 1.1.1.305(Dd703_4017) 1.1.1.305(b2255) 2.1.2.13(b2255) 

20-S 2.6.1.87(Dd703_4015) 2.6.1.87(b2253) 2.6.1.87(b2253) 

21-S1 2.1.2.13(Dd703_4017) 2.1.2.13(b2255) 1.1.1.305(b2255) 

22-S 2.4.2.53(Dd703_4016) 2.4.2.53(b2254) 2.4.2.53(b2254 ) 

23-S 3.5.1.-(Dd703_4018) 3.5.1.-(b2256) 3.5.1.-(b2256) 

24-A 
2.7.1.69(Dd703_1595) 2.7.1.69(b1817) 2.7.1.69(b1101) 

25-S 
1.1.1.22(Dd703_1202) 1.1.1.22(b2028) 1.1.1.22(b2028) 
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26-S 
2.7.7.9(Dd703_1203) 2.7.7.9(b1236) 2.7.7.9(b1236) 

27-S 
2.7.1.2(Dd703_0024) 2.7.1.2(b2388 ) 2.7.1.2(b2388 ) 

28-S 5.4.2.2(Dd703_1123) 5.4.2.2(b0688) 5.4.2.2(b0688) 

29-S 5.3.1.8(Dd703_1902 ) 5.3.1.8(b1613) 5.3.1.8(b1613) 

30-S 2.7.7.12(Dd703_1172) 2.7.7.12(b0758) 2.7.7.12(b0758) 

31-S 5.4.99.9(Dd703_1556) 5.4.99.9(b2036) 5.4.99.9(b2036) 

32-S 5.1.3.2(Dd703_1173 ) 5.1.3.2(b0759) 5.1.3.2(b0759) 

33-D 5.1.3.6(Dd703_1201) 5.1.3.9(b3223) 1.1.1.271(b2052) 

34-S 2.7.1.6(Dd703_1171) 2.7.1.6(b0757) 2.7.1.6(b0757) 

35-A 2.7.1.69(Dd703_2021) 2.7.1.69(b1101) 2.7.1.69(b1817) 

36-S 5.4.2.8(Dd703_3280) 5.4.2.8(b2048) 5.4.2.8(b2048) 

37-S 2.7.7.13(Dd703_3281 ) 2.7.7.13(b2049) 2.7.7.13(b2049) 

38-S 4.2.2.1.47(Dd703_3277 ) 4.2.1.47(b2053) 4.2.1.47(b2053) 

39-S 2.7.1.69(Dd703_1595) 2.7.1.69(b1101) 2.7.1.69(b1101) 

40-S 
2.7.1.2(Dd703_0024) 2.7.1.2(b2388) 2.7.1.2(b2388) 

41-S 5.4.2.2(Dd703_1123) 5.4.2.2(b0688) 5.4.2.2(b0688 ) 

42-S 2.7.7.27(Dd703_0279) 2.7.7.27(b3430) 2.7.7.27(b3430) 

 

a. A indicates that the results of the two methods have the same Enzyme Commission (EC) number, but have different entries; D 

indicates that the two methods have different EC numbers and different entries; S indicates that the two methods have the same 

EC number and same entry; S1 indicates that the two methods have different EC numbers and same entries. 

b. The EC number of the amino sugar and nucleotide sugar metabolic network of D. dadantii Ech703 from KEGG.  

c. The enzyme entry in the amino sugar and nucleotide sugar metabolic network of D dadantii Ech703 from KEGG.  

d. The enzyme entry in the amino sugar and nucleotide sugar metabolic network of E. coli K-12 MG1655 from KEGG. 

 

From Table 1, it is apparent that 31 consistent 

alignments were obtained using the two methods, 

which account for the majority of the metabolic 

network. This result demonstrates the strong 

conservation characteristic of the amino sugar 

and nucleotide sugar metabolic pathway.  

Table S1 also reveals some differences between 

the two methods. The differences could mainly 

be categorized into two types: The first type 

included matches of No. 0, 2, 24, and 35. In 

match No. 0, PTS system glucose-specific 

transporter (Dd703_3193) of D. dadantii Ech703 

was matched to fused N-acetyl glucosamine-

specific PTS enzyme IIC, IIB, and IIA 

components (b0679) of E. coli K-12 MG1655 

with the EC classification method, while it was 

matched to the same glucose-specific enzyme IIA 

component of PTS (b2417) with the sequence 

similarity method. Evidently, the sequence 

similarity method provided an accurate result. In 

match No. 2, PTS system N-acetylglucosamine-

specific transporter subunit IIBC of D. dadantii 

Ech703 was matched to glucose-specific enzyme 

IIA component of PTS in the EC classification 

method, while in the sequence similarity method, 

it was matched to fused N-acetyl glucosamine-

specific PTS enzyme IIC, IIB, and IIA 

components. Here, the sequence similarity 

method again delivered a better result than the 

EC classification method. Clearly, in this type of 
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matching, the EC classification method failed to 

match the correct enzymes, while accurate results 

were achieved with the sequence similarity 

method. We defined this type of matching as 

sequence-first matching. The other type of 

matches included nos. 3, 4, 18, and 33. In match 

No. 3, beta-N-acetylhexosaminidase of D. 

dadantii Ech703 was matched to beta N-acetyl-

glucosaminidase of E. coli K-12 MG1655 in the 

EC classification method and it was matched 

to putative N-acetylmannosamine-6-P epimerase 

of E. coli K-12 MG1655 in the sequence 

similarity method. In this case, the EC 

classification approach clearly produced the more 

superior result. This type of matching was 

therefore defined as the EC-first matching.   

 

Comparison of the Phylogenetic Trees 

Constructed Using the Two Alignment 

Methods 

In this study, ten strains of bacteria from seven 

genera of two classes, Gammaproteobacteria and 

Betaproteobacteria, were selected from KEGG 

(Table 1).  

 

 

Table 2-List of the strains or organisms whose amino sugar and nucleotide sugar metabolic networks were used for 

alignment. 

The amino sugar and nucleotide sugar metabolic 

network alignment was conducted for each pair 

of the ten bacterial strains, and the alignment 

results were converted into distances between 

each pair of bacterial strains. We then performed 

clustering analysis based on these distances. The 

dendrograms (Figs. 4 and 5) derived from both 

methods were plotted using the EvolView 

software. It is clear from these dendrograms that 

both methods successfully explained the 

correlation between metabolic networks and the 

proximity in the phylogenetic relationships 

between each strain. Both methods also 

illustrated the species attribution of bacteria in 

Gammaproteobacteria and Betaproteobacteria 

and accurately described the phylogenetic 

relationships between individual bacterial strains 

in the genera Escherichia and Neisseria. 

However, for the two species D. dadantii Ech703 

and D. zeae Ech1591 in the genus Dickeya, the 

phylogenetic tree constructed using the EC 

classification method did not accurately reflect 

their phylogenetic relationship (see the second 

rectangular mark part in Fig. 5). 

 

 

 
Figure 4-Phylogenetic tree produced using the EC classification method. The rectangular marks represent the strains 

or species belonging to the same genus. Vertical bar represents the strains or species belonging to the same class. 

Class genus species 

Gamma 

proteobacteria 

Escherichia Escherichia coli K-12 MG1655 

Escherichia Escherichia coli O157H7 EDL933 (EHEC) 

Dickeya Dicheya dadantii ech703 

Dickeya Dickeya zeae Ech1591 

Klebsiella Klebsiella pneumoniae subsp. pneumoniae MGH 78578 

Serratia Serratia proteamaculans 

Beta 

proteobacteria 

Neisseria Neisseria gonorrhoeae FA 1090 

Neisseria Neisseria meningitidis Z2491 (serogroup A) 

Snodgrassella Snodgrassella alvi 

Ralstonia Ralstonia solanacearum GMI1000 
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Figure 5- Phylogenetic tree produced using the sequence similarity method. The rectangular marks represent the 

strains or species belonging to the same genus. Vertical bar represents the strains or species belonging to the same 

class. 

 

DISCUSSION 

 
We found that, for the alignment of any two 

networks, it is possible to obtain inconsistent 

matching results from these two methods. These 

inconsistencies mainly included two types of 

matches, i.e., the sequence-first matches and the 

EC-first matches. The reason for the emergence 

of a sequence-first match is mainly due to the 

existence of other classes of enzymes below the 

lowest class in the classification hierarchy; i.e., 

when the current enzyme classification system 

failed to accurately describe lower enzyme 

classes, the EC classification method would 

produce multiple equivalent matches. As a result, 

the program could not make accurate choices and 

consequently generated many false matches, 

while the sequence similarity method was able to 

make correct choices. On the other hand, the 

main reason for the appearance of EC-first 

matches is that the pairwise evolutionary distance 

between two species or enzymes was too large. 

This will result in an excessively low sequence 

similarity measure of the same enzyme from 

different species, which is possibly even lower 

than the similarity measures with certain 

enzymes that work on the same substrates but 

perform different functions. In this case, it is 

prone to result in this type of match. 

Therefore, the probability of sequence-first or 

EC-first matches depends on the specific 

circumstances with regard to the enzymes and 

sequences of the metabolic networks being 

compared, as well as the evolutionary distances 

between the species. Under normal circumstances, 

the evolutionary status of the enzymes does not 

differ significantly from each other, and, as a 

result, the probability of the sequence-first match 

is higher than that of the EC-first match. In this 

case, the inaccuracy of the sequence similarity 

method will be lower than that of the method 

based on EC classification. Furthermore, because 

the EC classification method does not contain 

any evolutionary information, the sequence 

similarity method will provide superior results 

when constructing phylogenetic trees. In the 

comparison of the metabolic networks for ten 

bacterial strains, the sequence similarity method 

accurately reflected the phylogenetic 

relationships between their metabolic networks, 

while the results of the EC classification method 

had several mistakes. 

In summary, for most pathways, the matching 

results of the metabolic network alignments from 

the EC classification method and the enzyme 

gene sequence similarity method were the same. 

However, there were some differences in the 

results, which depend on the context under which 

the comparison is being made. The similarity 

measurement method based on the EC 

classification does not take into account the fact 

that enzymes show differential expression under 

specific conditions in certain species and that 

these differences result in distinct metabolic 

networks. Therefore, in general, similarity 

measures based on the sequence similarity 

method will yield higher accuracy. This is 

especially the case when reflecting phylogenetic 

relationships, where the sequence similarity 

method evidently performs better than the EC 
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classification method. 
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